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Purpose: The purpose of this study was to construct a novel risk scoring model with
prognostic value that could elucidate tumor immune microenvironment of hepatocellular
carcinoma (HCC).

Samples and methods: Data were obtained through The Cancer Genome Atlas (TCGA)
database. Univariate Cox analysis, least absolute shrinkage and selection operator
(LASSO) analysis, and multivariate Cox analysis were carried out to screen for
glycolysis-related long noncoding RNAs (lncRNAs) that could provide prognostic value.
Finally, we established a risk score model to describe the characteristics of the model and
verify its prediction accuracy. The receiver operating characteristic (ROC) curves of 1, 3,
and 5 years of overall survival (OS) were depicted with risk score and some clinical features.
ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and
CIBERSORT analysis were employed to reveal the characteristics of tumor immune
microenvironment in HCC. The nomogram was drawn by screening indicators with
high prognostic accuracy. The correlation of risk signature with immune infiltration and
immune checkpoint blockade (ICB) therapy was analyzed. After enrichment of related
genes, active behaviors and pathways in high-risk groups were identified and lncRNAs
related to poor prognosis were validated in vitro. Finally, the impact of MIR4435-2HG upon
ICB treatment was uncovered.

Results: After screening through multiple steps, four glycolysis-related lncRNAs were
obtained. The risk score constructed with the four lncRNAs was found to significantly
correlate with prognosis of samples. From the ROC curve of samples with 1, 3, and 5 years
of OS, two indicators were identified with high prognostic accuracy and were used to draw
a nomogram. Besides, the risk score significantly correlated with immune score, immune-
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related signature, infiltrating immune cells (i.e. B cells, etc.), and ICB key molecules (i.e.
CTLA4,etc.). Gene enrichment analysis indicated that multiple biological behaviors and
pathways were active in the high-risk group. In vitro validation results showed that
MIR4435-2HG was highly expressed in the two cell lines, which had a significant
impact on the OS of samples. Finally, we corroborated that MIR4435-2HG had
intimate relationship with ICB therapy in hepatocellular carcinoma.

Conclusion:We elucidated the crucial role of risk signature in immune cell infiltration and
immunotherapy, which might contribute to clinical strategies and clinical outcome
prediction of HCC.

Keywords: hepatocellular carcinoma, glycolysis, prognostic model, tumor immune environment, immune
checkpoint blockade, bioinformatics analysis

INTRODUCTION

Liver cancer is one of the most common malignant tumors with a
high rate of metastasis and high mortality (Siegel et al., 2020).
With the development of modern medicine, the comprehensive
treatment strategy has greatly improved the prognosis of samples
with liver cancer (Anwanwan et al., 2020). However, due to the
high recurrence rate of liver cancer, the long-term prognosis of
samples remains poor (Dufour et al., 2013). Currently, the
administrations of immune checkpoint blockade inhibitors
have revolutionized antitumor treatment in wide range of
cancers. According to preclinical trials, about 20% of samples
were observed for objective response, indicating immune
checkpoint inhibitors may contribute novel insight into
clinical intervention and decision-making of HCC (Cheng
et al., 2019). The immune cells function as tumor inhibitor or
tumor promoter and may act as important players in the tumor
immune microenvironment (TIME) (Lei et al., 2020). Due to
characteristics of the immune contexture significantly influencing
immune therapy outcome (Zhang et al., 2019), it is worth
identifying immune indicators which could predict treatment
efficacy and prognosis. At present, the prognosis of samples is
typically judged by the grade and stage of tumors (Hu et al., 2019).
Tumor mutation burden (TMB), which represents the somatic
coding errors such as base substitutions, insertions, or deletions
across per million bases, has been termed as a promising indicator
for predicting responsiveness to ICB based on numerous
researches (Snyder et al., 2014; Rizvi et al., 2015; Chan et al.,
2019). Exploring new ways to judge prognosis and clinical
outcome is helpful to the survival evaluation and disease
treatment of samples.

Long noncoding RNAs (lncRNAs) are similar to mRNA in
structure, with a length of more than 200 nucleotides, though they
do not have the ability to encode proteins (Kopp and Mendell,
2018). Earlier views believed that lncRNAs were a byproduct of
translation and generally did not have a function. At the present
time, increasing studies have provided evidence to support that
lncRNAs act as a vital regulator in immune response, such as
immune activation and antigen release (Carpenter and Fitzgerald,
2018; Denaro et al., 2019). An independent research pointed out
that lncRNA GAS5 was downexpressed in HCC tumor compared

with normal tissue and interference of lncRNA GAS5 accelerated
tumor cell migration by reducing NK cell cytotoxicity (Fang et al.,
2019). Likewise, lncRNA TCONS_00019715 could promote
antitumor response via harnessing macrophage transformation
into the M1 phenotype (Huang et al., 2016). Some studies
reported that lncRNAs could serve as novel indicators for
disease diagnosis, treatment monitoring, and prognostic
prediction in HCC (DiStefano, 2017; Wei et al., 2019).
However, with increasing research, it has been found that
lncRNAs play an important role in cell growth, differentiation
and regulation of gene expression (Schmitt and Chang, 2016). It
has been reported that a variety of lncRNAs are stably expressed
in HCC tissues and that specific lncRNAs play a significant role in
the occurrence and development of HCC (Yuan et al., 2016).

The energy supply of human cells mainly comes from
mitochondrial oxidative phosphorylation and glycolysis (Lu
et al., 2015). Compared to normal cells, tumor cells choose
glycolysis as the main method to supply energy, even under
aerobic conditions. This abnormal energy metabolism is an
important feature of tumor tissue (Ganapathy-Kanniappan,
2018). In this study, we used a variety of statistical methods to
identify glycolysis-related lncRNAs to construct a prognostic risk
score model, which provides a novel idea for the TIME
characterization and ICB treatment of HCC, contributing to
clinical management and decision-making of samples with
liver cancer.

MATERIAL AND METHODS

Multiomic Data Collection
Gene expression profiling for HCC sample compared with
normal tissues were obtained from the TCGA-LIHC project
(Supplementary Table S6). The corresponding clinical profiles
(Supplementary Table S7) were also downloaded from the
TCGA portal as described previously. Four categories of
somatic mutation data of HCC samples were downloaded from
TCGA database (https://portal.gdc.cancer.gov/). We singled out the
mutation data files which were obtained through the “SomaticSniper
variant aggregation and masking” platform for subsequent analysis
(Supplementary Material in MAF form). We prepared the
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Mutation Annotation Format (MAF) of somatic variants and
implemented the “maftools” (Mayakonda et al., 2018) R package
which provides a multitude of analysis modules to perform the
visualization process. HCC samples were randomly divided into
the training set and verification set at a ratio of 1:1. The clinical
characteristics of samples within and across groups were similar.
All data were obtained from the TCGA public database, and
therefore, there was no need for ethics committee approval.

Patient Data and Tissue Specimens
Five pairs of HCC tissues and adjacent liver tissues were acquired
from samples that underwent surgical resection. Corresponding
adjacent tissues were harvested 3 cm from the edges of the tumor
lesion. Tissue specimens were immediately put into liquid
nitrogen postoperation. The tissues were then stored in a
−80°C refrigerator for total RNA extraction. To control the
potential confounding factors, all samples were diagnosed with
HCC by histopathological examination, while the samples that
received chemotherapy or radiotherapy were excluded from the
study. All participants have signed the written informed
consent form.

Glycolysis-Related Long Noncoding RNAs
RNA sequencing data of HCC samples were obtained from the
TCGA-LIHC project, and noncoding genes were identified
according to RefSeq IDs or Ensembl IDs. LncRNAs were
retained with reference to NetAffx Annotation files. Glycolysis-
related genes were obtained from the gene set
“HALLMARK_GLYCOLYSIS” in Molecular Signatures Database
(MsigDB) (Liberzon et al., 2015). Pearson correlation analysis was
performed on the acquired lncRNAs, as well as glycolysis-related
genes. When the correlation coefficient |R| > 0.4 and p < 0.005, the
two genes were considered to be related. The obtained lncRNA was
regarded as glycolysis-related lncRNA. Then, it was visualized using
Cytoscape. The processing flow of the data conforms to the relevant
policies of NIH TCGA human subject protection.

Prognostic Risk Score Calculation
Using the training set, we conducted a univariate Cox
proportional hazard regression analysis, LASSO regression
analysis, and two-step multivariate Cox proportional hazard
regression analysis on the glycolysis-related lncRNAs. Finally,
we selected four glycolysis-related lncRNAs for incorporation
into the risk score. The expression of lncRNAs between normal
and cancer tissues was compared. The regression coefficient β of
multivariate Cox regression model and lncRNA expression were
used to construct risk score formula as follows:

Risk score � β lncRNA1 × LncRNA1Expression + β lncRNA2

× lncRNA2Expression +/ + β lncRNA n

× lncRNA n Expression.

Prognostic Characteristics of Risk Score
Using the training set, validation set, and all samples, we sorted
the samples according to the size of the risk score. The samples
were divided into high- or low-risk groups depending on the

average risk score. Additionally, we drew the lncRNA expression
heat map, risk score distribution map, and risk score and survival
relationship map. The Kaplan–Meier method was utilized to
draw the survival curve and ROC curve of high- and low-risk
samples. In order to determine whether the risk score is an
independent prognostic factor, the univariate and multivariate
Cox regression analysis was conducted on the risk score and some
clinical indicators.

Nomograph Drawing
In order to construct a quantitative scoring system for prognostic
evaluation of HCC samples, a ROC curve was drawn with risk
score and partial clinical features. Furthermore, the appropriate
indicators were selected to construct a nomogram. Subsequently,
we analyzed the calibration curve which showed the prognostic
value of as-constructed nomogram.

Enrichment Analysis of Gene Set
Enrichment Analysis
We utilized the “h.all.v7.2. symbols.gmt [cancer hallmarks]” and
“c2. cp.kegg.v7.2. symbols.gmt [Curated]” gene sets from the
MsigDB of the GSEA (version 4.0) to analyze the risk score and
explore the possible cellular pathways.

Assessment of Correlation of Risk Score
With Tumor Immune Environment
Characterization
To distinguish TIME difference between low-/high-risk
subgroups, we employed several analyses as follows. R
package “ESTIMATE” was utilized to estimate tumor purity
and the extent and level of infiltrating cells (stromal cell and
immune cell), which reflected the characteristics of tumor
immune microenvironment. Subsequently, single-sample
gene set enrichment analysis was conducted via the R
package “GSEAbase” to elucidate the enrichment of 29
immune function–related gene sets. The subpopulation of
22 immune cells in each tumor sample was explored
through immune cell subtype identification by using
CIBERSORT (https://cibersort.stanford.edu/). Furthermore,
we compared the expression levels of 46 immune
checkpoint blockade–related genes, (i.e. CD274, etc.)
between low-risk samples and high-risk samples.

Assessment of Correlation of Signature
With Tumor Immune Infiltration
Immune infiltration information contains each tumor sample’s
immune cell fraction (i.e. B cells, CD4+T-cells, CD8+T-cells,
dendritic cells, macrophages, and neutrophils), which were
obtained from Tumor Immune Estimation Resource (TIMER)
(https://cistrome.shinyapps.io/timer/). The correlation of tumor
immune cell infiltrating with prognostic risk signature was
analyzed to explore whether risk signature could act as a novel
and reliable indicator in tumor of immune microenvironment
of HCC.
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Assessment of Role of Risk Signature in
Immune Checkpoint Blockade Treatment
Based on reported researches, immune checkpoint blockade key
targets expression level might be closely associated with clinical
outcome of immune checkpoint inhibitors (Goodman et al.,
2017). Herein, we selected six key genes of immune
checkpoint blockade–related genes: programmed death ligand
1 (PD-L1, namely CD274), programmed death ligand 2 (PD-L2,
namely PDCD1LG2), programmed death 1 (PD-1, namely
PDCD1), cytotoxic T-lymphocyte antigen 4 (CTLA-4),
indoleamine 2,3-dioxygenase 1 (IDO1), and T-cell
immunoglobulin domain and mucin domain-containing
molecule-3 (TIM-3, namely HAVCR2) in HCC (Kim et al.,
2017; Nishino et al., 2017; Zhai et al., 2018). To investigate the
potential role of lncRNA-based signature in ICB therapy of HCC,
we correlated risk signature with expression level of six immune
checkpoint blockade key targets.

Cell Lines and Culture
One human normal hepatocyte cell line (HL-7702) and two
human HCC cell lines (HepG2 and MHCC97H) were cultured
in Dulbecco’s Modified Eagle Medium (DMEM, Gibco,
United States) containing 10% fetal bovine serum (FBS, Gibco,
United States) in a humidified atmosphere at 37°C, containing
5% CO2.

Quantitative Real-Time PCR
For specific qPCR steps, please refer to previous literature (Zhang
et al., 2016). The primer sequences used in this study were as
follows: MIR4435-2HG forward, 5′-GACTCTCCTACTGGT
GCTTGGT-3′ and reverse 5′-CACTGCCTGGTGAGCCTG
TT-3′; glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
forward, 5′-CAGGAGGCATTGCTGATGAT-3′ and reverse
5′-GAAGGCTGGGGCTCATTT-3′. The relative gene
expression levels were calculated by normalizing to GAPDH.

Statistical Analysis
Statistical analysis was performed by R software (version 4.0.2; R
Foundation). Comparisons between multiple groups were
analyzed using a one-way analysis of variance (ANOVA) and
comparisons between the two groups were analyzed by Student’s
t-test. Construction of the glycolysis-related lncRNA co-
expression network was carried out with Cytoscape software
(version 3.7.2; The Cytoscape Consortium). p < 0.05 was
considered as significant difference.

RESULTS

Multiple lncRNAs Are Associated With
Glycolysis-Related Genes
Overall, 14,142 lncRNAs were identified using the TCGA-LIHC
database, and glycolysis-related genes were identified using the
Molecular Signatures Database. To identify glycolysis-related
lncRNAs, Pearson’s correlation test was performed. lncRNAs
with Pearson’s correlation coefficient with an absolute value of
>0.4 and p < 0.005 were set for further analysis. Finally,

1,699 glycolysis-related lncRNAs were obtained
(Supplementary Table S1).

LASSO Regression Analysis Was Able to
Accurately Identify Long Noncoding RNAs
With Prognostic Value
According to the process shown in Supplementary Figure
S1, 377 HCC samples were obtained using the TCGA
database, and seven samples with incomplete information
were excluded from the study. In total, 370 samples were
selected for further research. The basic clinicopathological
information of samples is shown in Table 1. A detailed
description was recorded in Supplementary Table S7. A
total of 22 glycolysis-related lncRNAs were identified using
univariate Cox analysis, with results shown in
Supplementary Table S4. In order to exclude the
overfitting, LASSO regression analysis was conducted on
22 lncRNAs, and a total of five glycolysis-related lncRNAs
were identified. The screening process and results are shown
in Figures 1A,B, and Supplementary Table S5. These five
lncRNAs were analyzed using a two-step multivariate Cox
regression analysis. Finally, four glycolysis-related lncRNAs
were found to be associated with prognosis of HCC samples
(Figure 1C). Among them, AL031985.3, AL365203.2, and
MIR4435-2HG were found to be poor prognostic factors
(hazard ratio, HR > 1), and their expression was
upregulated in HCC samples. On the other hand,
AC015908.3 was a protective factor (HR < 1), and its
expression was found to be decreased in HCC samples.
The results are shown in Figures 1D–G and Table 2. Four
lncRNAs were used to construct the co-expression network,
the results of which are shown in Supplementary Figures
S1B,C. According to expression of lncRNAs and multivariate
Cox regression coefficient, the prognosis risk score of

TABLE 1 | Baseline data of all HCC samples.

Characteristic Type n Proportion (%)

Age ≤65 235 62.33
>65 141 37.40
Unknown 1 0.27

Gender Female 122 32.36
Male 255 67.64

Grade G1-2 235 62.33
G3-4 137 36.34
Unknown 5 1.33

Stage Stage I–II 262 69.50
Stage III–IV 91 24.14
Unknown 24 6.37

T Stage T1–2 280 74.27
T3–4 94 24.93
Unknown 3 0.80

M Stage M0 272 72.15
M1 4 1.06
Unknown 101 26.79

N stage N0 257 68.17
N1 4 1.06
Unknown 116 30.77
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glycolysis-related lncRNAs was calculated as follows
(0.299987 × AL031985.3 expression) + (0.105369 ×
AL365203.2 expression) + (0.107428 × MIR4435-2HG
expression) − (0.25568×AC015908.3 expression). Samples
were equally and randomly divided into training set and
verification set, including 186 cases in the training set and
184 cases in the verification set. The results of random
grouping are shown in Supplementary Tables S2, S3.

The Risk Score Is Significantly Related to
Patient Prognosis
According to this scoring system, the prognostic risk score of
each patient was calculated and samples were arranged from
left to right according to their score level. The heat map
distribution of four lncRNAs is shown in Figure 2A. With
increasing risk score, the number of surviving samples
decreased and the amounts of dead samples increased. The
prognosis of samples in the low-risk group was significantly
better than that in the high-risk group (Figures 2B,C). The
Kaplan–Meier survival curve shows that the 5-year survival
rate of samples in the low-risk group is significantly higher

than that in the high-risk group (Figure 2D, p � 3.819e − 05).
Moreover, these four lncRNAs were used to construct a
prognosis scoring system with high accuracy (Figure 2E,
AUC � 0.763). Consistent with these results, univariate
and multivariate Cox regression analysis showed that the
increased risk score indicates the higher the risk score, the
poorer the prognosis (Figures 2F,G).

Validation of Prognostic Risk Score
The risk scoring system was validated using an internal
validation set, as well as all samples. The four lncRNAs had
similar distributions in the heat map, as well as risk score
distribution (Figures 3A,B; Supplementary Figure S2A,B).
The higher the risk score, the fewer samples survived and the
more deaths that occurred (Figure 3C; Supplementary Figure
S2C). The 5-year survival rate in the low-risk group was
significantly higher (Figure 3D; Supplementary Figure
S2D). The risk scoring system in the validation set, as well
as overall samples, has the same degree of predictive accuracy
as the training set (Figure 3E; Supplementary Figure S2E).
Consistent with results from the training set, a risk score can be
used as an independent prognostic factor to judge patient

FIGURE 1 | Four glycolysis-related lncRNAs with prognostic value in the training set. (A) Plots for LASSO expression coefficients of 22 glycolysis-related lncRNAs.
(B) Cross-validation plot for the penalty term. (C) Relationship between four glycolysis-related lncRNAs and prognosis of HCC patients (D–G) Expression of four
glycolysis-related lncRNAs in tumors and normal tissues; the data come from TCGA database, where all p values < 0.05.

TABLE 2 | Multivariate Cox results of lncRNAs based on TCGA-LIHC data.

Id Coef HR HR.95 L HR.95H p value

AL031985.3 0.299,987 1.349,841 0.991,382 1.837,909 0.05678
AL365203.2 0.105,369 1.111,121 0.987,831 1.249,799 0.079101
“MIR4435-2HG” 0.107,428 1.113,411 0.979,232 1.265,977 0.101,078
AC015908.3 -0.25568 0.774,388 0.595,609 1.006829 0.056244
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prognosis. The higher the risk score, the worse the prognosis
(Figures 3F,G; Supplementary Figures S2F,G), the more
serious the tumor grade (Figure 3H).

Close Correlation of Risk Score With Tumor
Immune Environment Characterization of
Hepatocellular Carcinoma
To further uncover the potential role of prognostic risk score in
TIME of HCC, we investigated the relationship between risk
score and immune-related score (calculated with the R package
“ESTIMATE”), immune signature (via ssGSEA analysis) and
Tumorinitiating cell subtypes and level (assessed by
CIBERSORT method), and the 46 immune checkpoint
blockade–related genes expression level.

These results indicated that samples with low risk had a higher
estimate score, stromal score, immune score but lower tumor purity
comparedwith high-risk samples (Figures 4A–D). Then,we examined
whether there was distinction of immune signatures between groups
low/high risk. From the ssGSEA results, we found that the infiltrating
levels of aDCs, DCs, iDCs, macrophages, pDCs, Tfh, Th1 cells, Th2
cells, andTregswere remarkably elevated and some immune signatures
(i.e. APCcostimulation, checkpoint, parainflammation,HLAmolecule,
IFN response type II, and MCH class I) were significantly activated
with the increased risk score (Figure 4E; Supplementary Figure S3A).
Supplementary Figure S3B shows each patient immune-related
signature with corresponding immune-related scores in groups low/

high risk. The CIBERSORT analysis results pointed out that the more
the fraction of regulatory T cells, the higher the risk score (Figure 4F).
Further correlation analysis presented that 40 of 46 (i.e. CD274,
IDO1, etc.) immune check blockade–related genes expression
levels were significantly different between two risk groups
(Figure 4G). These results suggested that lncRNA-based risk
signature may contribute a novel insight into TIME feature and
immune response of HCC.

The Predictive Power of Risk Score was
Significantly Better Compared to Other
Clinical Characteristics
The prognostic risk score, combined with age, gender, and
tumor grade and stage, were used to draw ROC survival curve.
The results indicated that compared to other clinical traits,
the glycolysis-related lncRNA prognostic risk scoring system
was more accurate at predicting the 1-, 3-, and 5-year survival
rate of HCC samples (Figures 5A–C, AUC � 0.747, 0.660, and
0.656, respectively). The prognostic factors with AUC >0.6
were identified in ROC curve, and the nomogram was drawn.
The results are shown in Figure 5D. The 1-, 3-, and 5-year
survival rates were calculated quantitatively according to the
tumor stage and risk score. We corroborated that our
nomograph had great prognostic predictive performance of
1-, 2-, and 3-year survival time by employing calibrate curves
(Figures 5E–G).

FIGURE 2 | Prognostic risk score characteristics of glycolysis-associated lncRNAs in the training set. (A) Heat map of the expression of four lncRNAs in HCC
samples. The color from green to red indicates a trend from low expression to high expression. (B). Distribution of risk scores for HCC samples. (C) The relationship
between survival time and status of HCC samples and risk score. (D) Kaplan–Meier survival curve of samples in high- and low-risk groups. (E) ROC curve of risk score in
samples with HCC. (F) Univariate Cox regression analysis of clinical features and risk score in HCC samples. (G) Multivariate Cox regression analysis of clinical
features and risk score in HCC samples.
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To validate whether lncRNA risk signature remained with
excellent prognostic predictive performance in different
clinicopathological subgroups, furthermore, we performed a
stratification analysis. Regardless of young or old, the risk
signature could further distinguish low-risk group and high-
risk group with significantly distinct survival time
(Supplementary Figures S5A,B). Likewise, risk signature
presented powerful prognosis prediction ability for samples in
grade 1–2 or 3–4 (Supplementary Figures S5C,D), early stage or
late stage (Supplementary Figures S5E,F), T status one to two or
3–4 (Supplementary Figures S5G,H), N0 status (Supplementary
Figure S5I), M0 status (Supplementary Figures S5J) ,and male
gender (Supplementary Figure S5K). We found that p-value was
0.081, however, female samples’ survival time shortened with the
increase of risk score (Supplementary Figure S5L). These results
suggested that it can be an outstanding predictor in samples
with HCC.

Risk Score Affects the Results of Gene
Enrichment
Hallmark enrichment analysis indicated that apoptosis and
glycolysis were active in high-risk group, while being silent in
the low-risk group. Additionally, multiple pathways, including
IL/STAT5 and NOTCH, were active in the high-risk group and
silent in the low-risk group (Supplementary Figure S4A).

Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis suggested that bladder cancer and colorectal
cancer were active in the high-risk group but silent in the low-risk
group (Supplementary Figure S4B).

Correlation of Risk Signature With
Infiltrating Immune Cell and Immune
Checkpoint Blockade Key Molecules
To further explore the influence of lncRNA-based signature upon
TIME of HCC, we analyzed correlation of risk signature with
immune cell infiltration type and level. We observed that the risk
signature significantly correlated with infiltrating B cells (r �
0.191; p � 2.171e − 04), infiltrating CD4+T cells (r � 0.212; p �
3.918e − 05), infiltrating CD8+T cells (r � 0.305; p � 2.139e − 09),
infiltrating dendritic cells (r � 0.361; p � 8.239e − 13), infiltrating
macrophages (r � 0.411; p � 1.665e − 16), and infiltrating
neutrophils (r � 0.353; p � 2.856e − 12; Figures 6A–F). These
results suggested that prognostic risk signature was closely
correlated with immune infiltration in HCC.

Next, we singled out six key immune checkpoint inhibitor
genes (PDCD1, CD274, PDCD1LG2, CTLA-4, HAVCR2, and
IDO1) for further research (Vidyasagar, 2015; Chen et al., 2018;
Bejani and Ghatee, 2020). We performed the correlation analysis
of ICB key gene expression with risk signature to investigate the
potential role of signature in the ICB therapy of HCC

FIGURE 3 | Prognostic risk score characteristics of glycolysis-related lncRNA in the validation set. (A–C) Heat map of the expression of four glycolysis-related
lncRNAs in HCC samples, distribution map of risk score, relationship map of survival status and risk score. (D–E) Kaplan–Meier survival curve and ROC curve of high-
and low-risk group. (F–G). Univariate and multivariate Cox regression analysis of clinical features and risk score in HCC samples. (H) Relationship between tumor grade
and risk score; risk score significantly increased for advanced grade cases.
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FIGURE4 |Correlation of prognostic risk scorewith TIMEcharacterization ofHCC (A–D)Comparison of estimate score, stromal score, immune score, and tumor purity
between these two subtypes. (E) Distinction of enrichment of immune-related signatures between low- and high-risk groups. (F) Difference of infiltrating immune cell
subpopulations and levels between low-/high-risk groups. (G)Comparison of 46 immune checkpoint blockade–related genes expression levels in two risk score subgroups.

FIGURE 5 | Screening prognostic indicators and nomogram. (A–C)ROC curve of 1-, 2-, and 3-year OS for multiple prognostic indicators of HCC samples. (D) The
nomogram was drawn using tumor grade and risk score. (E) One-year nomogram calibration curves of entire TCGA cohort. (F) Two-year nomogram calibration curves
of entire TCGA cohort. (G) Three-year nomogram calibration curves of entire TCGA cohort.
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(Figure 6G). The analysis result pointed out that risk signature
had close relationship with CD274 (r � 0.2; p � 9.2e − 05), CTLA4
(r � 0.15; p � 0.0029), HAVCR2 (r � 0.21; p � 5.3e − 05), PDCD1
(r � 0.19; p � 0.00024), and PDCD1LG2 (r � 0.22; p � 2.1e − 05;
Figures 6H–L), indicating risk signature might exert a
nonnegligible player in ICB treatment outcome prediction
in HCC.

High Expression of MIR4435-2HG in
Hepatocellular Carcinoma Suggests Poor
Prognosis
We evaluated the expression of MIR4435-2HG in cell lines and
tissues. The results showed that in comparison to normal liver cell
lines, the expression of MIR4435-2HG in hepatoma cell lines was
significantly increased (Figure 7A, p < 0.05). Likewise, MIR4435-
2HG was upregulated in tumor tissue relative to normal samples.
Limited by number of samples, we observed no statistical
difference (Figure 7B). Consistent with the results of in vitro
experiments, the OS of samples with low expression of MIR4435-

2HG was significantly longer than that of samples with high
expression (Figure 7C, p � 0.0018), suggesting that MIR4435-2HG
is a poor prognostic factor for HCC samples. The expression level
analysis among major clinical stages shown that MIR4435-2HG
expressed significantly differently among distinct clinicopathological
stages (Figures 7D, F value � 5.48 and p � 0.0011).

MIR4435-2HG Correlates With Immune
Checkpoint Blockade Therapy Key Genes in
Hepatocellular Carcinoma
Then we analyzed the correlation between the MIR4435-2HG
and ICB-related key genes to elucidate the impact of MIR4435-
2HG on the ICB therapy of HCC. The results presented that
MIR4435-2HG was significantly positively correlated to CD274
(r � 0.12; p � 0.014), CTLA4 (r � 0.27; p � 1.4e − 08), HAVCR2
(r � 0.19; p � 6.4e − 05), IDO1 (r � 0.13; p � 0.0075), PDCD1 (r �
0.13; p � 0.0086), and PDCD1LG2 (r � 0.16; p � 0.001; Figures
7E–J), suggesting MIR4435-2HG may be a novel and potential
target in ICB treatment in HCC.

FIGURE 6 | Correlation between tumor immune infiltration and this immune-related lncRNA signature. (A) Association between this signature and B cells. (B)
Association between this signature and CD4+ T cells. (C) Association between this signature and CD8+ T cells. (D) Association between this signature and dendritic cells.
(E) Association between this signature and macrophages cells. (F) Association between this signature and neutrophil cells. (G) Association analyses between immune
checkpoint inhibitors CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1 and lncRNAs signature. (H) Association between our risk model and CD274. (I)
Association between our risk model and CTLA4. (J) Association between our risk model and HAVCR2. (K) Association between our risk model and PDCD1. (L)
Association between our risk model and PDCD1LG2.
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Role of MIR4435-2HG in Tumor Immune
Environment Characterization
To further examine whether MIR4435-2HG can act as immune
indicators, we performed the correlation analysis of MIR4435-2HG
expression level with immune infiltration. HCC samples were
classified into high/low MIR4435-2HG subtypes based on the
median MIR4435-2HG expression value. ESTIMATE results
indicated that samples with higher MIR4435-2HG expression had
a significant higher stromal score, immune score, and ESTIMATE
score but lower tumor purity relative to samples in high MIR4435-
2HG group (Figures 8A,B). Subsequently, we identified difference of
enrichment in immune-related signatures between two different
subgroups. The subjects in MIR4435-2HG high group remarked as
high infiltration of aDCs, DCs, iDCs, pDCs, macrophages, Tfh, Th1
cells, Th2 cells, and Tregs and enrichment of T cell costimulation,
APC costimulation, CCR, checkpoint, HLA, inflammation
promoting, parainflammation, and class I MHC, which suggested
immune-activated phenotype (Figure 8C). The CIBERSORT result
presented that expression level of MIR4435-2HG was positively
correlated with M0 and M2 macrophage infiltration, whereas
negatively correlated with plasma cells, CD8 T cells, and Tfhs
(Figure 8D). In summary, these results pointed out that MIR4435-
2HG may serve as a key indicator in TIME characterization and
immunological reaction in HCC.

Correlation of Mutation of TP53 With Risk
Score
Based on previous research (Ruan et al., 2016), CTSB played a
pivotal role in HCC initiation and progression. According to

results of somatic mutation data, TP53 was the genes with highest
mutation frequency (Supplementary Figure S6A). Thus, we
proposed to uncover the role of gene mutation in risk score
and analyzed the proportion of mutation gene in both low- and
high-risk groups. We observed that mutation of TP53 was
significantly correlated with risk score (Figures 8E,F;
Supplementary Figure S6B; training set, testing set, and
whole cohort, respectively), whereas mutation of CTSB was
similar between low- and high-risk groups (Supplementary
Figure S6C). These results indicated that mutation of TP53
may contribute to HCC development.

DISCUSSION

The pathogenesis of HCC is very complex as it involves cell cycle
and apoptosis, transcriptional regulation disorder (Lin et al.,
2014), and energy metabolism abnormalities (Hsu et al., 2015).
LncRNAs affect tumorigenesis and development in many ways,
including regulating cell proliferation and migration (Shen et al.,
2019), influencing epigenetic regulation (Miao et al., 2019) and
regulating energy metabolism rate-limiting enzymes. Glycolysis is
an inefficient method of energy production, but this process
produces a reduction equivalent (Terabe et al., 2019) and
biosynthetic substrate necessary for tumor cell proliferation
(Liang et al., 2019). In this study, we obtained clinical and
transcriptomic data of HCC from the TCGA database and
successively applied univariate Cox analysis, LASSO analysis,
and two-step multivariate Cox analysis to identify glycolysis-
related lncRNAs. Additionally, abnormal energy metabolism and

FIGURE 7 | High expression of MIR4435-2HG indicates poor prognosis. (A). qPCR results indicate that MIR4435-2HG is highly expressed in HepG2 and
MHCC97H cell lines, *p < 0.05. Each experiment is repeated at least three times. (B) qPCR results indicate that MIR4435-2HG is highly expressed in tumor tissue. (C)
The prognosis of samples with high or low expression of MIR4435-2HG is significantly different. (D) The expression of MIR4435-2HG had significant difference between
major pathological stages. (E) The mRNA expression between MIR4435-2HG and CD274 had more similar pattern in HCC and normal tissues. (F) The mRNA
expression between MIR4435-2HG and CTLA4 had more similar pattern in HCC and normal tissues. (G) The mRNA expression between MIR4435-2HG and HAVCR2
had more similar pattern in HCC and normal tissues. (H) The mRNA expression between MIR4435-2HG and IDO1 had more similar pattern in HCC and normal tissues.
(I) The mRNA expression between MIR4435-2HG and PDCD1 had more similar pattern in HCC and normal tissues. (J) The mRNA expression between MIR4435-2HG
and PDCD1LG2 had more similar pattern in HCC and normal tissues.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 64508410

Bai et al. A Novel Prognostic Model for HCC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


lncRNAs were combined to construct a risk score model with
prognostic value. The model was verified across different groups
so that the prognostic judgment of HCC could be quantified and
specific and provides guidance for survival prediction of samples.

When selecting specific variables to build a model, there is
often overfitting (Dawes et al., 2019). This problem often occurs
when there are too many variables. With regard to human genes,
only 2% can encode proteins, and 98% of them are noncoding
sequences, which constitute a complex regulatory network (Boon
et al., 2016). In our study, we observe that there are still 22
lncRNAs that are related to the prognosis of samples after
screening by univariate COX analysis, and excessive lncRNAs
involved in constructing can cause the risk scoring model to lead
to overfitting. An important method to solve overfitting is
regularization (Bejani and Ghatee, 2020). LASSO regression
constructs a penalty function and adds L1 regularization after
the loss function to obtain a more accurate model with fewer
variables (Vidyasagar, 2015). After LASSO regression analysis of
22 lncRNAs, only five were found to be related to patient
prognosis. Even after two-step multivariate Cox regression,
only one lncRNA was identified. The final remaining four
lncRNAs indicated high accuracy in the validation set, as well
as overall prognosis for samples.

The ROC curves of OS of samples with liver cancer were
constructed by combining several clinical characteristics of
samples with a prognostic risk score. Indicators with AUC >0.6

were selected to draw a nomogram, which made the judgment of
survival rate of samples with liver cancer visualized and more
specific. From our results, we are able to see that the risk score
based on glycolysis-related lncRNA construction shows high
accuracy in predicting the survival rate of samples. The reason is
that abnormal energy metabolism plays an important role in
metabolomics and epigenetics of liver tumors, and glycolysis-
related pathways are significantly related to survival and
prognosis of samples (Chen et al., 2018). Furthermore, 90% of
energy in normal tissues comes from tricarboxylic acid cycle in
mitochondria (Anderson et al., 2018), while more than 50% of the
energy depends on glycolysis, which is known as the “Warburg
effect” (Pascale et al., 2020). At present, it is believed that the main
mechanisms of Warburg effect include mitochondrial dysfunction
(Riera Leal et al., 2020), tumor adaptation (Ždralević et al., 2018),
microenvironment changes (Sun et al., 2018), oncogene (Banks,
2013), and related signal pathway disorders. According to the results
of GSEA enrichment analysis, we found that Notch, p53, Wnt, and
other signaling pathways are active in the high-risk group whether
we use the Hallmark dataset or KEGG dataset. These pathways are
closely related to the recurrence of liver cancer (Invalidcitation,
2018). In addition, we found that glycolysis is active in the high-risk
group in the hallmark dataset, which is consistent with our results.

According to published works, we observed that more and more
researches focusing on TIME have revealed the potential implication
of lncRNAsupon infiltrating immune cells. Peng Lirong et al. reported

FIGURE 8 | Correlation of MIR4435-2HG in TIME characterization. (A–B) Comparison of the immune score (ESTIMATE algorithm) between MIR4435-2HG low/
high groups. (C) Difference of immune-related signatures between low and high MIR4435-2HG subgroups. (D) Distinction of infiltrating immune cell subpopulations and
levels between low/high MIR4435-2HG groups. (E) Proportion of mutation of TP53 in both low-/high-risk groups form the training set. (F) Proportion of mutation of TP53
in both low-/high-risk groups form the testing set.
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that LncRNA MIAT was significantly correlated with immune cell
infiltration and may exert an important player in the immune escape
of HCC (Peng et al., 2020). The study of Ji Jie et al. demonstrated that
Lnc-Tim3 was involved in the survival of the exhausted CD8+T cells
and facilitating CD8+T exhaustion (Ji et al., 2018). Consequently, we
speculated that the subtype of infiltrating immune cells had close
connection with lncRNAs. Herein, we corroborated that lncRNA-
based risk signature was significantly correlated with immune cell
infiltration, (i.e. macrophages, dendritic cells, neutrophils, B cells,
CD4+T cells, and CD8+T cells). ESTIMATE results presented that
risk score was negatively correlated with estimate score, stromal score,
and immune score but positively with tumor purity, suggesting risk
signature could serve as a novel immune indicator in HCC. Besides,
ssGSEA analysis pointed out that the infiltrating immune cells (i.e.
DCs, macrophages, Th1 cells, and Tregs) were significantly increased
and immune signatures (i.e. APC costimulation, checkpoint,
parainflammation, IFN response type II, and MCH class I) were
remarkably activated when risk score elevated. Finally, CIBERSORT
algorithm results showed that risk score elevated when the fraction of
regulatory T cells increased, indicating that as-constructed signature
works through regulating Tregs infiltration and might have an
undeniable role in tumor immune microenvironment of HCC.
The immune-activated condition in the high-risk group was
associated with high ICB-relevant genes expression, suggesting
samples in with low risk score might respond to immunotherapy.

With the emergence of immune checkpoint blockade (ICB)
treatment, immune checkpoint inhibitors have considerably
transformed clinical decision-making in cancer oncology (Pitt
et al., 2016; Llovet et al., 2018; Salik et al., 2020). Immune-
checkpoint blockade treatment has contributed a novel insight
into clinical management in samples with HCC(Ng et al., 2020).
Nevertheless, HCC samples obtained relatively few benefits from
ICB therapy and less than one in three samples were observed for
objective response to immune checkpoint inhibitors treatment
(Liu et al., 2020). Such biomolecules as immune checkpoint
blockade–related gene expression level and tumor mutational
burden were unable to accurately predict clinical outcome of ICB
treatment. It is therefore urgent to identify indicators that can
precisely forecast responsiveness to ICB treatment for further
individualized treatment and advance precision immunotherapy
(Nishino et al., 2017; Ng et al., 2020; Mushtaq et al., 2018).
Recently, accumulating evidences have supported that numerous
lncRNAs possess key roles in regulating immunity, such as
immune cell infiltration, antigen presentation, and so on
(Carpenter and Fitzgerald, 2018; Denaro et al., 2019). In this
study, the correlation analysis showed that PDCD1, CD274,
PDCD1LG2, CTLA-4, IDO1, and HAVCR2 were coexpressed.
Furthermore, our risk signature was significantly associated with
the ICB treatment key target genes (i.e. PDCD1LG2, PDCD1,
CD274, HAVCR2, and CTLA4), and the expression level of
immune checkpoint blockade–related genes (i.e. IDO1 and
TIGHT) increased significantly with increased risk scores. Due
to no ICB treatment dataset in HCC cohort, we were unable to
explore the correlation between risk score and ICB
immunotherapy response. These findings indicated that our
signature may possess the ability to predict clinical outcome of
ICB therapy in HCC samples.

It has been reported that MIR4435-2HG is associated with
prognosis of HCC (Kong et al., 2019). Overexpression of
MIR4435-2HG can promote proliferation of HCC cells, which
is consistent with our experimental results. However, previous
literature has only described this phenomenon. MIR4435-2HG
expression was significantly positively associated with ICB
immunotherapy key genes (i.e. CD274, CTLA4, HAVCR2,
IDO1, PDCD1LG2, and PDCD1). We also demonstrated that
MIR4435-2HG expression had close relationship with high
infiltration of immune cells (i.e. macrophages) in HCC. These
findings indicated that high MIR4435-2HG expression level was
associated with a poor prognosis that could facilitate immune
evasion and immunotherapy resistance. Our results first linked
the mechanism of MIR4435-2HG with immune infiltration and
immunotherapy, which provides a new rationale for further
research. However, our experiment lacks verification results of
clinical samples and only obtains clinical information from the
database in order to verify expression of MIR4435-2HG, which is
a limitation in our experiment.

CONCLUSION

In our study, the LASSO regressionmethod helped identify glycolysis-
related lncRNAs to construct a risk score model. This model can
quantitatively and accurately judge the prognosis of HCC samples.
Moreover, as-constructed lncRNAs signature was significantly
correlated to not only immune cell infiltration but also
responsiveness to ICB treatment key genes in HCC. Conclusively,
this research provided a promising avenue to facilitate the
individualized survival prediction and reveal landscape of tumor
immune environment of HCC, further contributing valuable
clinical applications in HCC ICB therapy. Notwithstanding, our
findings should be validated in further researches which explore
HCC tumorigenesis and progression mechanisms and the
implication of these 4 glycolysis-related lncRNAs.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://portal.gdc.cancer.gov/repository?
facetTab�files&filters�%7B%22op%22%3A%22and%22%2C%
22content%22%3A%5B%7B%22op%22%3A%22in%22%2C
%22content%22%3A%7B%22field%22%3A%22cases.primary_
site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic
%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in
%22%2C%22content%22%3A%7B%22field%22%3A%22cases.
project.program.name%22%2C%22value%22%3A%5B%22TCGA
%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%
22content%22%3A%7B%22field%22%3A%22cases.project.project_
id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%
7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%
22%3A%7B%22field%22%3A%22files.data_category%22%2C%
22value%22%3A%5B%22transcriptome%20profiling%22%5D%
7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%
22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 64508412

Bai et al. A Novel Prognostic Model for HCC

https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


%22%3A%5B%22Gene%20Expression%20Quantification%22%5D
%7D%7D%5D%7D.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Medical Ethics Committee of Jinhua Central
Hospital. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

SY and YW conceived and designed the study. YB conducted the
study. HL and JC contributed to the acquisition of data. YB
analyzed and interpreted the data. SY, YW, and YB reviewed and

edited the manuscript. All authors read and gave final approval of
the manuscript.

FUNDING

This study was supported by the Research Project of Zhejiang
Provincial Public Welfare Fund Project in the Field of Social
Development (No. LGF20H160028), and the Major Projects of
Jinhua Science and Technology Plan Project (No. 2018-3-001a).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.645084/
full#supplementary-material.

REFERENCES

Anderson, N. M., Mucka, P., Kern, J. G., and Feng, H. (2018). The emerging role
and targetability of the TCA cycle in cancer metabolism. Protein Cell 9 (2),
216–237. doi:10.1007/s13238-017-0451-1

Anwanwan, D., Singh, S. K., Singh, S., Saikam, V., and Singh, R. (2020). Challenges
in liver cancer and possible treatment approaches. Biochim. Biophys. Acta (Bba)
- Rev. Cancer 1873 (1), 188314. doi:10.1016/j.bbcan.2019.188314

Banks, R. E. (2013). Oncogene-induced cellular senescence elicits an anti-Warburg
effect. Proteomics 13 (17), 2542–2543. doi:10.1002/pmic.201300335

Bejani, M. M., and Ghatee, M. (2020). Theory of adaptive SVD regularization for
deep neural networks. Neural Networks 128, 33–46. doi:10.1016/j.neunet.2020.
04.021

Boon, R. A., Jaé, N., Holdt, L., and Dimmeler, S. (2016). Long noncoding RNAs.
J. Am. Coll. Cardiol. 67 (10), 1214–1226. doi:10.1016/j.jacc.2015.12.051

Carpenter, S., and Fitzgerald, K. (2018). Cytokines and long noncoding RNAs. Cold
Spring Harbor Perspect. Biol. 10 (6). doi:10.1101/cshperspect.a028589

Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A.,
et al. (2019). Development of tumor mutation burden as an immunotherapy
biomarker: utility for the oncology clinic. Ann. Oncol. 30 (1), 44–56. doi:10.
1093/annonc/mdy495

Chen, R., Zhu, S., Fan, X.-G., Wang, H., Lotze, M. T., Zeh, H. J., et al. (2018). High
mobility group protein B1 controls liver cancer initiation through yes-
associated protein -dependent aerobic glycolysis. Hepatology 67 (5),
1823–1841. doi:10.1002/hep.29663

Cheng, H., Sun, G., Chen, H., Li, Y., Han, Z., Li, Y., et al. (2019). Trends in the
treatment of advanced hepatocellular carcinoma: immune checkpoint blockade
immunotherapy and related combination therapies. Am. J. Cancer Res. 9 (8),
1536–1545.

Dawes, A. J., Sacks, G. D., Needleman, J., Brook, R. H., Mittman, B. S., Ko, C. Y.,
et al. (2019). Injury-specific variables improve risk adjustment and hospital
quality assessment in severe traumatic brain injury. J. Trauma Acute Care Surg.
87 (2), 386–392. doi:10.1097/ta.0000000000002297

Denaro, N., Merlano, M. C., and Lo Nigro, C. (2019). Long noncoding RNA s as
regulators of cancer immunity. Mol. Oncol. 13 (1), 61–73. doi:10.1002/1878-
0261.12413

DiStefano, J. K. (2017). Long noncoding RNAs in the initiation, progression, and
metastasis of hepatocellular carcinoma. Non-coding RNA Res. 2, 129–136.
doi:10.1016/j.ncrna.2017.11.001

Dufour, J. F., Bargellini, I., De Maria, N., De Simone, P., Goulis, I., and Marinho, R. T.
(2013). Intermediate hepatocellular carcinoma: current treatments and future
perspectives. Ann. Oncol. 24 Suppl 2, ii24–9. doi:10.1093/annonc/mdt054

Fang, P., Xiang, L., Chen, W., Li, S., Huang, S., Li, J., et al. (2019). LncRNA GAS5
enhanced the killing effect of NK cell on liver cancer through regulating miR-
544/RUNX3. Innate Immun. 25 (2), 99–109. doi:10.1177/1753425919827632

Ganapathy-Kanniappan, S. (2018). Molecular intricacies of aerobic glycolysis in
cancer: current insights into the classic metabolic phenotype. Crit. Rev.
Biochem. Mol. Biol. 53 (6), 667–682. doi:10.1080/10409238.2018.1556578

Goodman, A., Patel, S. P., and Kurzrock, R. (2017). PD-1-PD-L1 immune-
checkpoint blockade in B-cell lymphomas. Nat. Rev. Clin. Oncol. 14 (4),
203–220. doi:10.1038/nrclinonc.2016.168

Hsu, C.-C., Wu, L.-C., Hsia, C.-Y., Yin, P.-H., Chi, C.-W., Yeh, T.-S., et al. (2015).
Energy metabolism determines the sensitivity of human hepatocellular
carcinoma cells to mitochondrial inhibitors and biguanide drugs. Oncol.
Rep. 34 (3), 1620–1628. doi:10.3892/or.2015.4092

Hu, K. S., Tang, B., Yuan, J., Lu, S. X., Li, M., Chen, R. X., et al. (2019). A new
substage classification strategy for Barcelona clinic liver cancer stage B patients
with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 34 (11), 1984–1991.
doi:10.1111/jgh.14673

Huang, Z., Luo, Q., Yao, F., Qing, C., Ye, J., Deng, Y., et al. (2016). Identification of
differentially expressed long non-coding RNAs in polarized macrophages.
Scientific Rep. 6, 19705. doi:10.1038/srep19705

Invalidcitation (2018). Invalidcitation, 29–31.
Ji, J., Yin, Y., Ju, H., Xu, X., Lin, W., Fu, Q., et al. (2018). Long non-coding RNA

Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and
inducing nuclear translocation of Bat3 in HCC. Cel Death andDis. 9 (5),
478. doi:10.1038/s41419-018-0528-7

Kim, J. E., Patel, M. A., Mangraviti, A., Kim, E. S., Theodros, D., Velarde, E., et al.
(2017). Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation
results in regression of murine gliomas. Clin. Cancer Res. 23 (1), 124–136.
doi:10.1158/1078-0432.ccr-15-1535

Kong, Q., Liang, C., Jin, Y, Pan, Y, Tong, D, Kong, Q, et al. (2019). The lncRNA
MIR4435-2HG is upregulated in hepatocellular carcinoma and promotes
cancer cell proliferation by upregulating miRNA-487a. Cell andMol. Biol.
Lett. 24, 26. doi:10.1186/s11658-019-0148-y

Kopp, F., and Mendell, J. T. (2018). Functional classification and experimental
dissection of long noncoding RNAs. Cell 172 (3), 393–407. doi:10.1016/j.cell.
2018.01.011

Lei, X., Lei, Y., Li, J.-K., Du, W.-X., Li, R.-G., Yang, J., et al. (2020). Immune cells
within the tumor microenvironment: biological functions and roles in cancer
immunotherapy. Cancer Lett. 470, 126–133. doi:10.1016/j.canlet.2019.11.009

Liang,W., Zhang, Y., Song, L., and Li, Z. (2019). 2,3′4,4′,5-Pentachlorobiphenyl induces
hepatocellular carcinoma cell proliferation through pyruvate kinase M2-dependent
glycolysis. Toxicol. Lett. 313, 108–119. doi:10.1016/j.toxlet.2019.06.006

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and
Tamayo, P. (2015). The molecular signatures database hallmark gene set
collection. Cel Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004

Lin, L., Yao, Z., Bhuvaneshwar, K., Gusev, Y., Kallakury, B., Yang, S., et al. (2014).
Transcriptional regulation of STAT3 by SPTBN1 and SMAD3 in HCC through
cAMP-response element-binding proteins ATF3 and CREB2. Carcinogenesis 35
(11), 2393–2403. doi:10.1093/carcin/bgu163

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 64508413

Bai et al. A Novel Prognostic Model for HCC

https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22liver%20and%20intrahepatic%20bile%20ducts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LIHC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%5D%7D
https://www.frontiersin.org/articles/10.3389/fmolb.2021.645084/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.645084/full#supplementary-material
https://doi.org/10.1007/s13238-017-0451-1
https://doi.org/10.1016/j.bbcan.2019.188314
https://doi.org/10.1002/pmic.201300335
https://doi.org/10.1016/j.neunet.2020.04.021
https://doi.org/10.1016/j.neunet.2020.04.021
https://doi.org/10.1016/j.jacc.2015.12.051
https://doi.org/10.1101/cshperspect.a028589
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1002/hep.29663
https://doi.org/10.1097/ta.0000000000002297
https://doi.org/10.1002/1878-0261.12413
https://doi.org/10.1002/1878-0261.12413
https://doi.org/10.1016/j.ncrna.2017.11.001
https://doi.org/10.1093/annonc/mdt054
https://doi.org/10.1177/1753425919827632
https://doi.org/10.1080/10409238.2018.1556578
https://doi.org/10.1038/nrclinonc.2016.168
https://doi.org/10.3892/or.2015.4092
https://doi.org/10.1111/jgh.14673
https://doi.org/10.1038/srep19705
https://doi.org/10.1038/s41419-018-0528-7
https://doi.org/10.1158/1078-0432.ccr-15-1535
https://doi.org/10.1186/s11658-019-0148-y
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.1016/j.canlet.2019.11.009
https://doi.org/10.1016/j.toxlet.2019.06.006
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1093/carcin/bgu163
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Liu, M., Zhou, J., Liu, X., Feng, Y., Yang, W., Wu, F., et al. (2020). Targeting
monocyte-intrinsic enhancer reprogramming improves immunotherapy
efficacy in hepatocellular carcinoma. Gut 69 (2), 365–379. doi:10.1136/
gutjnl-2018-317257

Llovet, J. M., Montal, R., Sia, D., and Finn, R. S. (2018). Molecular therapies and
precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15 (10),
599–616. doi:10.1038/s41571-018-0073-4

Lu, J., Tan, M., and Cai, Q. (2015). The Warburg effect in tumor progression:
mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer
Lett. 356, 156–164. doi:10.1016/j.canlet.2014.04.001

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28 (11), 1747–1756. doi:10.1101/gr.239244.118

Miao, H., Wang, L., Zhan, H., Dai, J., Chang, Y., Wu, F., et al. (2019). A long
noncoding RNA distributed in both nucleus and cytoplasm operates in the
PYCARD-regulated apoptosis by coordinating the epigenetic and translational
regulation. PLoS Genet. 15 (5), e1008144. doi:10.1371/journal.pgen.1008144

Mushtaq, M., Papadas, A., Pagenkopf, A., Flietner, E., Morrow, Z., Chaudhary, S.
G., et al. (2018). Tumor matrix remodeling and novel immunotherapies: the
promise of matrix-derived immune biomarkers. J. Immunother. Cancer 6 (1),
65. doi:10.1186/s40425-018-0376-0

Ng, H., Lee, R. Y., Goh, S., Lim, X., Lee, B., Chew, Y., et al. (2020).
Immunohistochemical scoring of CD38 in the tumor microenvironment
predicts responsiveness to anti-PD-1/PD-L1 immunotherapy in
hepatocellular carcinoma. J. Immunother. Cancer 8 (2). doi:10.1136/jitc-
2020-000987

Nishino, M., Ramaiya, N. H., Hatabu, H., and Hodi, F. S. (2017). Monitoring
immune-checkpoint blockade: response evaluation and biomarker
development. Nat. Rev. Clin. Oncol. 14 (11), 655–668. doi:10.1038/nrclinonc.
2017.88

Pascale, R., Calvisi, D. F., Simile, M. M., Feo, C. F., and Feo, F., (2020). The
Warburg effect 97 Years after its discovery. Cancers 12 (10), 2819. doi:10.3390/
cancers12102819

Peng, L., Chen, Y., Ou, Q., Wang, X., and Tang, N. (2020). LncRNA MIAT
correlates with immune infiltrates and drug reactions in hepatocellular
carcinoma. Int. immunopharmacology 89, 107071. doi:10.1016/j.intimp.2020.
107071

Pitt, J. M., Vétizou, M., Daillère, R., Roberti, M. P., Yamazaki, T., Routy, B., et al.
(2016). Resistance mechanisms to immune-checkpoint blockade in cancer:
tumor-intrinsic and -extrinsic factors. Immunity 44 (6), 1255–1269. doi:10.
1016/j.immuni.2016.06.001

Riera Leal, A., Ortiz-Lazareno, P. C., Jave-Suárez, L. F., Ramírez De Arellano, A.,
Aguilar-Lemarroy, A., Ortiz-García, Y. M., et al. (2020). 17β-estradiol-induced
mitochondrial dysfunction andWarburg effect in cervical cancer cells allow cell
survival under metabolic stress. Int. J. Oncol. 56 (1), 33–46. doi:10.3892/ijo.
2019.4912

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J.,
et al. (2015). Cancer immunology. Mutational landscape determines sensitivity
to PD-1 blockade in non-small cell lung cancer. Science 348 (6230), 124–128.
doi:10.1126/science.aaa1348

Ruan, J., Zheng, H, Rong, X, Rong, X, Zhang, J, Fang, W, et al. (2016). Over-
expression of cathepsin B in hepatocellular carcinomas predicts poor prognosis
of HCC patients. Mol. Cancer 15, 17. doi:10.1186/s12943-016-0503-9

Salik, B., Smyth, M., and Nakamura, K. (2020). Targeting immune checkpoints in
hematological malignancies. J. Hematol. andOncol. 13 (1), 111. doi:10.1186/
s13045-020-00947-6

Schmitt, A. M., and Chang, H. Y. (2016). Long noncoding RNAs in cancer
pathways. Cancer cell 29 (4), 452–463. doi:10.1016/j.ccell.2016.03.010

Shen, S. N., Li, K., Liu, Y., Yang, C. L., He, C. Y., and Wang, H. R. (2019). Down-
regulation of long noncodingRNA PVT1 inhibits esophageal carcinoma cell
migration and invasion and promotes cell apoptosis via microRNA-145-
mediated inhibition ofFSCN1. Mol. Oncol. 13 (12), 2554–2573. doi:10.1002/
1878-0261.12555

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. CA A.
Cancer J. Clin. 70 (1), 7–30. doi:10.3322/caac.21590

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M., Desrichard, A.,
et al. (2014). Genetic basis for clinical response to CTLA-4 blockade in
melanoma. N. Engl. J. Med. 371 (23), 2189–2199. doi:10.1056/nejmoa1406498

Sun, L., Suo, C., Li, S.-t., Zhang, H., and Gao, P. (2018). Metabolic reprogramming
for cancer cells and their microenvironment: beyond the Warburg Effect.
Biochim. Biophys. Acta (Bba) - Rev. Cancer 1870 (1), 51–66. doi:10.1016/j.
bbcan.2018.06.005

Terabe, K., Ohashi, Y., Tsuchiya, S., Ishizuka, S., Knudson, C. B., and Knudson, W.
(2019). Chondroprotective effects of 4-methylumbelliferone and hyaluronan
synthase-2 overexpression involve changes in chondrocyte energy metabolism.
J. Biol. Chem. 294 (47), 17799–17817. doi:10.1074/jbc.ra119.009556

Vidyasagar, M. (2015). Identifying predictive features in drug response using
machine learning: opportunities and challenges. Annu. Rev. Pharmacol.
Toxicol. 55, 15–34. doi:10.1146/annurev-pharmtox-010814-124502

Wei, L., Wang, X., Lv, L., Liv, J., Xing, H., Song, Y., et al. (2019). The emerging role
of microRNAs and long noncoding RNAs in drug resistance of hepatocellular
carcinoma. Mol. Cancer 18 (1), 147. doi:10.1186/s12943-019-1086-z

Yuan, S.-x., Zhang, J., Xu, Q.-g., Yang, Y., and Zhou,W.-p. (2016). Long noncoding
RNA, the methylation of genomic elements and their emerging crosstalk in
hepatocellular carcinoma. Cancer Lett. 379 (2), 239–244. doi:10.1016/j.canlet.
2015.08.008
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