
A Deep Graph Network–Enhanced
Sampling Approach to Efficiently
Explore the Space of Reduced
Representations of Proteins
Federico Errica1†*, Marco Giulini 2,3†*, Davide Bacciu1†, Roberto Menichetti 2,3†,
Alessio Micheli 1† and Raffaello Potestio2,3†

1Department of Computer Science, University of Pisa, Pisa, Italy, 2Physics Department, University of Trento, Trento, Italy, 3INFN-
TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy

The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed
forward by the relentless development of computer architectures and algorithms. The
consequent explosion in the number and extent of MD trajectories induces the need for
automated methods to rationalize the raw data and make quantitative sense of them.
Recently, an algorithmic approach was introduced by some of us to identify the subset of a
protein’s atoms, or mapping, that enables the most informative description of the system.
This method relies on the computation, for a given reduced representation, of the
associated mapping entropy, that is, a measure of the information loss due to such
simplification; albeit relatively straightforward, this calculation can be time-consuming.
Here, we describe the implementation of a deep learning approach aimed at accelerating
the calculation of the mapping entropy. We rely on Deep Graph Networks, which provide
extreme flexibility in handling structured input data and whose predictions prove to be
accurate and-remarkably efficient. The trained network produces a speedup factor as
large as 105 with respect to the algorithmic computation of the mapping entropy, enabling
the reconstruction of its landscape by means of the Wang–Landau sampling scheme.
Applications of this method reach much further than this, as the proposed pipeline is easily
transferable to the computation of arbitrary properties of a molecular structure.

Keywords: molecular dynamics, coarse-grained methods, mapping entropy, deep learning, neural networks for
graphs, neural networks

INTRODUCTION

Molecular dynamics (MD) simulations (Alder andWainwright, 1959; Karplus, 2002) are an essential
and extremely powerful tool in the computer-aided investigation of matter. The usage of classical, all-
atom simulations has boosted our understanding of a boundless variety of different physical systems,
ranging from materials (metals, alloys, fluids, etc.) to biological macromolecules such as proteins. As
of today, the latest software and hardware developments have pushed the size of systems that MD
simulations can address to the millions of atoms (Singharoy et al., 2019), and the time scales covered
by a single run can approach the millisecond for relatively small molecules (Shaw et al., 2009).

In general, a traditional MD-based study proceeds in four steps, here schematically summarized
in Figure 1. First, the system of interest has to be identified; this apparently obvious problem can
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actually require a substantial effort per se, e.g., in the case of
dataset-wide investigations. Second, the simulation setup has to
be constructed, which is another rather nontrivial step (Kandt
et al., 2007). Then the simulation has to be run, typically on a high
performance computing infrastructure. Finally, the output has to
be analyzed and rationalized in order to extract information from
the data.

This last step is particularly delicate, and it is acquiring an ever
growing prominence as large and long MD simulations can be
more and more effortlessly performed. The necessity thus
emerges to devise a parameter-free, automated “filtering”
procedure to describe the examined system in simpler,
intelligible terms and make sense of the immense amount of
data we can produce—but not necessarily understand.

In the field of soft and biological matter, coarse-graining (CG)
methods represent a notable example of a systematic procedure
that aims at extracting, out of a detailed model of a given
macromolecular system, the relevant properties of the latter
(Marrink et al., 2007; Takada, 2012; Saunders and Voth, 2013;
Potestio et al., 2014). This is achieved through the construction of
simplified representations of the system that have fewer degrees
of freedom with respect to the reference model while retaining
key features and properties of interest. In biophysical applications,
this amounts to describing a biomolecule, such as a protein, using a
number of constituent units, called CG sites, lower than the
number of particles composing the original, atomistic system.

The coarse-graining process in soft matter requires two main
ingredients, separately addressing two entangled, however
conceptually very different, problems (Noid, 2013a). The first
ingredient consists of the definition of a mapping, that is, the
transformation M(r) � R that connects a high-resolution
representation r of the system’s configuration to a low-
resolution one R. The mapping thus pertains to the
description of the system’s behavior,“filtered” so as to retain
only a subset of the original degrees of freedom. The second
ingredient is the set of effective interactions introduced among
the CG sites; these CG potentials serve the purpose of
reproducing a posteriori the emergent properties of the system
directly from its simplified representation rather than from its
higher-resolution model. Both ingredients are highlighted in
Figure 2, where we display a visual comparison between a high-
resolution representation of a protein and one among its
possible simplified depictions, as defined by a particular
selection of the molecule’s retained atoms.

During the past few decades, substantial effort has been
invested in the correct parameterization of CG potentials
(Noid et al., 2008; Shell, 2008; Noid, 2013b): most of the
research focused on accurately reproducing the system’s
behavior that arises from a model relying on a specific choice
of the CG observational filter. Critically, the investigation of the
quality of the filter itself—that is, the definition of the CG
mapping—has received much less attention. Indeed, most
methods developed in the field of soft matter do not make use
of a system-specific, algorithmic procedure for the selection of the
effective sites but rather rely on general criteria, based on physical
and chemical intuition, to group together atoms in CG “beads”
irrespective of their local environment and global
thermodynamics (Kmiecik et al., 2016)—one notable example
being the representation of a protein in terms of its
α-carbon atoms.

While acceptable in most practical applications, this approach
entails substantial limitations: in fact, the CG process implies a
loss of information and, through the application of universal
mapping strategies, system-specific properties, albeit relevant,
might be “lost in translation” from a higher to a lower
resolution representation (Foley et al., 2015; Jin et al., 2019;
Foley et al., 2020). Hence, a method would be required that
enables the automated identification of which subset of retained
degrees of freedom of a given system preserves the majority of
important detail from the reference, while at the same time
reducing the complexity of the problem. In the literature, this
task has been addressed through several different techniques,
such as graph-theoretical analyses (Webb et al., 2019), geometric
criteria (Bereau and Kremer, 2015), and machine learning
algorithms (Murtola et al., 2007; Wang and Bombarelli, 2019;
Li et al., 2020). These efforts are rooted in the assumption that the
optimal CG representation of a system can be determined solely
by exploiting a subset of features of the latter. In contrast, taking
into account the full information content encoded in the system
requires statistical mechanics-based models, where the optimal
CG mapping is expected to emerge systematically from the
comparison between the CG model and its atomistic
counterpart. Within this framework, pioneering works rely on

FIGURE 1 | Schematic representation of the typical workflow of a
molecular dynamics study. On the right we report the average time scales
required for each step of the process.
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a simplified description of the system (Koehl et al., 2017; Diggins
et al., 2018), e.g., provided by analytically solvable, linearized
elastic network models, which cannot faithfully reproduce the
complexity of the true interaction network.

A recently developed statistical mechanics-based strategy that
aims at overcoming such limitations is the one relying on the
minimization of the mapping entropy (Giulini et al., 2020), which
performs, in an unsupervised manner, the identification of the
subset of a molecule’s atoms that retains the largest possible
amount of information about its behavior. This scheme relies on
the calculation of the mapping entropy Smap (Shell, 2008;
Rudzinski and Noid, 2011; Shell, 2012; Foley et al., 2015), a
quantity that provides a measure of the dissimilarity between the
probability density of the system configurations in the original,
high-resolution description and the one marginalized over the
discarded atoms. Smap is employed as a cost function and
minimized over the possible reduced representations so as to
systematically single out the most informative ones.

The method just outlined suffers from two main bottlenecks:
on the one hand, the determination of the mapping entropy is per
se computationally intensive; even though smart workarounds
can be conceived and implemented to speed up the calculation, its
relative complexity introduces a nontrivial slowdown in the
minimization process. On the other hand, the sheer size of the
space of possible CGmappings of a biomolecule is so ridiculously
large that it makes a random search practically useless and an
exhaustive enumeration simply impossible. Hence, an
optimization procedure is required to identify the simplified
descriptions that entail the largest amount of information
about the system. Unfortunately, this procedure nonetheless
implies the calculation of Smap over a very large number of
tentative mappings, making the optimization, albeit possible,
computationally intensive and time consuming.

In this work, we present a novel computational protocol that
suppresses the computing time of the optimization procedure by
several orders of magnitude, while at the same time boosting the
sampling accuracy. This strategy relies on the fruitful, and to the
best of our knowledge unprecedented combination of two very
different techniques: graph-based machine learning models

(Micheli, et al., 2009; Bronstein et al., 2017; Hamilton et al.,
2017; Battaglia et al., 2018; Zhang et al., 2018; Zhang et al., 2019;
Bacciu et al., 2020; Wu et al., 2021) and the Wang–Landau
enhanced sampling algorithm (Wang and Landau, 2001a;
Wang and Landau, 2001b; Shell et al., 2002; Barash et al.,
2017). The first serves the purpose of reducing the
computational cost associated with the estimation of the
mapping entropy; the second enables the efficient and
thorough exploration of the mapping space of a biomolecule.

An essential element of the proposed method is thus a graph-
based representation of our object of interest, namely a protein.With
their long and successful story both in the field of coarse-graining
(Gfeller and Rios, 2007; Webb et al., 2019; Li et al., 2020) and in the
prediction of protein properties (Borgwardt et al., 2005; Ralaivola
et al., 2005; Micheli et al., 2007; Fout et al., 2017; Gilmer et al., 2017;
Torng and Altman, 2019), graph-based learning models represent a
rather natural and common choice to encode the (static) features of a
molecular structure; here, we show that a graph-based machine
learning approach can reproduce the results of mapping entropy
estimate obtained by means of a much more time-consuming
algorithmic workflow. To this end, we rely on Deep Graph
Networks (DGNs) (Bacciu et al., 2020), a family of machine
learning models that learn from graph-structured data, where
the graph has a variable size and topology; by training the model
on a set of tuples (protein, CG mapping, and Smap), we can infer
the Smap values of unseen mappings associated with the same
protein making use of a tiny fraction of the extensive amount of
information employed in the original method, i.e., the molecular
structure viewed as a graph. Compared to the algorithmic
workflow presented in Giulini et al. (2020), the trained DGN
proves capable of accurately calculating the mapping entropy
arising from a particular selection of retained atoms throughout
the molecule in a negligible time.

This computational speedup can be leveraged to perform a
thorough, quasi-exhaustive characterization of the mapping
entropy landscape in the space of possible CG representations
of a system, a notable advancement with respect to the relatively
limited exploration performed in Giulini et al. (2020). Specifically,
by combining inference of the DGNs with the Wang–Landau

FIGURE 2 | Comparison between an all-atom, detailed description of a protein (left) and one of its possible coarse-grained representations (right). The purple
spheres on the right plot correspond to CG sites, while the edges connecting them represent the effective interactions.
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sampling technique, we here provide an estimate of the density of
states associated with the Smap, that is, the number of CG
representations in the biomolecule mapping space that
generate a specific amount of information loss with respect to
the all-atom reference. A comparison of the WL results on the
DGNs with the exact ones obtained from a random sampling of
mappings shows that the machine learning model is able to
capture the correct population of CG representations in the
Smap space. This analysis further highlights the accuracy of the
model in predicting a complex observable such as the mapping
entropy, which in principle depends on the whole configurational
space of the macromolecule, only starting from the sole
knowledge of the static structure of the latter.

MATERIALS AND METHODS

In this section, we outline the technical ingredients that lie at the
basis of the results obtained in this study. Specifically, inMapping
entropy we summarize the mapping entropy protocol for
optimizing CG representations presented in Giulini et al.
(2020); in Protein structures and data sets we briefly describe
the two proteins analyzed in this work as well as the data sets fed
to the machine learning architecture; in Data Representation and
Machine Learning model we illustrate our choice for the
representation of the input data, together with theoretical and
computational details about DGNs; finally, in Wang–Landau
Sampling we describe our implementation of the
Wang–Landau sampling algorithm as applied to the
reconstruction of the mapping entropy landscape of a system.

Mapping Entropy
The challenge of identifying maximally informative CG
representations for a biomolecular system has been recently
tackled by some of us (Giulini et al., 2020); specifically, we
developed an algorithmic procedure to find the mappings that
minimize the amount of information that is lost when the
number of degrees of freedom with which one observes the
system is decimated, that is, a subset of its atoms is retained
while the remainder is integrated out. The quantity that measures
this loss is called mapping entropy Smap (Shell, 2008; Rudzinski
and Noid, 2011; Shell, 2012; Foley et al., 2015), which in the case
of decimated CG representations can be expressed as a
Kullback–Leibler divergence DKL (Kullback and Leibler, 1951)
between two probability distributions (Rudzinski and Noid,
2011),

Smap � kB × DKL(pr(r)∣∣∣∣∣∣∣∣ pr(r)) � kB ∫ dr pr(r)ln[pr(r)pr(r)
]. (1)

Here, pr(r) is the probability of sampling a configuration r in the
high-resolution description, namely, the Boltzmann distribution
pr(r)∝ exp[−βu(r)], where u(r) is the atomistic potential and
β � 1/kBT is the inverse temperature. pr(r), on the other hand, is
the distribution obtained by observing the system through the
“coarse-graining grid,” i.e., in terms of the selected CG mapping.
pr(r) is defined as (Rudzinski and Noid, 2011)

pr(r) � pR[M(r)]/Ω1[M(r)], (2)

where

pR(R) � 1
Z

∫ dre−βu(r)δ[M(r) − R] (3)

is the probability of sampling the configuration R � M(r) in the
low-resolution description—Z being the canonical partition
function of the system—while

Ω1(R) � ∫ dr δ(M(r) − R) (4)

is the number of microstates r that map onto the CG
configuration R.

The mapping entropy quantifies the information loss one
experiences by replacing the original, microscopic distribution
pr(r) of the system by an effective one in which the probability
of a CG macrostate is equally redistributed to all microstates
that map onto it. It follows that different choices of the CG
mapping lead to different pr(r) and, consequently, to different
amounts of information losses arising from CG’ing.

The definition in Eq. 1 does not allow, given a CG
representation, to directly determine the associated mapping
entropy. It is however possible to perform a cumulant
expansion of Eq. 1; by doing so, Giulini et al. (2020) showed
that Smap can be approximately calculated as a weighted average
over all CG macrostates R of the variances of the atomistic
potential energies of all configurations r that map onto a
specific macrostate. This strategy enables one to measure Smap

only provided a set of all-atom configurations sampled from pr(r)
and a decimation mapping.

The following, natural step in the analysis is then to
identify the reduced representations of a system that are
able to preserve the maximum amount of information
from the all-atom reference—i.e., which minimize the
mapping entropy. However, for a molecule with n atoms,
the number of possible decimation mappings is 2n, an
astronomical amount even for the smallest proteins. This
number remains huge even narrowing down the exploration
to a fixed number of retained atoms N, so that n!/[N! (n − N)!]
mappings can be constructed. As a complete enumeration of
all possible CG representations of a system is unfeasible in
practice, Giulini et al. (2020) relied on a stochastic
minimization procedure to extract a pool of optimized
solutions out of this immense space, namely a simulated
annealing approach (Kirkpatrick et al., 1983; Černỳ, 1985)
employing Smap as cost function.

Remarkably, the CG mappings singled out by this
optimization workflow were discovered to more likely retain
atoms directly related to the biological function of the proteins
of interest, thus linking the described information-theoretical
approach to the properties of biological systems. It follows that
this protocol represents not only a practical way to select the
most informative mapping in a macromolecular structure, but
also a promising paradigm to employ CGing as a controllable
filtering procedure that can highlight relevant regions in a
system.
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The downside of the approach developed in Giulini et al.
(2020) is its non-negligible computational cost, which is due to
two factors:

1. The protocol requires in input a set of configurations of the
high-resolution system that are sampled through an MD
simulation, a computationally expensive task.

2. The stochastic exploration of the set of possible CG
mappings is limited and time consuming due to the
algorithmic complexity associated to Smap calculations.

The ultimate aim of this work is, thus, the development and
assessment of a protein-specific machine learning model able to
swiftly predict the mapping entropy arising from a reduction in
the number of degrees of freedom employed to describe the
system.

Protein Structures and Data Sets
The DGN-based mapping entropy prediction model developed in
this study is applied to two proteins extracted from the set
investigated in Giulini et al. (2020), namely (i) 6d93, a 31
residues long mutant of tamapin—a toxin of the Indian red
scorpion (Pedarzani et al., 2002)—whose outstanding selectivity
toward the calcium-activated potassium channels SK2 made it an
extremely interesting system in the field of pharmacology
(Mayorga-Flores et al., 2020); and (ii) 4ake, the open
conformation of adenylate kinase (Müller et al., 1996). This
214-residues enzyme is responsible for the interconversion
between adenosine triphosphate (ATP) and adenosine
diphosphate + adenosine monophosphate (ADP + AMP)
inside the cell.

Figure 3 shows a schematic representation of 6d93 and 4ake.
Both proteins were simulated in explicit solvent for 200 ns in the
canonical ensemble by relying on the GROMACS 2018 package
(Spoel et al., 2005). For a more detailed discussion of these two
molecules and the corresponding MD simulations, please refer to
Sec. II.B and II.D of Giulini et al. (2020).

We train the machine learning model of each protein on a data
set containing the molecular structure—the first snapshot of the
MD trajectory—and many CG representations, the latter being
selected with the constraint of having a number of retained sites
equal to the number of amino acids composing the molecule. The
data sets combine together randomly selected CG mappings
(respectively, 4,200 for 6d93 and 1,200 for 4ake) and
optimized ones (768 for both systems). The corresponding
mapping entropy values are calculated through the protocol
described in Giulini et al. (2020).

Optimized mappings are obtained from independent Simulated
Annealing (SA) Monte Carlo runs (Kirkpatrick et al., 1983; Černỳ,
1985): starting from a random selection of retained atoms, Smap is
minimized for a defined number of steps after which the current
mapping is saved and included in the data set. More specifically, at
each step of a SA run we randomly swap a retained and a non-
retained atom in the CG representation, compute Smap, and accept/
reject the move based on a Metropolis criterion. The SA effective
temperature T decays according to T(i) � T0e−i/v , where i is the SA
step and the parameters v and T0 are equal to those employed in
Giulini et al. (2020). The 768 SA runs of each protein are divided
into four groups of 192 elements depending on their length,
respectively, 2 × 104 (full optimization, as in Giulini et al.
(2020)), 1 × 104, 5 × 103, and 2.5 × 103 steps.

Figure 4 displays the distribution of Smap values in the data sets
separately for the two systems, discriminating between
random (blue) and optimized (red) CG mappings. In both
structures the two curves have a negligible overlap, meaning
that the set of values spanned by the optimized CG
representations cannot be reached by a random exploration
of the mapping space, i.e., this region possesses a very low
statistical weight. A comparison of the Smap distribution of the
two proteins, on the other hand, highlights that the mapping
entropy increases with the system’s size: while the range of
values covered has similar width in the two cases, the lower
bound in mapping entropy of 4ake differs of roughly one order
magnitude from that of 6d93.

For each analyzed protein, in Table 1 we report the
computational time required to perform the MD simulation
and a single Smap estimate. We note that the time associated
with the calculation of Smap for a single CG mapping through
the algorithm discussed in Giulini et al. (2020) grows from 2 to
8 minutes while moving from 6d93 to 4ake. It is worth
stressing that the proteins studied here are small, so that
this value would dramatically increase in the case of bigger
biomolecules.

Data Representation and Machine Learning
Model
We represent each investigated protein structure as a static graph,
see Figure 5. A graph g can be formally defined as a tuple (vg , Eg),
where vg is the set of vertices (i.e., the entities of interest) and
Eg � {{u, v}∣∣∣∣u, v ∈ vg} is the set of undirected edges (i.e., how
entities are related). We define the neighborhood of a vertex v as
the set of vertices connected to v by an edge, that is,
N v � {u ∈ vg

∣∣∣∣{u, v} ∈ Eg}. For the purpose of this work, each

FIGURE 3 | Protein structures employed in this work: the tamapin
mutant (PDB code: 6d93) and the open conformation of adenylate kinase
(PDB code: 4ake). The former, although small, possesses all the elements of
proteins’ secondary structures, while the latter is bigger in size and has a
much wider structural variability.
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heavy atom composing the molecule corresponds to a vertex, and
edges connect pairs of atoms that in the reference structure are
closer than a selected threshold—in our case, 1 nm. At odds with

other definitions of a CG site, the information about the
decimation mapping can be directly encoded in the vertices
of the protein graph by using a binary feature, with different
selections of CG sites—an example being provided in
Figure 5—corresponding to different values of Smap. In
addition, we enrich each vertex with 10 features,
summarized in Table 2, which describe the physicochemical
properties of the underlying atom; similarly, we consider the
inverse atomic distance euv between vertices u and v as an edge
feature.

FIGURE 4 | Distributions of target values for both data sets, 6d93 (left) and 4ake (right). For each protein, Smap data are displayed in two distinct, non-
overlapping histograms depending on their origin: blue curves are filled with random instances, while red histograms represent optimized CG mappings. All values of
Smap are in kJ/mol/K.

TABLE 1 | Computational cost of all-atom MD simulations and mapping entropy calculations for the two investigated proteins. Specifically,MD CPU time (respectively,MD
walltime) represents the core time (respectively, user time) necessary to simulate the system for 200 ns on the GROMACS 2018 package (Spoel et al., 2005). Both 6d93
and 4ake runs were performed on Intel Xeon-Gold 5118 processors, respectively, using 16 and 48 cores. Single measure is the amount of time that is required to compute,
on a single core of the same architecture, the Smap of a given CG mapping by relying on the algorithm introduced in Giulini et al. (2020).

Protein MD CPU time MD walltime Single measure

Tamapin (PDB code 6d93) 40.7 days 2.55 days x2.1mins
Adenylate kinase (PDB code 4ake) 153.9 days 3.20 days x8.0mins

FIGURE 5 | Two different mappingsM andMʹ associated with the same
(schematic) protein structure. To train our machine learning model, we treat
each protein as a graph where vertices are atoms and edges are placed
among atoms closer than a given threshold. The selected CG sites in
each of the two mappings are marked in red and encoded as a vertex feature.
Our goal is to automatically learn to associate both mappings to proper values
Smap and S ′

map of the mapping entropy.

TABLE 2 | Binary features (0/1) used to describe the physicochemical properties
of an atom in the protein, i.e., a vertex in the graph representation of the latter.
In this simple model, we only provide the DGNwith the chemical nature of the atom
and of its residue, together with the flag Bkb that specifies if the atom is part of the
backbone of the polypeptide chain.

Feature name Description

C Carbon atom
N Nitrogen atom
O Oxygen atom
S Sulfur atom
HPhob Part of a hydrophobic residue
Amph Part of a amphipathic residue
Pol Part of a polar residue
Ch Part of a charged residue
Bkb Part of the protein backbone
Site Atom selected as a CG site
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Once the protein structure and the CG mapping data sets are
converted into this graph-like format (statistics in Table 3), we
employ DGNs (Bacciu et al., 2020) with the aim of learning the
desired property, namely the mapping entropy Smap.

The main advantages of DGNs are their efficiency and the
ability to learn from graphs of different size and shape. This is
possible for two reasons: first, DGNs focus on a local processing
of vertex neighbors, so that calculations can be easily distributed;
secondly, in a way that is similar to Convolutional Neural
Networks for images (LeCun et al., 1995), DGNs stack
multiple layers of graph convolutions to let vertices efficiently
exchange information. The output of a DGN is a vector for each
vertex of the graph, as sketched in Figure 6, and these can be
aggregated to make predictions about a graph class or property.
Again, we remark that the efficiency of the DGN is especially
important in our context, where we want to approximate the
complex Smap computational process in a fraction of the time
originally required.

The main building block of a DGN is the “graph convolution”
mechanism. At each layer ℓ, the DGN calculates the new state of
each vertex v, i.e., a vector hℓ+1v ∈ RK , as a function of v’s
neighboring states hℓN v

� {hℓu ∈ RK
∣∣∣∣u ∈ N v}, where K ∈ N is an

hyperparameter of the model.
In general, a graph convolutional layer first applies a

permutation-invariant function to the neighbors of each
vertex, such as the sum or mean. The resulting aggregated
vector is then passed to a multi-layer perceptron (MLP) that
performs a nonlinear transformation of the input, thus producing
the new vertex state hℓ+1v .

In this study, we employ an extended version of the GIN
model (Xu et al., 2019) or, equivalently, a restricted version of the
Gated-GIN model (Errica et al., 2020) to consider edge attributes

while keeping the computational burden low. Our graph
convolutional layer can be formalized as follows:

hℓ+1
v � MLPℓ⎡⎢⎣(1 + ϵℓ) × hℓ

v + ∑
u∈N v

hℓ

u × euv⎤⎥⎦, (5)

where × denotes element-wise scalar multiplication, ϵℓ ∈ R is an
adaptive weight of the model, and euv is the scalar edge feature
holding the inverse atomic distance between two atoms u and v. A
pictorial representation of the transition between layer ℓ and layer
ℓ + 1 is presented in Figure 7.

A few remarks about Eq. 5 are in order. First, the initial layer is
implemented with a simple nonlinear transformation of the vertex
features, that is, h1v � MLP1(xv), where xv is the vector of 10 features
associated with each node (see Table 2); secondly, at each layer ℓ, we
apply the same nonlinear transformation MLPℓ to all the nodes
(i.e., a graph traversal), which allows us to treat variable-size graphs.
Finally, the MLP weights are not shared across different layers,
meaning that we train a different MLP for each layer. It is worth
noting that this weight-sharing scheme at each layer resembles the
one employed in Convolutional Neural Networks, where the same
adaptive filter is applied to all the pixels in an image.

When building a Deep Graph Network, we usually stack L
graph convolutional layers, with L ∈ N being another
hyperparameter, until the model produces a final state for
each vertex. We call this state hv; in addition, we compute a
global graph state hg by aggregating all vertex states (see
Figure 6). Being in vectorial form, hg can then be fed to
standard machine learning models to solve graph regression or
classification tasks.

To produce a prediction Ŝmap, we first need to process and
aggregate all node states into a single graph representation. In this
work, we take into account the importance of selected (respectively,
unselected V) CG sites vsg ⊂ vg (respectively, vng ) with a scalar
adaptive weight ws (respectively, wn). The resulting formula is

Ŝmap � wT
out

⎧⎪⎨⎪⎩ ∑
u∈Vs

g

[(h1
u, . . . , h

L
u) × ws] + ∑

u∈Vn
g

[(h1
u, . . . , h

L
u) × wn]⎫⎪⎬⎪⎭,

(6)

where wout ∈ RKpL is a set of parameters to be learned, while
square brackets denote concatenation of the different vertex states
computed at different layers.

TABLE 3 | Basic statistics of the data sets fed to the machine learning model. For
each protein, we report the number of vertices (i.e., heavy atoms) in its graph
representation, the total number of edges connecting them, and the average
number of edges per vertex (Avg. degree). We also report the total number of CG
representations of known mapping entropy provided in input to the protocol
(Samples), including random and optimized ones.

Protein Vertices Edges Avg. degree Samples

6d93 230 21,474 93 4,968
4ake 1,656 207,618 125 1,968

FIGURE 6 |High-level overview of typical deep learning methodologies for graphs. A graph g is given as input to a Deep Graph Network, which outputs one vector,
also called embedding or state, for each vertex v of the graph. In this study, we aggregate all vertex states via a (differentiable) permutation-invariant operator, i.e., the
mean, to obtain a single state that encodes the whole graph structure. Then, the graph embedding is fed into a machine learning regression model (in our case a linear
model) to output the Smap value associated with g.
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In particular, we use L � 5 layers and implement each
MLPℓ as a one-layer feed-forward network with K � 64 hidden
units followed by an element-wise rectifier linear unit (ReLU)
activation function (Glorot et al., 2011). As the number of
weights, without considering the bias, of MLPℓ is K2

(10 *K forMLP1), the total number of weights in our
architecture is 10 pK + K2 p(L − 1) + (L pK) + (L − 1) +
2 � 17350.

The loss objective used to train the DGN is the mean
absolute error. The optimization algorithm is Adam
(Kingma and Ba, 2015) with a learning rate of 0.001 and no
regularization. We trained for a maximum of 10,000 epochs
with early stopping patience of 1,000 epochs and mini-batch
size 8, accelerating the training using a Tesla V100 GPU with
16 GB of memory.

To assess the performance of the model on a single protein, we
first split the corresponding data set into training, validation, and
test realizations following an 80%/10%/10% hold-out strategy.
We trained and assessed the model on each data set separately.
We applied early stopping (Prechelt, 1998) to select the training
epoch with the best validation score, and the chosen model was
evaluated on the unseen test set. The evaluation metric for our
regression problem is the coefficient of determination (or R2

score).

Wang–Landau Sampling
Figure 4 highlights how an attempt of detecting the most
informative CG representations of a protein—i.e., those
minimizing Smap—through a completely unbiased exploration
of its mapping space would prove extremely inefficient, if not
practically pointless. Indeed, such optimized CG
representations live relatively far away in the left tails of the
Smap distributions obtained from random sampling, thus
constituting a region of exponentially vanishing size within
the broad mapping space. It would then be desirable to
design a sampling strategy in which no specific value of Smap

is preferred, but rather a uniform coverage of the spectra of
possible mapping entropies—or at least of a subset of it, vide
infra—is achieved.

To obtain this “flattening” of the Smap landscape we rely on the
algorithm proposed by Wang and Landau (WL) (Wang and
Landau, 2001a; Wang and Landau, 2001b; Shell et al., 2002;
Barash et al., 2017). In WL sampling, a Markov chain Monte
Carlo (MC) simulation is constructed in which a transition
between two states M and Mʹ —in our case, two mappings
containing N sites but differing in the retainment of one
atom—is accepted with probability

W(M→M′) � min{1, ΩN[Smap(M)]
ΩN[Smap(M′)]}. (7)

In Eq. 7, ΩN(Smap) is the number of CG representations with N
retained sites exhibiting a mapping entropy equal to Smap, that is,
the mapping entropy’s density of states,

ΩN(Smap) � ∑
M

δ[N(M),N]δ[Smap(M), Smap], (8)

where the sum is performed over all possible CG representations
of the system.

When compounded with a symmetric proposal probability T
for the attempted move, T(M→M′) � T(M′ →M), the Markov
chain defined in Eq. 7 generates, at convergence, CG
representations distributed according to
P(M)∝ 1/ΩN[Smap(M)] (Wang and Landau, 2001a; Wang
and Landau, 2001b). As the equilibrium probability of
visiting a mapping is proportional to the inverse of the Smap

density of states, the WL simulation results in a flat histogram
of sampled mapping entropies over the whole range of
possible ones.

Critically, the density of states ΩN(Smap) is a priori unknown
and is itself a byproduct of the WL scheme. ΩN(Smap) is self-
consistently constructed by means of a sequence k � 0,...K of
nonequilibrium simulations that provide increasingly accurate
approximations to the exact result, iterations being stopped when
a predefined precision is achieved.

Having divided the range of possible values of the
mapping entropy in bins of width δSmap, the WL self-
consistent protocol is based on three quantities: the
overall density of states ΩN(Smap), the histogram of
sampled mapping entropies at iteration k, Hk (Smap), and
the modification factor fk governing convergence–for k � 0,
one typically initializes ΩN(Smap) � 1 for each value of Smap

and f0 � e.
At the beginning of WL iteration k, the histogram Hk (Smap) is

reset. Subsequently, a sequence of MC moves among CG
mappings driven by the acceptance probability presented in
Eq. 7, is performed. If a transition between two CG
representations M and Mʹ— respectively with mapping
entropies Smap and Smap′ predicted by the trained DGNs—is
accepted, the entries of the histogram and density of states are
updated according to

Hk(S ′
map ) � Hk(S ′

map ) + 1, (9)

FIGURE 7 | A simplified representation of how a graph convolutional
layer works. First, neighboring states of each vertex v are aggregated by
means of a permutation-invariant function, to abstract from the ordering of
the nodes and to deal with variable-sized graphs. Then, the resulting
vector is fed into a multi-layer perceptron that outputs the new state for
node v.
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ΩN(S ′
map ) � fk ×ΩN(S ′

map ). (10)

In case the moveM→M′ is rejected, one has to replace S ′
map with

Smap in Eqs. 9, 10.
The sequence of MC moves is stopped—that is, iteration k

ends—when Hk (Smap) is “flat”, meaning that each of its entries
does not exceed a threshold distance from the average histogram
〈Hk〉: a typical requirement is pflat ×
〈Hk〉<Hk(Smap)< (2 − pflat) × 〈Hk〉 for every value of Smap,
pflat being the selected flatness parameter. At this stage, WL
iteration k + 1 begins with a reduced modification factor,
where we set fk+1 �

��
fk

√
.

Convergence of the self-consistent scheme is achieved when
fk ≈ 1 —more precisely, when ln(fk) becomes smaller than a
predefined value ln(fend). Up to a global multiplicative factor, the
resulting density of states ΩN(Smap) reproduces the exact result
with an accuracy of order ln(fend) (Landau et al., 2004).

In order to avoid numeric overflow ofΩN(Smap) along the WL
simulation, we consider its logarithm ΣN(Smap) � lnΩN(Smap).
Starting from Eq. 7, the acceptance probability W(M→M′)
expressed in terms of Σ reads

W(M→M′) � min{1, exp[ΣN(M) − ΣN(M′)]}, (11)

while within iteration k of the self-consistent scheme, the update
prescription of Σ after an (accepted) MC move—see Eq.
10—becomes

ΣN(S′map) � ΣN(S′map) + ln(fk). (12)

Finally, in a logarithmic setup, the modification factor ln(fk)
follows the simple reduction rule ln(fk+1) � ln(fk)/2, with
ln(f0) � 1.

The WL algorithm in principle enables the reconstruction
of the density of states of an observable over the whole range of
possible values of the latter; at the same time, knowledge of the
sampling boundaries proves extremely beneficial to the
accuracy and rate of convergence of the self-consistent
scheme (Wüst and Landau, 2008; Seaton et al., 2009). In
our case, for each analyzed protein, such boundaries would
correspond to the minimum and maximum achievable
mapping entropies Smin

map and Smax
map in the space of all CG

representations of the system obtained by retaining N of its
constituent atoms. As this information is a priori unknown, in
our implementation of the WL algorithm we limit the range of
explorable values of Smap by rejecting all MC moves M→M′

for which S′map < Smin
map or S

′
map > Smax

map, in each system setting Smin
map

and Smax
map as, respectively, the minimum and maximum values

of the mapping entropy in the corresponding data set. Note
that for each protein Smin

map is the outcome of a thorough
optimization procedure, and can thus be considered a
reasonable approximation of the system’s absolute
minimum of the mapping entropy. Imposing an upper
bound on Smap through Smax

map, on the other hand, simply
amounts at requiring the WL sampling algorithm not to
visit uninteresting regions of the mapping space of each
biomolecule, that is, CG representations characterized by a
huge amount of information loss with respect to the all-atom
reference. The values of Smin

map and Smax
map employed for the two

proteins investigated in this study are presented in Table 4,
together with the input parameters required by the WL
protocol—the bin size δSmap, the convergence modification
factor ln(fend), and the flatness parameter pflat.

RESULTS AND DISCUSSION

We first analyze the results achieved by DGNs in predicting
the mapping entropy associated to a choice of the CG
representation of the two investigated proteins;
specifically, we employ the R2 score as the main
evaluation metric and the mean average error (MAE) as
an additional measure to assess the quality of our model in
fitting Smap data. The R2 scores range from −∞ (worst
predictor) to 1 (best predictor).

Table 5 reports the R2 score and MAE in training, validation,
and test. We observe that the machine learning model can fit the
training set and has excellent performances on the test set. More
quantitatively, we achieve extremely low values of MAE for 6d93,
with an R2 score higher than 0.95 in all cases. Themodel performs
slightly worse in the case of 4ake: the result of R2 � 0.84 on the test
set is still acceptable, although the gap with the training set (R2 �
0.92) is non-negligible.

Figure 8 shows how predicted values for training and test
samples differ from the ground truth. Ideally, a perfect result
corresponds to the point being on the diagonal dotted line. We
can see how close to the true target are both training and test
predictions for 6d93. The deviation from the ideal case becomes

TABLE 4 | Set of parameters employed for the WL exploration of the mapping
entropy space for both analyzed proteins. ln(f0) and ln(fend) respectively
represent the modification factor at the beginning and at the end of the self-
consistent scheme in a logarithmic setup, see Sec.Wang–Landau Sampling. pflat
is the minimal histogram flatness required to halve themodification factor; with
pflat � 0.8, all bins in the histogram H (Smap) must have a population between
0.8 and 1.2 times its average 〈H〉. range is the interval of permitted values of
the mapping entropy in the WL scheme, while δSmap is the bin size employed
for its discretization. Both range and δSmap are expressed in kJ/mol/K.

Parameter 6d93 4ake

ln(f0) 1 1
ln(fend) 10−6 10−6

pflat 0.8 0.8
range [10−22.4] [89.4−108.6]
δSmap 0.2 0.2

TABLE 5 | Results of the machine learning model in predicting the mapping
entropy on the training (TR), validation (VL), and test (TE) sets for the two
analyzed proteins. We display both the R2 score and the mean average error
(MAE, kJ/mol/K).

Protein TR MAE TR R2 VL MAE VL R2 TE MAE TE R2

6d93 0.13 0.99 0.33 0.95 0.33 0.96
4ake 0.91 0.92 1.2 0.85 1.35 0.84
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wider for 4ake, but no significant outlier is present. A more
detailed inspection of the 4ake scatter plot in Figure 8, on the
other hand, reveals that the network tends to slightly overestimate
the value of Smap of optimized CG mappings for
Smap ( 100 kJ/mol, whereas the opposite is true for
Smap T 100 kJ/mol, where random CG mapping values are
mildly underestimated.

The dissimilarity in performance between the two data sets is
not surprising if one takes a closer look at their nature. In fact, as
highlighted in Figure 3, adenylate kinase is both larger and more
complex than the tamapin mutant, and the CG mapping data set
sizes are very different due to the heavy computational
requirements associated with the collection of annotated
samples for 4ake. As a consequence, training a model for 4ake
with excellent generalization performance becomes a harder task.
What is remarkable, though, is the ability of a completely adaptive
machine learning methodology to well approximate, in both
structures, the long and computationally intensive algorithm
for estimating Smap of Giulini et al. (2020). Critically, this is
achieved only by relying on a combination of static structural
information and few vertex attributes, that is, in absence of a
direct knowledge for the DGNs of the complex dynamical

behavior of the two systems as obtained by onerous MD
simulations.

The computational time required by the machine learning
model to perform a single Smap calculation is compared to the one
of the algorithm presented in Giulini et al. (2020) in Table 6. As
the protocol of Giulini et al. (2020) relied on a CPU machine, we
report results for both CPU and GPU times. Overall, we observe
that inference of the model can speed up mapping entropy
calculations by a factor of two to five orders of magnitude
depending on the hardware used. Noteworthy, these
improvements do not come at the cost of a significantly worse
performance of the machine learning model. In addition, this
methodology is easily applicable to other kinds of molecular
structures, as long as a sufficiently large training set is provided
as input.

By embedding the trained networks in a Wang–Landau
sampling scheme, see Wang–Landau sampling, we are able to
retrieve the density of states ΩN(Smap) defined in Eq. 8 for 6d93
and 4ake, that is, we can estimate the number of CG
representations throughout the mapping space of each protein
that exhibits a specific amount of information loss with respect to
the all-atom reference. We stress that reaching convergence of the

FIGURE 8 | Plot of Smap target values against predictions of all samples for 6d93 (left) and 4ake (right). Training samples are in blue, while test samples are in
orange. A perfect prediction is represented by points lying on the red dotted diagonal line (perfect fit). To show that in the case of 4ake, the model slightly overestimates
the Smap of optimized mappings and underestimates the rest, we include in the plot the green dashed line obtained by fitting a linear model on the data (data fit). All values
of Smap are in kJ/mol/K.

TABLE 6 |Comparison between the time required to compute the Smap of a single CGmapping through the algorithm presented in Giulini et al. (2020) and the inference time
of the model (CPU as well as GPU). For both proteins, CPU calculations were performed on a single core of a Intel Xeon-Gold 5118 processor, while GPU ones were run
on a Tesla P100 with 16 GB of memory. The machine learning model generates a drastic speedup, enabling a wider exploration of the Smap landscape of each system.

Protein Single measure Inference GPU (CPU) Time ratio GPU (CPU)

6d93 x2.1mins x0.9(98.7)ms x140000 × (1276×)
4ake x8.0mins x4.8(1103.2)ms x100000 × (435×)
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self-consistent WL protocol required to probe approximately
4.8 × 106 and 3 × 107 CG representations for 6d93 and 4ake,
respectively: such an extensive sampling is only made feasible by
the computational gain provided by the machine learning
model.

WL predictions for the logarithm of the density of states
ΣN(Smap) � lnΩN(Smap) of the two proteins are presented in
Figure 9. As for 6d93, we observe the presence of a steep
increase of Σ starting from low values of the mapping entropy,
followed by two main peaks respectively located at Smap ≈ 12.5
and 15 kJ/mol/K. After the second peak Σ decreases, exhibiting a
shoulder for high mapping entropies. On the other hand, the Σ of
4ake displays a relatively gradual growth toward its unique
maximum, the latter being located at Smap ≈ 105 kJ/mol/K,
before starting to decrease.

Given the WL ΩN(Smap)—or equivalently ΣN(Smap)—it is
possible to calculate the probability P(Smap) of observing a
particular mapping entropy by performing a completely
random exploration of the space of CG representations of a
system,

P(Smap) � ΩN(Smap)
∑Smap

ΩN(Smap). (13)

Results for the P(Smap) of 6d93 and 4ake are shown in Figure 9. In
the case of 6d93, we note that the WL sampling scheme produces
a probability density that is fully compatible with the
(normalized) histograms of Figure 4. In particular, the WL
graph resembles the histograms in Figure 4 if we remove the
nonrandom, optimized instances whose statistical weight is
negligible. This result is highly nontrivial, as it proves that the
trained DGN of 6d93 does not overfit the training set and is able
to predict the correct population of the true mapping entropy
landscape.

As regards 4ake, the agreement between the two curves
presented in Figure 9 is still remarkable, though not as precise

as in the case of 6d93. More quantitatively, the left tail of the
probability density predicted by the WL scheme is shifted of
roughly 1 kJ/mol/K toward lower values of Smap with respect to
the distribution obtained from random sampling. This mismatch
can be ascribed to the mild overfitting problem observed in
Figure 8: the network has the tendency to underestimate
(respectively, overestimate) the value of Smap associated with
random (respectively, optimized) CG representations, resulting
in an increase in the predicted population of mappings at the
intersection of the two sets.

CONCLUSION AND PERSPECTIVES

Molecular dynamics simulations constitute the core of the
majority of research studies in the field of computational
biophysics. From protein folding to free energy calculations,
an all-atom trajectory of a biomolecule gives access to a vast
amount of data, from which relevant information about the
system’s properties, behavior, and biological function is
extracted through an a posteriori analysis. This information
can be almost immediate to observe (even by naked eye) and
quantify in terms of few simple parameters–e.g., the process of
ligand binding can be seen in a graphical rendering of the
trajectory and made quantitative in terms of the distance
between ligand and protein; much more frequently, though, it
is a lengthy and nontrivial task, tackled through the introduction
of complex “filtering” strategies, the outcomes of which often
require additional human intervention to be translated in
intuitive terms (Tribello and Gasparotto, 2019; Noé et al., 2020).

A protocol aiming at the unsupervised detection of the
relevant features of a biomolecular system was recently
proposed (Giulini et al., 2020). The method relies on the
concept of mapping entropy Smap (Shell, 2008; Rudzinski and
Noid, 2011; Shell, 2012; Foley et al., 2015), that is, the information
that is lost when the system is observed in terms of a subset of its

FIGURE 9 | Comparison between the probability densities P(Smap) for the two systems estimated via the Wang–Landau algorithm enhanced by the DGNs (green
lines) and the distributions generated by a random sampling of mappings (blue areas). In inset, the logarithm of the WL density of states, Σ(Smap), is reported, after a
scaling that assigns to the Σ of the most scarcely populated bin the value of zero. All values of Smap are in kJ/mol/K.
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original degrees of freedom: in Giulini et al. (2020), a
minimization of this loss over the space of possible reduced
representations, or CG mappings, enabled to single out the most
informative ones. By performing a statistical analysis of the
properties of such optimized mappings, it was shown that
these are more likely to concentrate a finer level of detail—so
that more atoms survive the CG’ing procedure—in regions of the
system that are directly related to the biological function of the
latter. The mapping entropy protocol thus represents a promising
filtering tool in an attempt of distilling the relevant information of
an overwhelmingly complicated macromolecular structure;
furthermore, this information can be immediately visualized
and interpreted as it consists of specific subsets of atoms that
get singled out from the pool of the constituent ones.
Unfortunately, estimating the Smap associated with a specific
low-resolution representation is a lengthy and computationally
burdensome process, thus preventing a thorough exploration of
the mapping space to be achieved along the optimization process.

In this work, we have tackled the problem of speeding up the
Smap calculation procedure by means of deep machine learning
models for graphs. In particular, we have shown that Deep Graph
Networks are capable of inferring the value of the mapping
entropy when provided with a schematic, graph-based
representation of the protein and a tentative mapping. The
method’s accuracy is tested on two proteins of very different
size, a tamapin mutant (31 residues) and adenylate kinase (214
residues), with a R2 test score of 0.96 and 0.84, respectively. These
rather promising results have been obtained in a computing time
that is up to five orders of magnitude shorter than the algorithm
proposed in Giulini et al. (2020).

The presented strategy holds the key for an extensive
exploration of the space of possible CG mappings of a
biomolecule. In fact, the combination of trained networks and
Wang–Landau sampling allows one to characterize the mapping
entropy landscape of a system with impressive accuracy.

The natural following step would be to apply the knowledge
acquired by the model on different protein structures, so that the
network can predict values of Smap even in the absence of an MD
simulation. As of now, however, it is difficult to assess if the
information extracted from the training over a given protein
trajectory can be fruitfully employed to determine the mapping
entropy of another, by just feeding the structure of the latter as
input. More likely one would have to resort to database-wide
investigations, training the network over a large variety of
different molecular structures before attempting predictions

over new data points. In other words, obtaining a transfer
effect among different structures by the learning model may
not be straightforward, and additional information could be
needed to achieve it. Analyses on this topic are on the way
and will be the subject of future works.

In conclusion, we point out that the proposed approach is
completely general, in that the specific nature and properties of
the mapping entropy played no special role in the construction of
the deep learning scheme; furthermore, the DGN formalism
enables one to input graphs of variable size and shape,
relaxing the limitations present in other kinds of deep learning
architectures (Giulini and Potestio, 2019). This method can thus
be transferred to other problems where different selections of a
subset of the molecule’s atoms give rise to different values of a
given observable (see e.g., Diggins et al., 2018) and pave the way
for a drastic speedup in computer-aided computational studies in
the fields of molecular biology, soft matter, and material science.
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