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Microbiome composition profiles generated from 16S rRNA sequencing have been

extensively studied for their usefulness in phenotype trait prediction, including for

complex diseases such as diabetes and obesity. These microbiome compositions

have typically been quantified in the form of Operational Taxonomic Unit (OTU) count

matrices. However, alternate approaches such as Amplicon Sequence Variants (ASV)

have been used, as well as the direct use of k-mer sequence counts. The overall effect

of these different types of predictors when used in concert with various machine learning

methods has been difficult to assess, due to varied combinations described in the

literature. Here we provide an in-depth investigation of more than 1,000 combinations

of these three clustering/counting methods, in combination with varied choices for

normalization and filtering, grouping at various taxonomic levels, and the use of

more than ten commonly used machine learning methods for phenotype prediction.

The use of short k-mers, which have computational advantages and conceptual

simplicity, is shown to be effective as a source for microbiome-based prediction.

Among machine-learning approaches, tree-based methods show consistent, though

modest, advantages in prediction accuracy. We describe the various advantages and

disadvantages of combinations in analysis approaches, and provide general observations

to serve as a useful guide for future trait-prediction explorations using microbiome data.

Keywords: phenotype prediction, machine learning method, k-mers, operational taxonomic unit (OTU), amplicon

sequence variant (ASV), phylogenetic analysis

INTRODUCTION

With the advancement of sequencing technology and the downward trends in the cost of
sequencing, more studies have used microbiome data as a primary source for investigating the
relationship between the microbiota and host health. In general, human microbiota samples
consist of easily collected specimens such as feces, saliva, and skin. Upon collection, the
sample can undergo a variety of extraction protocols, including from protein, RNA, and DNA.
Each of these data types has led to a specific field of emerging research (Weinstock, 2012).
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In this review, we focus on the targeted extraction of
microbial DNA from the16S rRNA region, which is present
in most microorganisms but displays high variability across
species. The sequenced reads are then typically clustered into
Operational Taxonomic Units (OTUs) by matching the reads to a
reference database.

Multiple studies have investigated the use of OTUs for
phenotype/disease prediction, including inflammatory bowel
diseases (Gevers et al., 2014), Type 2 diabetes (Gurung et al.,
2020), and lung cancer (Zheng et al., 2020). As a variety of
data treatment and prediction methods have been used, there
is a pressing need to connect and verify how the upstream
processing of the 16S rRNA data affects the downstream
prediction performance, and compare among the different
OTU/ASV methods.

There are two primary representations to produce data
count matrices: OTUs and Amplicon Sequence Variants (ASVs)
(Rosen et al., 2012). Within the realm of OTUs, there are
three methods to “cluster” sequences into OTUS: de novo,
closed-reference, and open-reference, each with its unique
advantages and disadvantages depending on the sequence
region, reference database, and sample environment (Rideout
et al., 2014). ASVs are commonly generated using the Divisive
Amplicon Denoising Algorithm 2 (DADA2), and the resultant
ASVs represent true biological sequences obtained from reads
(Callahan et al., 2016). In addition, there have been recent
efforts to use the occurrence of short-chain k-mer (15–30-
mer) (Molik et al., 2020), and very short-chain k-mers (<10-
mer) (Asgari et al., 2018, 2019), within reads that offer a
unique reference-free and alignment-free approach to provide a
data representation upon which a phenotype prediction model
is built. We have included both of these k-mer approaches
in our review to compare them directly with the OTU/ASV
assignment methods.

Additional procedures for handling the OTUs or ASVs
include filtering (Goodrich et al., 2014; Duvallet et al., 2017; Zhou
and Gallins, 2019) and normalization (McMurdie and Holmes,
2014; Weiss et al., 2017). We included both practices to show the
result from different combinations.

TABLE 1 | Brief summary of datasets.

Study Inflammatory Bowel Diseases Twins UK

Disease type Crohn’s disease Ischemic colitis Ulcerative colitis Control Obesity Healthy

n 731 73 217 335 193 451

Sex Female 337 38 96 161 192 447

Male 394 35 123 174 1 4

Bases per FASTQ file Mean 6,381,116 6,414,195 6,884,041 7,247,420 19,776,834 20,355,603

SD 7,184,600 5,026,312 5,857,603 8,069,537 5,421,961 6,004,283

Sequence length Mean 172.44 172.52 172.52 172.99 250.84 250.84

SD 1.37 1.18 1.36 1.12 0.40 0.41

Age Mean 19.92 18.15 26.93 13.78 60.49 59.84

SD 14.47 10.77 18.31 9.78 9.56 9.57

Overall, we conducted a systematic review of how different
combinations of (i) OTU/ASV assignment methods and k-mer
lengths, (ii) the use of normalization and filtering and (iii)
choices of machine learning methods, among eleven commonly
used approaches, all affect the prediction accuracy for complex
host traits.

METHODS

Raw Sequence Data
Inflammatory Bowel Diseases Dataset
This microbiome dataset includes host phenotypes of Crohn’s
disease, with microbiome data from 16S rRNA gene (V4)
sequencing on the Illumina MiSeq platform (version 2) with
175 bp paired-end reads (Gevers et al., 2014). In brief,
the samples were collected from 28 participating pediatric
gastroenterology centers in North America between 2008 and
2012. Within the metadata, there are three disease diagnoses
described: Crohn’s Disease (CD), Ulcerative Colitis (UC),
Ischemic Colitis (IC), and control. Each of the disease diagnoses
was compared separately to the control group. The data were
downloaded from the European Nucleotide Archive (ENA),
accession PRJEB13679. The available FASTQ file format is a
single-end layout; the QIIME2 pipeline for the microbiota
analyses was processed as single-end reads. The full processing
workflow is described in the Supplementary Material under
Data Processing and Supplementary Figure 1. A summary of
the basic patient characteristics for the datasets is provided
in Table 1.

TwinsUK Dataset
This microbiome dataset contains 1,081 fecal samples collected
from 997 individuals, all of which underwent 16S rRNA-
based sequencing. The raw sequences were retrieved from the
European Nucleotide Achieve (ENA) accession IDs PRJEB6702
and PRJEB6705. The collection and processing of the data
were described previously (Goodrich et al., 2014). The fecal
samples were obtained by the participants from their household
and stored in a refrigerator up to 2 days prior to the twins’
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annual visit at King’s College London, where the samples
were stored at −80C until the following process. The DNA
was extracted from the provided samples, and the 16S rRNA
genes (V4) were amplified from bulk DNA through PCR. The
sequencing steps were performed on the Illumina MiSeq 2x250
bp platform. The available FASTQ file format is a single-end
layout; the QIIME2 pipeline for the microbiota analyses was
processed as single-end reads. The full processing is described in
Supplementary Section 1 under Data Processing. The summary
of the basic patient characteristics is included in Table 1.

Sample Processing
The detailed sample processing is also listed in the Data
Processing Supplementary Section 1, and the workflow is shown
in Figure 1. Our analyses can be summarized in four stages.
In the first stage, we extracted the OTUs/ASVs using QIIME2
(Bolyen et al., 2019). We then collapsed count matrices at
OTUs/ASVs levels to higher taxonomic order, including phylum,
class, order, family, genus, and species. At the same time, we
also extracted the very short-chain k-mers and short-chain k-
mers directly from raw FASTQ files. In the second stage, we
used the DESeq2 package in R to apply normalization to the
OTUs/ASVs count matrices and the very short-chain k-mers
(Weiss et al., 2017), or did not apply normalization. Short-chain
k-mer (15-mer, 21-mer, and 30-mer) were omitted from this
analysis because of the large matrix dimensions when including
all observed short k-mers. In the third stage, we applied (or
did not) a common filtering criterion as follows. The first filter
excludes samples with fewer than 100 reads, and the second
filter subtracts OTUs with fewer than 10 reads (Duvallet et al.,
2017; Zhou and Gallins, 2019). The third filter removes OTUs
that are present in fewer than 5% of samples. In the last stage,
we applied eleven commonly used machine learning algorithm
to the different combinations. Overall, we conducted 1,353
combinations per phenotype and 5,412 total combinations for
four diseases against their respective controls.

In our extensive analyses, 102 combinations failed to return
any useful results. Thirteen of these involved elastic nets, five
used neural networks, and the remaining 84 combinations used
logistic regression. These failed runs were likely due to the
algorithms being unable to converge.

Evaluation of Prediction Accuracy
We compared the four disease types prediction at each taxonomic
and k-mer level through the Area Under the Curve (AUC) for
the Receiver Operating Characteristics (ROC) curve, which is
commonly used to evaluate the prediction accuracy for binary
traits. The ROC is a plot with True Positive Rate (Sensitivity)
compared to the False Positive Rate (1 – Specificity). Also,
we can calculate the Area Under the Precision-Recall Curve
(AUPR), which is another way to evaluate the prediction with
a plot of recall against precision. We utilized two evaluating
parameters to quantify the prediction ability of a balanced and
imbalanced dataset. Ideally, we would want these two values
to be both high to indicate good discrimination between the
disease and the controls. The full summary of the combinations
is in Supplementary Table 1. In the following discussion, we

focus primarily on the AUC (full abbreviation AUROC for Area
Under the ROC) as a performance measure, as it offers a more
distinct contrast among combinations compared to the AUPR for
our comparisons.

Evaluation of Machine Learning Results
To investigate the consistency between the feature selected
from machine learning algorithms and the discovery studies,
we extracted the useful information from the machine learning
algorithm outputs and compared them to taxa previously
identified as significantly associated with IBD. We based our
comparisons on three separate publications. First, we selected
eleven critical taxa identified from the original study for our IBD
dataset (Gevers et al., 2014): two from the Order level and nine
from the Family level. All of these were identified in our results,
with the exception of a Family-level assignment Gemellaceae,
and we used the Genus-level assignment Gemella as a substitute.
Also, we chose another study that had examined the microbiota
associated with IBD; the authors had identified multiple taxa
associated with either increased or decreased changes in IBD
(Glassner et al., 2020), and we selected nine taxa from the list. The
Genus Bacteroides and Eubacterium have multiple subgroups,
and the Pectinophilus group was selected for Bacteroides, and
the nodatum group was selected as a stand-in for Eubacterium,
and both passed our filtering procedures. In the last example,
the authors had used a linear discriminant analysis effect size
approach to determine three important taxa, two from the
Family-level and one from the Order level, all of which are
present in our features (Kim et al., 2019).

We focused on two of the most consistent machine learning
methods, random forest and xgBoost, and two methods with
less consistent performance, a support vector machine and
logistic regression. The definition of “important” features is
different depending on the method. Each of the features was
selected within the 100 iterations of 5-fold cross-validation. As
a result, the numeric representation of “important” features here
represents an average over 500 training and testing loops.

The results on presence of taxa are shown in Table 2. Overall,
only DADA2 was able to pick all these taxa while other OTU
assignmentmethodsmissed a few. After filtering, most of the taxa
listed were removed; out of the 22 taxa, only nine taxa remained,
and these nine taxa were present in all OTU/ASV assignment
methods, except Eubacterium with the nodatum group that were
missing when using the de novomethod.

Defining Important Features
There are many ways to define the features from machine
learning models that are important to the model. For illustrative
purposes, we will focus on only one of the available ways to
select important features. With xgBoost, we extracted the “Gain”
result from the xgBoost output to evaluate the importance of the
features (Chen and Guestrin, 2016). Gain represents the relative
contribution of the corresponding feature to the model based
on each tree in the training data. In other words, the higher the
Gain, the more critical that feature is compared to other features.
For random forests, we selected the “Mean Decrease in Gini”
output to evaluate the importance of features (Breiman, 2001).
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FIGURE 1 | The workflow of the project. The project is roughly split to four stages. The first stage is the generation of count matrices via QIIME2 for the OTU/ASV

assignment methods, while the k-mer matrices were generated using R (resulting in 35 count matrices). In the second stage, DESeq2 normalization are performed for

all stage 1 count matrices except for the short-chain k-mers (resulting in 67 count matrices). In the third stage, filtering was performed for all the above count matrices

(resulting in 123 count matrices). In the fourth stage, we ran eleven commonly used machine learning methods on the 123 count matrices with 100 iterations of 5-fold

validation (resulting in 1,353 combinations). Lastly, we tested these combinations with 4 binary comparisons: Crohn’s Disease, Ulcerative Colitis, Ischemic Colitis and

Obesity with the corresponding control in their respective dataset (resulting in 5,412 combinations). A more detailed workflow is in Supplementary Figure 1.

Mean Decrease in Gini represents how each feature contributes
to the homogeneity of the nodes and leaves in the given random
forest model. Hence, the higher the Mean Decrease Gini, the
more critical the corresponding feature. We utilize the weights

associated with each of the features to evaluate their importance
in the support vector machine (Chih-Chung Chang, 2019).
These weights represent the feature’s discriminative ability to
distinguish between two classes: the higher the weights, the more
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TABLE 2 | Presence of important taxa in our clustering methods.

Gevers et al. Glassner et al. Kim et al. Taxonomic Level Open-Reference Closed-Reference de novo DADA2

Bacteroidales Order Present

Clostridiales Order Present Present Present Present

Lactobacillales Order Present

Coriobacteriaceae Family Present Present Present Present

Enterobacteriaceae Family Present Present Present Present

Erysipelotrichaceae Family Present Present Present Present

Fusobacteriaceae* Family Present Present Present Present

Micrococcaceae* Family Present Present Present Present

Neisseriaceae Family Present Present Present Present

Pasteurellaceae Pasteurellaceae Family Present Present Present Present

Veillonellaceae Veillonellaceae Family Present Present Present Present

Verrucomicrobiaceae* Family Present Present Present Present

Pseudomonadaceae* Family Present Present Present Present

Streptococcaceae* Family Present Present Present Present

Gemella Genus Present Present Present

Bacteroides*‡ Genus Present Present Present Present

Bifidobacterium Genus Present

Eubacterium*† Genus Present Present Present

Faecalibacterium* Genus Present Present Present Present

Fusobacterium Genus Present Present Present Present

Roseburia* Genus Present Present Present Present

Solobacterium Genus Present Present Present Present

*The Taxa that were kept after filtering was performed.
‡There are multiple groups under Bacteroides, Pectinophilus group was selected as it is the only Eubacterium group that remains after our filtering procedure.
†
There are multiple groups under Eubacterium - the nodatum group was selected as it is the only Eubacterium group that remains after our filtering procedure.

Present: the taxa occurred in the features from the corresponding non-filtered OTU/ASV assignment method.

An empty cell means the taxon is absent in the corresponding OTU/ASV assignment method.

crucial the support vector machine model’s feature. Lastly, in
logistic regression, we obtained the coefficients from each of the
iterations, and then checked the consistency of the coefficients
across multiple iterations.

Evaluation of Phylogeney-Aware Distances
Phylogeny-aware distances are used to determine if we can
separate species between different communities in an aggregate
fashion. In our analyses, we examined the distances using
multiple types of distances, including Euclidean (Schloss, 2008),
Jaccard (Hancock and Zvelebil, 2004), Bray-Curtis (Bray and
Curtis, 1957), UniFrac (Lozupone and Knight, 2005), and
weighted UniFrac (Lozupone et al., 2007). Euclidean distance
is a traditional distance measure between two species. The
Jaccard index is a similarity coefficient using the presence and
absence of the features within the OTU/ASV matrices. The
Bray-Curtis distance is a widely used technique to highlight
the differences in abundance by transforming the count
matrix to a distance matrix. UniFrac, in contrast, utilizes the
phylogenetic tree structure and its distances to calculate the
overall distance matrix. Weight UniFrac takes account of the
relative abundance of information and weights the branches of
the phylogenetic tree.

RESULTS

Prediction Accuracy
OTU/ASV Assignment Methods
For the traditionally-used OTUs and ASVs count matrices
(Figure 2A), the prediction accuracy was lower at higher
taxonomic levels, such as Phylum and Class, and gradually
increased for most machine learning methods until reaching the
OTU/ASV level of refinement. The highest average prediction
accuracies are at the Genus andOTU/ASV level. This observation
provides support for the common use of this level of taxonomy
in phenotype prediction. All machine learning algorithms with
an average around or below 0.5 were dropped in the figure,
because those algorithms do not assist in distinguishing cases and
controls. This step excludes support vector machines, K-means,
and hierarchical clustering.

The noticeable drop at prediction accuracy with Species-
level information is due to incomplete information in the
taxonomic assignment of the reference database. As a result, these
missing assignments were dropped before running the machine
learning algorithms, resulting in decreased performance. The
number of unique feature counts for each of the taxonomic
level are listed in Supplementary Table 2. Overall, the number
of unique features for the Species-level was ∼half that of
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FIGURE 2 | The area under the ROC curve (AUROC) for selected machine learning methods across different taxonomic levels and k-mer lengths. (A) Boxplots of the

AUROC for eight machine learning methods from OTU/ASV assignment methods across all seven taxonomic levels for Crohn’s Disease. (B) ROC curves for the eight

machine learning methods from OTU/ASV assignment methods across all seven taxonomic levels. Hierarchical clustering, K-means and Support Vector Machine were

removed from the figure due to their poor performance. (C) ROC curve for the best k-mer methods to predict Crohn’s Disease, which is from the xgBoost algorithms

on the 7-mer level.

the Genus level in the unfiltered category. After filtering,
the number of unique features is close to the Order-level
or Family-level information, explaining the drop we observed
in Figure 2A.

We also extracted the top-performing combination and its
associated ROC curve in Figure 2B; the tree-based methods,
random forests and xgBoost, performed the best, followed by
neural networks, elastic net, ridge regression, LASSO regression,
logistic regression, and KNN. The AUROCs for all of these
methods are above 0.8.

To further investigate different machine learning algorithms’
performance, we investigated a single machine learning
algorithms’ performance for each disease type at a single
taxonomic level. In Figures 3A–D, we observed in density
plots for ROC curves the consistent xgBoost performance

at the Genus and OTU/ASV levels for both diseases. Each
of the plots reflects sixteen different combinations from
four OTU/ASV assignment methods, two filtering, and
two normalization methods. XgBoost is consistent in its
performance under different combinations. As a contrast,
we also included two inconsistent results. In Figure 3E, we
showed the logistic regression for the inflammatory bowel
disease (IBD) dataset at the OTU/ASV level; we observed some
excellent performing combinations and a cluster of mediocre
ROC curves. Another example came from the Phylum-level
support vector machine from the TwinsUK dataset shown in
Figure 3F. This density plot contains two of the best performing
combinations in our entire set of 5,412 combinations. The
combinations used DADA2 both with filtered features; the
non-normalized and normalized AUCs are 0.8977 and 0.8965,
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FIGURE 3 | Density plots of selected combination of machine learning methods, taxonomic levels, and dataset. (A) Density plot of the ROC curve for xgBoost at the

Genus level for the IBD dataset. (B) Density plot of the ROC curve for xgBoost at the OTU/ASV level for the IBD dataset. (C) Density plot of the ROC curve for

xgBoost at Genus level for the TwinsUK dataset. (D) Density plot of the ROC curve for xgBoost at the OTU/ASV level for the TwinsUK dataset. (E) Density plot of the

ROC curve for logistic regression at the OTU/ASV level for the IBD dataset. (F) Density plot of the ROC curve for support vector machines at the Phylum level for the

TwinsUK dataset.

respectively. However, we also observed the other combinations
from different OTU/ASV assignment methods perform
less well.

k-mer-Based Methods
We examined prediction accuracy of different k-mers, and no
clear trend was observed; the prediction accuracy is relatively
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FIGURE 4 | Upset plots of the Genus and Species-level interaction of features among the filtered and non-filtered OTU/ASV picking methods from the Inflammatory

Bowel Disease Dataset. (A) Genus-level. (B) Species-level.

consistent across all lengths (not shown) thus, we display only
the top-performing method (Figure 2C), which is the xgBoost
combination using 7-mers for predicting Crohn’s Disease. This
combination has anAUROCof 0.924. The breakdown of AUROC
per disease type at different k-mer lengths can be observed
in Supplementary Figures 4–7 for Crohn’s Disease, Interstitial
Cystitis, Obesity and Ulcerative Colitis, respectively.

Filtered vs. Unfiltered
To investigate how the filtering affects the final features selected
from different OTU/ASV assignment methods at different
taxonomic levels and to compare these methods, we utilized
“UpSet” plots to show the unique taxa shared among filtered
and non-filtered methods. Regardless of filtering, the filtered
and unfiltered four OTU/ASV assignment methods provide very
similar unique features at the Phylum, Class, Order, and Family-
level. As expected, there are more unique features identified
for the Genus and Species level. In Figures 4A,B, we provided
examples from the Genus and Species-level for the Inflammatory
Bowel Disease dataset (with expanded plots for other diseases
in Supplementary Figures 2, 3). While most of them are shared,
each of the OTU/ASV identified different sets of unique features,
which might hold keys to better prediction and are important
for future investigations. The number of features found per
taxonomic level for each of the sub-disease categories is included
in Supplementary Table 1.

Filtering, in general, did not cause a severe difference in
terms of AUROC for most of the machine learning methods.
The exception is Logistic regression and K-means. Filtering
improves the prediction accuracy in Logistic Regression in

Family, Genus, and Species levels for both of normalization
categories (Supplementary Figure 8). However, the results are
not consistent, and thus, filtering needs to be judged case-
by-case. Supplementary Table 2 provides the AUROC and
AUPR for all prediction combinations and disease used in
this study. The AUROC is more inconsistent at more precise
taxonomic levels due to removal of features as we refine the
taxonomic assignments.

Consistency
Consistency is a key feature when investigating different
prediction methods, as we have shown that some machine
learning methods might be sensitive to a particular OTU/ASV
assignment method. The detailed breakdown for each
disease type is included in Supplementary Figures 4–7 for
Crohn’s Disease, Interstitial Cystitis, Obesity, and Ulcerative
Colitis, respectively.

We also investigated the change in prediction accuracy in
terms of AUROC by filtering and normalization individually.
When we compared the difference between the filtered
vs. unfiltered (Supplementary Figure 8) and normalized vs.
un-normalized (Supplementary Figure 9) across the disease
categories. Overall, the difference in terms of AUROC are fairly
small for most of the machine learning methods with the
exception of K-means and Logistic Regression. Filtering seems
to cause more instability of the AUROC as the difference are
more obvious. Overall, the decision of using normalization and
filtering should be evaluated by the data in-hand and the purpose
of the study.
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Shiny App
Considering the vast number of combinations we have
tested, and to help to visualize and understand the different
types of combinations we have generated, we have deployed
an Shiny application: https://github.com/zhouLabNCSU/
MicrobiomePredictionExplorer.

Compare Machine Learning Methods to
Discovery Studies
Difference Among OTU/ASV Assignment Methods
The feature selection outputs from the four different machine
learning methods are consistent within the filtered and unfiltered
combination for all OTU/ASV assignment methods. The
top-ranked features from both random forest and xgBoost
were mostly features that had passed our filtering protocol.
The support vector machine approach had a less consistent
output; the rankings were similar only within the filtered
and unfiltered categories. The ranks from the support vector
machine were also quite different compared to xgBoost and
random forest. The consistency of the coefficients is also a
crucial tool to understand the properties of a good predictor for
logistic regression.

To better understand the feature output, we
ranked the output, and the findings are shown in the
Supplementary Table 3. Based on the preliminary findings,
there is no noticeable difference between the normalized
and un-normalized combinations under the same filtering
and OTU/ASV assignment methods. Thus, the ranks
we shared in Supplementary Table 3 contain only the
unnormalized dataset.

Features Selected
The three order-level taxa all displayed average or below-average
rankings. XgBoost excluded all of these taxa, as they did not
help with prediction. For the eleven family-level features, the
five taxa that passed the filtering procedure, Fusobacteriaceae,
Micrococcaceae, Verrucomicrobiaceae, Pseudomonadaceae, and
Streptococcaceae were all ranked around the average, with
none of them performing very well. Random forests, xgBoost,
and support vector machines shared similar results. Lastly,
among the eight genus-level taxa, Bacteroides (Pectinophilus
group) and Roseburia ranked among the top 10 for the
random forests, xgBoost, and support vector machines
with consistent results in logistic regression. The exception
is Roseburia in support vector machines, which ranked
much higher.

Overall, the rankings for random forests and xgBoost were
similar between the filtered and unfiltered combinations across
all four OTU/ASV assignment methods. In other words, the
excess taxa unique to the unfiltered dataset did not improve
the prediction accuracy, as the ranks did not change much
even after adding a large number of features to the model.
However, in the support vector machine, the taxa ranks were
inconsistent between the filtered and unfiltered OTU/ASV
assignment methods. The ranks remain roughly around the
same percentile.

Phylogenetic Analyses
Differential Taxa in Crohn’s Disease
Overall, the weighted UniFrac was the best performing way to
separate the Crohn’s Disease and Control subjects.

We investigated how different OTU/ASV assignment
methods react to the combination of a variety of ordination
and the distance measure. The best performing OTU/ASV
assignment method was DADA2, with the first and second axis
separating 70.982 and 8.786% which means the combination of
the first two axes explained roughly 80% of the total variance
between Crohn’s Disease and Control subjects (Figure 5B).
While the other methods perform relatively well, DADA2
worked much better on distinguishing Crohn’s Disease subjects
with control with weighted UniFrac (Figures 5A,C,D).

Moreover, we followed through with the statistical tests to
determine if the first two axes were significantly affected by
the disease category between Crohn’s Disease and Control.
A previous study determined the usefulness of using the
two axes from the Multidimensional scaling techniques to
discriminate between the case and control cases, and with
consistencies across different OTU assignment percentage
matches, i.e., 99, 95, 90, and 85% (Frank et al., 2007). We
followed a similar protocol and examined using different
combinations of distance methods and OTU/ASV assignment
methods; our results did not replicate the significant separation
between Crohn’s disease and control. However, we observe
an adjusted R2 of 0.864 with a p-value of 0.081 using the
Jaccard distance and de novo OTU assignment methods. The
second-best test, PERMANOVA, uses weighted UniFrac on
Closed-Reference OTU assignment methods with an adjusted
R2 of 0.6525 and a p-value of 0.073. The full table is in
Supplementary Table 4.

Relationship Between the Phylogenetic Trees Among

Clustering Methods
As we discussed earlier, the number of unique features reported
by different OTU/ASV methods are different, so the resultant
phylogenetic trees also differ. Here, we focus our investigation
on the Family-level taxa, and we extracted the taxa from the
eleven important taxa that previous studies had identified. We
calculated the log-transformed average of Crohn’s disease and
Control OTU/ASV counts per the taxon assignment. Examining
the taxonomic tree closely, we detected some unique taxon
assignments from Crohn’s disease group or control group.
There are different observable patterns between the case and
control (Figure 6), including the log-scale differences and the
present/absent differences.

k-mers
Finally, we examined two separate types of k-mers, the very
short-chain k-mers (4, 5, 6, and 7-mers) and the short-
chain k-mers (15, 21, 30-mers). Both very short-chain k-
mers and short-chain k-mers, when combined with effective
machine learning methods, perform as well as the top-ranked
OTU/ASV clustering methods for host trait prediction. From
the computation side, very short-chain k-mers can be calculated
quickly by parsing the raw FASTQ files, but short-chain
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FIGURE 5 | Weighted UniFrac ordination plot from four OTU/ASV assignment methods. (A) Closed-Reference, an OTU assignment method. (B) DADA2, an ASV

assignment method. (C) de novo, an OTU assignment method. (D) Open-Reference, an OTU assignment method. The ellipses were drawn based on the multivariate

t-distribution, respectively, for cases/controls.

k-mers take longer to extract, and due to the enormous
number of possible combinations, we filtered the count matrices
to make the final table computationally feasible. Here, any
unique-k-mers with fewer than 5 reads were removed. The
advantage of short-chain k-mers is the potential of mapping
back to genomic data to better understand the underlying
biology (Koslicki and Falush, 2016). With the short-chain k-
mers, we could study them by mapping them back to a
16S rRNA database and extract their taxonomic information.
Using these mappings will be an interesting area to explore
for future projects. Very-short k-mers cannot be mapped
uniquely back to a reference database, as they are ubiquitous in
all samples.

Benchmarking
While computational cost is not the primary goal of
this journal, we nevertheless conducted benchmarking

investigation by using our best phenotype, Crohn’s
Disease. We evaluated the difference in terms of time
consumption by running the 100 iterations of 5-fold
validation for the eleven machine learning methods we
tested on a single core. Overall, the results suggested
Elastic Net and xgBoost are the most time-consuming
(Supplementary Figure 10). Also, normalization did
not cause significant computation changes, and filtered
combinations generally cause slightly shorter computation time
(Supplementary Figure 11).

Variable Importance
For each of the machine learning method, we calculated the
mean and standard deviation across all 500 rounds to evaluate
importance of features, as defined in 2.4.1. These outputs are
included in the Supplementary Tables 5–16 for Order, Family,
and Genus level feature outputs, for each of the combinations, the
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FIGURE 6 | Phylogenetic tree from the open-reference clustering methods showing the mean log-transformed average count between the Crohn’s Disease and

Control. This is a subset of the full plot due to the large dimension of the original files. The full figure for all four OTU/ASV assignment methods are included in

Supplementary Figure 9.

mean and standard deviation for the features from the machine
learning models are shown.

DISCUSSION

This article aims to explore and compare the different
upstreaming process and how they can affect downstream
machine learning predictions. Despite the introduction of
a large number of data pre-processing steps and machine
learning methods, there has been little systematic exploration
of the massive number of possible combinations of these
approaches. While many of our findings accord with earlier

smaller explorations, the definitive nature of our combination
“search-space” provides important assurance that the community
is applying generally best-practice methods for host-trait
prediction. All of the completed combinations can be explored
in the Shiny application in terms of their corresponding
AUROC curve.

Firstly, we reviewed the impact of filtering and normalization
on four OTU/ASV assignment methods. Normalization has
only a modest impact on the downstream machine learning
algorithm performance, while filtering has a more impact on
overall performance of the algorithms. We also observed that the
filtering criteria might throw out important taxa that had been
identified as important from discovery studies. Depending on
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the goal of the machine learning methods, filtering criteria might
need to be adjusted.

We also explored the usefulness of short-chain and very short-
chain k-mers and their ability to differentiate between diseases
and controls. Both types of k-mers can provide high-quality
predictions that are equally as good as Genus and OTU/ASV
assignment methods. This area needs further research to uncover
additional potential of using k-mers as predictors.

While we tried many combinations of different processing
steps, it is impossible to consider all scenarios, and there
are limitations to our conclusions and in the available
data. Both of the datasets we used are based on 16S rRNA
from the V4 hypervariable region. Previous studies have
shown that other hypervariable regions, or a combination
of variable regions, affects biodiversity and community state
types, which could eventually cause differences in prediction
accuracy (Graspeuntner et al., 2018; Bukin et al., 2019).
Moreover, the choice of the reference database may also
affect the quality of the OTU/ASV assignment results, and
it is recommended to use a curated database. Lastly, we
employed only a single combination of filtering criteria,
and different studies might require more exclusive or
inclusive filtering standards, depending on the disease of
interest. The current filtering criteria focus on removing rare
taxonomic features.

Overall, we provided a comprehensive comparison of
commonly used machine learning algorithms and how upstream
methods affect overall outcomes.
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