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Breast tumor morphological and vascular characteristics can be changed during
neoadjuvant chemotherapy (NACT). The early changes in tumor heterogeneity can be
quantitatively modeled by longitudinal dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI), which is useful in predicting responses to NACT in breast cancer. In
this retrospective analysis, 114 female patients with unilateral unifocal primary breast
cancer who received NACT were included in a development (n � 61) dataset and a testing
dataset (n � 53). DCE-MRI was performed for each patient before and after treatment (two
cycles of NACT) to generate baseline and early follow-up images, respectively. Feature-
level changes (delta) of the entire tumor were evaluated by calculating the relative net
feature change (deltaRAD) between baseline and follow-up images. The voxel-level
change inside the tumor was evaluated, which yielded a Jacobian map by registering
the follow-up image to the baseline image. Clinical information and the radiomic features
were fused to enhance the predictive performance. The area under the curve (AUC) values
were assessed to evaluate the prediction performance. Predictive models using radiomics
based on pre- and post-treatment images, Jacobian maps and deltaRAD showed AUC
values of 0.568, 0.767, 0.630 and 0.726, respectively. When features from these images
were fused, the predictive model generated an AUC value of 0.771. After adding the
molecular subtype information in the fused model, the performance was increased to an
AUC of 0.809 (sensitivity of 0.826 and specificity of 0.800), which is significantly higher than
that of the baseline imaging- and Jacobian map-based predictive models (p � 0.028 and
0.019, respectively). The level of tumor heterogeneity reduction (evaluated by texture
feature) is higher in the NACT responders than in the nonresponders. The results
suggested that changes in DCE-MRI features that reflect a reduction in tumor
heterogeneity following NACT could provide early prediction of breast tumor response.
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The prediction was improved when the molecular subtype information was combined into
the model.

Keywords: dynamic contrast-enhanced magnetic resonance imaging, breast cancer, neoadjuvant chemotherapy,
volumetric change, feature change

INTRODUCTION

Neoadjuvant chemotherapy (NACT) is commonly used in
treatment of locally advanced or large operable breast cancers
with the aim of downstaging before surgery (Taghian et al., 2004;
Kaufmann et al., 2007). The achievement of a pathologic
complete response (pCR) is associated with improved survival
in patients with breast cancer (Cortazar et al., 2014). Despite the
benefit, a subset of patients may experience a failure of treatment
and suffer from the side effects of NACT. Therefore, accurate
determination of the outcome of NACT is of vital importance for
tailored treatment of patients with breast cancer.

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI), which is routinely used in clinical practice, provides
morphological tumor characteristics and functional information
about the blood flow, vascular status and angiogenesis (Pinker et al.,
2017; Mann et al., 2019). A systematic review demonstrated that
MRI-based radiomics achieved overall promising performance in
NACT response prediction (Granzier et al., 2019) and residual
tumor size evaluation (Kim et al., 2018a), while a DCE-MRI-based
predictive model achieved better accuracy than a model using other
parametric images (Fowler et al., 2017). Radiomics features derived
from the pretreatment MRI have been used for predicting response
to NACT for breast cancer (Uematsu et al., 2010; Braman et al.,
2017; Santamaría et al., 2017; Reig et al., 2020). Our previous study
used DCE-MRI to identify and validate predictive imaging
biomarkers for NACT using two datasets with different imaging
protocols for training and testing (Fan et al., 2017). These studies
were performed using radiomics of preoperative breast MRI
without considering the imaging features of longitudinal changes
in MRI features that could be promising in predicting tumor
responses to NACT.

The NACT regimen usually takes six to eight cycles to finish
the whole treatment procedure. Longitudinal imaging is usually
performed during the procedure to monitor and evaluate
treatment response. The changes of tumor heterogeneity in
DCE-MRI between the preoperative and early NACT (e.g.,
two cycles of treatment) may provide information for early
prediction of the eventual treatment outcome. Previous studies
have demonstrated evidence of longitudinal changes in
pharmacokinetic parameters (Dogan et al., 2019), tumor sizes
(Tudorica et al., 2016), and tumor MRI texture parameters
(Parikh et al., 2014; Henderson et al., 2017; Eun et al., 2020;
Nadrljanski and Milosevic, 2020) being correlated with responses
to NACT in breast cancer patients. These studies mainly analyzed
the feature-level changes of the heterogeneity by evaluating
longitudinal images within a tumor. Despite the advances of
these methods, the voxelwise changes inside a tumor between
baseline and post-NACT MRI scans may not be captured by
feature analysis of the entire tumor.

To this end, attempts have been conducted by aligning
intermediate MRI to baseline images to evaluate changes in
tumor heterogeneity in a voxel-by-voxel manner. A previous
study implemented an accurate image registration technique
using a parametric response map (PRM), which can provide
quantitative voxel-based information regarding heterogeneous
changes within the tumor during treatment (Galban et al., 2011;
Galban et al., 2012; Cho et al., 2014). The nonrigid nature of the
human breast requires methods using deformable registration of
longitudinal tumor changes during NACT (Li et al., 2009; Ou et al.,
2015). A recent study uses deformable methods to capture tumor
heterogeneity for early prediction of response to NACT (Jahani
et al., 2019). However, whether the quantitative evaluation of
longitudinal tumor changes by radiomic analysis is associated
with tumor responses is still unclear.

To predict NACT responses in breast cancer, changes in
tumor heterogeneity were evaluated both in voxel-by-voxel
and feature-level manners using longitudinal DCE-MR images.
Radiomic features were extracted at baseline and post-treatment
images and the voxel-level map of volumetric change before and
after early NACT. Additionally, feature-level changes in tumor
heterogeneity were evaluated by calculating the relative net
radiomic feature change between baseline and follow-up
images (deltaRAD). Predictive models were then established
using the radiomic features derived from these images. Our
comprehensive analyses demonstrated how the heterogeneity
changes in DCE-MRI before and after early NACT could
affect the accuracy of prediction of the response to NACT.

MATERIALS AND METHODS

Framework Overview
The framework of this study is illustrated in Figure 1. The voxelwise
volumetric changes during treatment were evaluated to generate a
Jacobian map by aligning the post-treatment MRI scans to the
baseline ones. Radiomic analysis was performed on the pre-and
post-NACT images and the Jacobian map. Feature-level changes in
tumor heterogeneity were obtained by calculating the relative net
change (the percent change) in features between baseline and post-
NACT scans. Predictive models were established using radiomics
based on the evaluation of these longitudinal images to discriminate
tumors that responded to NACT from those that did not.

Patient Selection
This study was approved by the Institutional Review Board of
Fudan University Shanghai Cancer Center. Due to the
retrospective nature of this study, use of a consent form was
waived. The data collection and selection procedure in these
two cohorts are illustrated in Figure 2. The original dataset
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collected from the hospital included 174 samples with paired
images acquired at the baseline and post-treatment (after two
cycles of NACT). Dataset 1 (the development set) initially
included 96 samples. After excluding eight samples with
missing imaging sequences at baseline or after early NACT,
eight samples with no available treatment outcome data
evaluated by the Miler-Payne (MP) score, and 19 samples with
no available clinical information, 61 samples were retained in this

study. Dataset 2 (the testing set) initially included 78 samples, of
which 25 were excluded: 11 with no clinical information, five with
incomplete imaging sequences, and nine with no available MP
data. The remaining data included 53 samples for testing.

Data Analysis
Pathological response was assessed after the whole cycle of NACT
according to the surgical specimen-determined MP grading

FIGURE 1 | Study framework. A Jacobian map for each tumor was derived based on aligning the post-treatment images to the preoperative ones. Radiomics were
calculated using the pre- and the follow-up images, the Jacobian map and the feature changes using longitudinal images (deltaRAD).

FIGURE 2 | Data selection procedure.
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system by comparing with the preoperative core biopsy (Ogston
et al., 2003). This grading system includes five grades. According to
a previous study, tumors withMP scores four and five (total cell loss
of more than 90%), also termed almost pCR and pCR, respectively,
were grouped as responders, while the others (grades 1, 2 or 3 with a
total cell loss of up to 90%) were grouped as nonresponders (Zhu
et al., 2014). Estrogen receptor (ER), progesterone receptor (PR)
and Ki-67 status were defined according to immunohistochemistry
(IHC) with streptavidin-peroxidase (SP) detection (Hammond
et al., 2010; Wolff et al., 2013). Hormone receptor (HR)
positivity was defined as HR and/or ER positive. HER2 positivity
was defined as IHC score of 3+ or 2+ with confirmation of gene
amplification by fluorescence in situ hybridization (FISH) (Wolff
et al., 2013). Tumor subtypes were categorized as follows: luminal A
(HR-positive and HER2-negative), luminal B (HR-positive and
HER2-positive), HER2-enriched (HR-negative and HER2-
positive) and triple-negative (HR-negative and HER2-negative)
subtypes. The HR-positive and HER2-negative tumors with a
Ki-67 expression level higher than 14% were specifically
determined to be luminal B subtype tumors.

Imaging Protocols
Imaging was performed following the specific requirements of the
hospital. For the development dataset (n � 61), the images were
acquired using a 3.0-T scanner (Siemens Healthcare, Erlangen,
Germany). DCE-MRI was acquired with a fat-suppressed T1-
weighted imaging sequence, which generated one precontrast (S0)
followed by five or eight sequential postcontrast image series after
injection of a gadobutrol-based contrast agent. The time interval
between the first postcontrast image and S0 was 90 s, while the time
intervals between the subsequent image series were 43 or 44 s.

For the testing dataset (n � 53), DCE-MRI was acquired using a
dedicated 1.5-T breast magnetic resonance imaging system
(Aurora Dedicated Breast MRI Systems, United States). The
imaging system generated one precontrast image and three
postcontrast images at 120, 245, and 371 s after beginning the
intravenous administration of gadobutrol injection. The detailed
imaging parameters for these two datasets are shown as in Table 1.

Image Preprocessing
Nonuniform intensity normalization (N4) bias correction was
implemented to reduce the effect of MR imaging artifacts. Images
from the patients were resampled to the same spatial resolution
for feature extraction. The tumor region-of-interest (ROI) was
identified by using a spatial Fuzzy C-means method on the third

postcontrast image series where the highest enhancement valuate
were usually achieved (Yang et al., 2014; Fan et al., 2020).

Analysis of Volumetric Change in
Longitudinal MRI Scans
Voxelwise volumetric changes were evaluated by aligning the follow-
up images to preoperative scans by finding an optimal and
deformable transformation for image registration (Ou et al.,
2015). Based on this approach, the aligned image along with a
Jacobian map was generated, in which each pixel of the Jacobian
map represented a volumetric shrink/expansion pattern. Specifically,
Jacobian values for each voxel greater than one indicate volume
expansion, while those less than one indicate volume shrinkage, and
those equal to one indicate volume preservation. The Jacobian value
is calculated using the following equation (Eq. 1):

Jacobian value � vfollow−up
vbaseline

(1)

where v2 denotes the resisted voxel volume in follow-up image,
and v1 denotes the voxel volume in the baseline image.

Radiomic Features
Features were extracted from the tumor ROI using a publicly available
radiomics analysis software, Pyradiomics (van Griethuysen et al.,
2017). For each ROI, 102 features were calculated, including the shape
(n � 14), first-order statistics (n � 18), texture features using gray level
cooccurrence matrix (GLCM) (n � 24), gray-level run-length matrix
(GLRLM) (n � 16), gray-level size-zone matrix (GLSZM) (n � 16)
and gray-level dependence matrix (GLDM) (n � 14). The imaging
heterogeneity of the entire tumor was evaluated based on the
subtraction images between the intermediate image series that
unusually exhibited the maximum enhancement signal and the
precontrast image. Radiomics features were calculated on the pre-
and post-treatment images and the Jacobian map.

Feature-Level Changes in Tumor
Heterogeneity
Feature-level changes were calculated by the relative net change
between the features derived from the baseline and the follow-up
image. For the ith radiomics feature (f i) calculated from the tumor
ROI, the feature change f iΔ is illustrated as shown in the following
equation (Eq. 2):

f iΔ � f ibaseline − f ifollow−up
f ibaseline

(2)

where f ibaseline stands for the feature i obtained from the baseline
image, and f ifollow−up indicates the feature i from the follow-up image.

Statistical Analysis and Machine Learning
Methods
The distributions of the histopathological information of the
molecular subtypes, menopausal status, family history between
the development and testing groups were compared by using the χ2

TABLE 1 | Imaging parameters in the development and testing datasets.

Parameter Development dataset Testing dataset

Repetition time (TR) [ms] 4.5 29
Echo time (TE) [ms] 1.56 4.8
Flip angle (FA) [°] 10 90

Field of view (FOV) [mm] 360 × 360 360 × 360
Matrix 384 × 384 512 × 512

Slice thickness (mm) 2.2 1.48
In-plane resolution (mm) 0.9375 × 0.9375 0.7031 × 0.7031

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6222194

Fan et al. DCE-MRI on Neoadjuvant Chemotherapy

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


test or Fisher’s exact test when the expected frequency in any tablet
was less than five. Analysis of variance (ANOVA) was performed
to compare continuous variables between the development and the
testing groups. The area under the receiver operating characteristic
(ROC) curve (AUC) was calculated to assess the performance of
the predictive model. The sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) were calculated.
The sensitivity and specificity were determined at the operation
point at ROC curve by using the Youden index by the maximum
sum of the specificity and the sensitivity. Statistical tests with p
values less than 0.05 were considered significant.

A support vector machine (SVM) with a Gaussian kernel was
used as a base classifier for prediction. Predictive model
establishment and model tuning were performed on the
development set and were tested on the testing set. SVM-
recursive feature elimination (RFE) was used to rank the features
that weremost relevant to the target, and these were then sequentially
added into the predictive model. The feature sets were fed into the
predictive model, in which the SVM parameters α and c were tuned
using a grid search method in each iteration with a 10-fold cross-
validation framework. An optimized model with the selected feature
subset and the tuned model parameters was established using all the
samples in the development set and was applied to the testing set to
evaluate the model performance. Statistical analysis and machine
learning methods were performed using R (version 4.0) and Matlab
(MathWorks, Natick, Massachusetts, version 2018 b).

RESULTS

Patient
Patient characteristics including age, menopausal status, family
history, molecular subtypes and MP grade are illustrated in

Table 2. The development dataset included 61 samples (mean
age 49, ranges from 27 to 66°years), while the testing dataset
included 53 samples (mean age 47, range from 29 to 79°years).
There were 44 (38.6%) patients who had an MP grade larger
than three (i.e., 4, 5), and they were categorized as the
responders, while the others (n � 70, 61.4%) who had an MP
grade of no more than three (i.e., 1, 2 or 3) were defined as the
nonresponders. No significant differences in histological
information were observed between the development and
testing datasets (p > 0.05, Table 2).

Voxelwise Changes in Tumor Heterogeneity
Associated With the Response to NACT
After registering the follow-up images to the baseline ones, a
Jacobian map was obtained for each tumor that reflects the level
of voxelwise volumetric shrink/expansion. An example of a
statistical feature (e.g., mean value) calculated on the Jacobian
map of tumors is illustrated in Figure 3. Tumor volume was
reduced in both the nonresponse (Figures 3A−C) and the
response (Figures 3D−F) groups after NACT. The mean
Jacobian value inside the tumor was significantly higher in the
nonresponders than in the responders, with a p value of 4.9e−5

(Figure 3G). This result indicated that a high Jacobian value that
represents a lower level of voxelwise shrink inside a tumor is
associated with a failure of treatment.

In addition to statistical features, examples of texture
features derived from tumor Jacobian maps are illustrated
in Figure 4. A low MP grade (nonresponder) patient
showed a lower level of volume shrinkage (Figures 4A,B)
after early NACT than a patient with a higher MP grade
(responder) (Figures 4D,E); this pattern is illustrated in the
Jacobian map (Figures 4C,F). The texture feature (large
dependence high gray-level emphasis) obtained from the
Jacobian map were significantly higher in the
nonresponders than in the responders (Figure 4G, p �
2.45e−4). This result suggested that a higher level of this
texture feature, which reflects a higher voxelwise spatial
rearrangement heterogeneity of the shrinkage/expansion
pattern inside a tumor during NACT, is more likely to be
associated with a worse response to NACT.

Feature-Level Changes in Tumor
Heterogeneity Associated With Response
to NACT
To assess how the tumor heterogeneity changed during
treatment, radiomics analysis was conducted on the baseline
and the follow-up images. It should be noted that the relative
net change in volume size for the entire tumor between pre- and
post-treatment images showed no significant (p � 0.09)
differences between the responders and nonresponders
(Supplementary Figure S1). This result suggests that
volumetric changes in the entire tumor after early NACT may
not be significantly related to the eventual treatment outcomes.

A more significant (p � 0.001) decrease in a statistical
feature (energy) after early NACT was observed in the

TABLE 2 | Patient characteristics.

All Development set Testing set p-value

Number 114 61 (54%) 53 (46%)
Age 48 (27–79) 49 (27–66) 47 (29–79) 0.407a

Menopausal status 0.670b

Pre 46 (40%) 23 (38%) 23 (43%)
Post 68 (60%) 38 (62%) 30 (57%)

Family history 0.642b

No 87 (76%) 45 (74%) 42 (79%)
Yes 27 (24%) 16 (26%) 11 (21%)

Miller Payne 0.706c

1 9 (8%) 6 (10%) 3 (6%)
2 21 (18%) 10 (16%) 11 (21%)
3 40 (35%) 24 (40%) 16 (30%)
4 10 (9%) 5 (8%) 5 (9%)
5 34 (30%) 16 (26%) 18 (34%)

Molecular subtypes 0.409b

Luminal A 12 (10%) 9 (15%) 3 (5%)
Luminal B 58 (51%) 30 (49%) 28 (53%)
Basal-like 20 (18%) 9 (15%) 11 (21%)
HER-2 24 (21%) 13 (21%) 11 (21%)

aAnalysis of variance.
bχ2 test with Yates’ continuity correction.
cFisher’s exact test.
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responders than in the nonresponders (Figure 5). This
feature measures the magnitude of voxel values, and a
higher value suggests a greater sum of the squares of these
values. The result suggests that a decrease in the
enhancement level of tumors is associated with NACT
response in breast cancer.

An example of a texture feature (i.e., autocorrelation) is also
illustrated in Figure 6. This feature value was significantly
reduced after early NACT in the responders (p � 0.006), while
the difference was not significant in the nonresponders (p �
0.241). This feature measures the level of the fineness and
coarseness of the texture of an object, in which a high value is
correlated with high gray-level heterogeneity within the tumor.
The results suggest that the level of tumor heterogeneity

reduction is higher in the NACT responders than in the
nonresponders.

Fusion of Longitudinal MRI Features for
Predicting Response to NACT
To evaluate the collective effect of longitudinal radiomics, the
features from different images were combined and evaluated. The
individual features from the images at baseline, post-treatment,
Jacobian map and deltaRAD features were evaluated, and the
results showed that features from the follow-up image have the
highest performance (in terms of AUC values), while the
deltaRAD features and Jacobian map-based features showed
intermediate performance (Supplementary Figure S2).

FIGURE 3 | Example images and distribution of mean Jacobian values in nonresponders and responders. Images from a breast cancer patient (aged 45 years old)
with a low MP (nonresponder) (A) pre- and (B) post-treatment and (C) a Jacobian map of the ROI (mean Jacobian value � 0.746). Images from a breast cancer patient
(aged 41 years old) with a high MP (responder) (D) pre- and (E) post-treatment and (F) a Jacobian map of the ROI (mean Jacobian value � 0.449). (G) Boxplot
representing the feature distribution between nonresponders and responders.

FIGURE 4 | Examples feature of large dependence high gray-level emphasis (LDHGLE) in nonresponders and responders. Images from a nonresponder breast
cancer patient (aged 59 years old) (A) pre- and (B) post-treatment and (C) a Jacobian map of the tumor ROI (LDHGLE � 1654). Images from a responder breast cancer
patient [aged 43 years old) (D)] pre- and (E) post-treatment and (F) a Jacobian map of the tumor ROI (LDHGLE � 768). (G) Boxplot representing the feature distributions
in nonresponders and responders.
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Radiomic features from these images were used separately to
establish predictive models in the development set and was tested
on the testing set (Table 3; Figure 7). Among these, the predictive
model based on the baseline image generated lowest performance
with an AUC of 0.568 (sensitivity of 0.913 at a specificity of
0.367). Radiomic features based on Jacobian map, follow-up
image and deltaRAD showed a higher prediction performance

with AUC of 0.628, 0.757 and 0.718, respectively. When the
features from these images were fused, the classifier generated an
AUC of 0.771 with sensitivity of 0.522 and specificity of 0.967.
Finally, imaging features were combined with the clinical and
histologic information for prediction to facilitate a more accurate
prediction. The results showed an improved performance with an
AUC value of 0.809 (sensitivity of 0.826 at a specificity of 0.800),

FIGURE 5 | Feature (energy) change between baseline and early NACT images. Images from a 58 year-old woman with a deltaRAD value of 0.876 in the
responders at (A) baseline and (B) early NACT. Images from a 49 year-old woman with a deltaRAD value of 0.618 in the nonresponders at (C) baseline and (D) early
NACT. (E) The distribution of the change in the energy value is shown in the boxplot, in which the feature value is significantly higher in responders than in nonresponders.

FIGURE 6 | Images representing feature (autocorrelation) changes between pre- and post-treatment images. Images from a 47 year-old woman who responded
to NACT (high MP grade) at (A) baseline (autocorrelation � 65.5) and (B) follow-up (autocorrelation � 42.3). Images from a 36 year-old woman who did not respond to
NACT (lowMP grade) at (C) baseline (autocorrelation � 54.0) and (D) follow-up (autocorrelation � 14.4). (E)Boxplot showing that the feature value is significantly reduced
in responders (p � 0.006) but is not significantly changed in nonresponders (p � 0.241).
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which is significantly better than the baseline image (p � 0.028)
and the Jacobian map (p � 0.019) based predictive model.

DISCUSSION

During NACT, the breast tumor size and morphological and
functional changes are associated with the eventual treatment
outcomes. In this study, the pattern of the changes in tumor
heterogeneity during NACT was evaluated using baseline and
post-treatment images to predict responses to NACT in breast
cancer. The voxelwise shrinkage/expansion inside the tumor and
the feature-level changes of the entire tumor were both obtained.
Radiomics features from longitudinal images and the changes in
tumor heterogeneity were fused for the prediction. The molecular

subtype information was combined with radiomics features,
which generated an increased prediction performance.

Previous studies have conducted radiomic analysis using
features derived from tumors for NACT response prediction.
Jahani et al. analyzed voxelwise changes in DCE-MRI features to
characterize heterogeneous changes within the tumor and to
predict pCR and recurrence free survivals (Jahani et al., 2019).
An earlier study evaluated image feature-level changes in tumor
heterogeneity to assess for pCR to NACT (Parikh et al., 2014). In
our study, radiomic features based on changes in tumor
heterogeneity were evaluated in both feature- and voxel-level
to facilitate a quantitative analysis of longitudinal heterogeneity
during treatment in breast cancer. A recent study extracted
texture and statistical features and identified that tumor
kurtosis in T2-weighted MR images was independently

TABLE 3 | Performance of predictive model based on images at longitudinal times.

Images AUC (±SE) SD p value Sensitivity Specificity PPV NPV

Baseline image 0.568 ± 0.155 0.079 0.028 0.913 0.367 0.525 0.846
Follow-up image 0.767 ± 0.128 0.065 0.508 0.565 0.900 0.813 0.730
DeltaRAD 0.726 ± 0.137 0.070 0.301 0.913 0.533 0.600 0.889
Jacobian map 0.630 ± 0.154 0.079 0.019 0.609 0.700 0.609 0.700
Feature fusion 0.771 ± 0.136 0.069 0.356 0.522 0.967 0.923 0.725
Feature + MS 0.809 ± 0.131 0.067 — 0.826 0.800 0.760 0.857

SE, standard error; SD, standard derivation; deltaRAD, relative net feature change between baseline and follow-up images; MS, molecular subtype. p value indicates significance of the
comparison between baseline imaging- and the other image-based predictive models.

FIGURE 7 | ROC curves for the predictive models using longitudinal images. The ROC curves for the predictive model using deltaRAD and radiomics derived from
pre- and post-treatment images, the Jacobian map and the fused imaging features are shown. The ROC curve of the predictive model combining imaging features and
molecular subtype information is also shown.
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associated with pCR in non-triple-negative breast cancer
(Chamming’s et al., 2018). Additionally, the molecular
subtypes were associated with the prediction accuracy of
NACT response (Drisis et al., 2016; Liu et al., 2019). In this
study, we have incorporated molecular subtype information in
the predictive model and observed the highest performance,
which is partly consistent with previous study.

In this study, radiomics analysis of Jacobian maps showed that
statistical features (e.g., mean) and texture features (e.g., large
dependence high gray level emphasis) decreased after early
NACT, while the level of feature reduction was lower in the
responders than in the nonresponders. On the other hand, the
voxelwise volumetric reduction inside tumors was significantly
associated with the responders. Additionally, texture features
(e.g., large dependence high gray-level emphasis) were reduced
after early NACT, and the level of the reduction was higher in
patients who responded to NACT than in those who did not. In
our results, tumor heterogeneity was decreased after early NACT,
and more importantly, the high level of reduction in
heterogeneity was associated with good response to NACT.
This indicated that decreased heterogeneity within a tumor
may likely be exhibit in the patients who benefitted from
the NACT.

In addition to the evaluation of voxel-vize volumetric changes
by image registration, longitudinal feature-level changes between
the baseline and follow-up images were also evaluated for their
associations with tumor response to NACT. In our study, the
performance of the model based on vascular characteristics
measured by DCE-MRI was higher than that of the model
based on morphologic features, which is partly consistent with
the findings of a previous study that dynamic features have better
accuracy in response prediction than tumor size (Marinovich
et al., 2012). Our results indicated that tumor heterogeneity-
related features are decreased after treatment, and the extent is
higher in responders than in nonresponders. Therefore,
longitudinal feature changes in tumor heterogeneity, rather
than size changes of the entire tumor, might be more
correlated with tumor response to NACT.

We observed a relatively lower performance in terms of AUC
for features from the baseline images. A related study identified
significant change in the tumor maximum diameter between the
responders and nonresponders (Minarikova et al., 2017). In our
study, changes in tumor heterogeneity at the feature level and
voxel level were both evaluated, and predictive performance was
improved after fusing the features from different images at varied
times. The results suggested that multiple levels of features and
different stages of features at treatment may be complementary,
and altogether, these contributed to enhanced model
performance.

Despite the potential significance of tumor radiomics using
longitudinal images in this study, several limitations should also
be addressed. First, only the tumor region was analyzed for
image feature extraction. It would also be interesting to analyze
the peritumoral tissues that surrounds the tumor (Kim et al.,
2018b) to conduct a comprehensively analysis of the pattern of
heterogeneity on baseline and post-treatment images. Second,
this was a retrospective study, and the sample size was relatively

small to conduct a fair statistical analysis. Further studies with
more samples and refined analyses should be conducted to
confirm the findings of this study. Third, features were
derived from two datasets with different magnetic field
strengths (3.0 and 1.5 T for the development and testing
datasets, respectively), which may have affected the feature
calculations and induced bias. Despite this limitation, the
features were calculated based on the relative differences in
the feature/voxel values between baseline and follow-up images,
which may have partly reduced the bias between different
protocols. In our study, radiomics features were calculated
using publicly available Pyradiomics software, with the aim
of ensuring the repeatability of this study (van Griethuysen
et al., 2017).

In conclusion, longitudinal changes in tumor heterogeneity at
the voxel and feature levels were examined to determine their
contribution to the prediction of tumor response. It was found
that molecular subtypes add more predictive power in assessing
the response to NACT.
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