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Physical interactions of proteins play key functional roles in many important cellular
processes. To understand molecular mechanisms of such functions, it is crucial to
determine the structure of protein complexes. To complement experimental
approaches, which usually take a considerable amount of time and resources, various
computational methods have been developed for predicting the structures of protein
complexes. In computational modeling, one of the challenges is to identify near-native
structures from a large pool of generated models. Here, we developed a deep
learning–based approach named Graph Neural Network–based DOcking decoy
eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE
extracts the interface area and represents it as a graph. The chemical properties of
atoms and the inter-atom distances are used as features of nodes and edges in the graph,
respectively. GNN-DOVE was trained, validated, and tested on docking models in the
Dockground database and further tested on a combined dataset of Dockground and
ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better
than existing methods, including DOVE, which is our previous development that uses a
convolutional neural network on voxelized structure models.
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prediction

INTRODUCTION

Experimentally determined protein structures provide fundamental information about the
physicochemical nature of the biological function of protein complexes. With the recent
advances in cryo-electron microscopy, the number of experimentally determined protein
complex structures has been increasing rapidly. However, experimental methods are costly in
terms of money and time. To aid the experimental efforts, computational modeling approaches for
protein complex structures, often referred to as protein docking (Aderinwale et al., 2020), have been
extensively studied over the past two decades.

Protein docking methods aim to build the overall quaternary structure of a protein complex from
the tertiary structure information of individual chains. Similar to other protein structure modeling
methods, protein docking can also be divided into two main categories: template-based methods
(Tuncbag et al., 2011; Anishchenko et al., 2015), which use a known structure as a scaffold of
modeling, and ab initio methods, which assemble individual structures and score generated models
to choose most plausible ones. In ab initio methods, various approaches were used for molecular
structure representations (Venkatraman et al., 2009; Pierce et al., 2011). These include docking
conformational searches, such as fast Fourier transform (Katchalski-Katzir et al., 1992; Padhorny
et al., 2016), geometric hashing (Fischer et al., 1995; Venkatraman et al., 2009), and particle swarm
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optimization (Moal and Bates, 2010), as well as considering
protein flexibility (Gray et al., 2003; Oliwa and Shen, 2015).
The development of new methods aims to extend and surpass the
capabilities of simple pairwise docking, such as multichain
docking (Schneidman-Duhovny et al., 2005; Esquivel-
Rodríguez et al., 2012; Ritchie and Grudinin, 2016),
peptide–protein docking (Kurcinski et al., 2015; Alam et al.,
2017; Kurcinski et al., 2020), docking with disordered proteins
(Peterson et al., 2017), docking order prediction (Peterson et al.,
2018a; Peterson et al., 2018b), and docking for cryo-EM maps
(Esquivel-Rodríguez and Kihara, 2012; van Zundert et al., 2015).
Researchers have also applied recent advances in deep learning to
further boost docking performance (Akbal-Delibas et al., 2016;
Degiacomi, 2019; Gainza et al., 2020).

Although substantial improvements have been made in ab
initio protein docking, selecting near-native (i.e., correct) models
out of a large number of produced models, which are often called
decoys, is still challenging. The difficulty is partly due to a
substantial imbalance in the number of near-native models
and incorrect decoys in a generated decoy pool. The accuracy
of scoring decoys certainly determines the overall performance of
protein docking, and thus, there is active development of scoring
functions (Moal et al., 2013) for docking models. Recognizing the
importance of scoring, the Critical Assessment of PRediction of
Interactions (CAPRI) (Lensink et al., 2018), which is the
community-based protein docking prediction experiment, has
arranged a specific category of evaluating scoring methods, where
participants are asked to select 10 plausible decoys from
thousands of decoys provided by the organizers. Over the last
two decades, various approaches have been developed for scoring
decoys. The main categories include physics-based potentials
(Akbal-Delibas et al., 2016; Degiacomi, 2019; Gainza et al.,
2020), scoring based on interface shape (Akbal-Delibas et al.,
2016; Kingsley et al., 2016; Degiacomi, 2019; Gainza et al., 2020),
knowledge-based statistical potentials (Lu et al., 2003; Huang and
Zou, 2008), machine learning methods (Fink et al., 2011),
evolutionary profiles of interface residues (Nadaradjane et al.,
2018), and deep learning methods using interface structures
(Wang et al., 2019).

In our previous work, we developed a model selection method
for protein docking, that is, DOVE (Wang et al., 2019), which uses a
convolutional deep neural network (CNN) as the core of its
architecture. DOVE captures atoms and interaction energies of
atoms located at the interface of a dockingmodel using a cube of 203

or 403 Å3 and judges if themodel is correct or incorrect according to
the CAPRI criteria (Janin et al., 2003). We showed that DOVE
performed better than existing methods. However, DOVE has a
critical limitation—since it captures an interface with a fixed-size
cube, only a part of the interface is captured when the interface
region is too large. This often caused an erroneous prediction. In
addition, a 3D grid representation of an interface often includes
voxels of void space where no atoms exist inside, which is not
efficient inmemory usage andmay even be detrimental for accurate
prediction. In this work, we address this limitation of DOVE by
applying a graph neural network (GNN) (Scarselli et al., 2008; Wu
et al., 2020), which has previously been successful in representing
molecular properties (Duvenaud et al., 2015; Smith et al., 2017; Lim

et al., 2019; Zubatyuk et al., 2019). Using a GNN allows all atoms at
an interface of any size to be captured in a more flexible manner.
The GNN representation of the interface also is rotationally
invariant, meaning arbitrary rotations of a candidate model are
accounted for when training and predicting docking scores. To
the best of our knowledge, this is the first method that applies
GNNs to the protein docking problem. Compared to DOVE and
other existing methods, GNN-DOVE demonstrated substantial
improvement in a benchmark study.

MATERIALS AND METHODS

We first introduce the datasets used for training and testing
GNN-DOVE. Subsequently, we introduce the graph neural
network architecture and the training process of GNN-DOVE.

Docking Decoy Datasets
To train and test GNN-DOVE, we first used the Dockground
dataset 1.0 (available at http://dockground.compbio.ku.edu/
downloads/unbound/decoy/decoys1.0.zip) (Liu et al., 2008).
Docking decoys in this dataset were built by Gramm-X
(Tovchigrechko and Vakser, 2005). The dataset includes 58
target complexes, each with averages of 9.83 correct and 98.5
incorrect decoys. A decoy was considered as correct following the
CAPRI criteria (Lensink et al., 2018), which consider interface
root mean square deviation (iRMSD), ligand RMSD (lRMSD),
and the fraction of native contacts (fnat). The iRMSD is the Cα
RMSD of interface residues with respect to the native structure.
Interface residues in a complex are defined as all the residues
within 10.0 Å from any residues of the other subunit. lRMSD is
the Cα RMSD of ligands when receptors are superimposed, and
fnat is the fraction of contacting residue pairs, that is, residue
pairs with any heavy atom pairs within 5.0 Å, that exist in the
native structure.

To remove redundancy, we grouped the 58 complexes using
sequence alignment and TM-align (Zhang and Skolnick, 2004).
Two complexes were assigned to the same group if at least one pair
of proteins from the two complexes had a TM-score of over 0.5 and
sequence identity of 30% or higher. This resulted in 29 groups
(Table 1). In Table 1, complexes (PDB IDs) of the same group are
shown in lower case in a parenthesis followed by the PDB ID of the
representative. These groups were split into four subgroups to
perform four-fold cross-validation, where three subsets were used
for training, while one testing subset was used for testing the
accuracy of the model. Thus, by cross-validation, we have four
models tested on four independent testing sets. Among the training
set, we used 80% of the complexes (i.e., unique dimers) for training
a model and the remaining 20% of the complexes as a validation
set, which was used to determine the best hyper-parameter set for
training. In the results, the accuracy of targets when treated in the
testing set was reported. To have a fair comparison with DOVE
(Wang et al., 2019), DOVEwas also newly trained and tested using
this protocol.

Subsequently, we further trained and validated the GNN-
DOVE network with a combined dataset of Dockground (ver
1.0) and ZDOCK (ver 4.0) (Hwang et al., 2010), which includes 58
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target complexes from Dockground and 120 target complexes
from ZDOCK. ZDOCK has 110 more targets, but they were
discarded because either GOAP (Zhou and Skolnick, 2011) or
ITScore (Huang and Zou, 2008) failed to process them, or fnat
could not be computed due to inconsistency of the sequence in
the structures provided in the ZDOCK dataset from the native
complex structure in PDB. The same criteria mentioned above
were used to group the targets into 71 groups. Among them, we
used 45 groups for training, 11 groups for validation, and 15
groups (19 complexes) for testing. Since a decoy set for each
target in ZDOCK is much larger (around 54,000) than
Dockground, we reduced the number of ZDOCK decoys for a
target to 400. Up to 200 correct decoys (i.e., decoys with an
acceptable or higher CAPRI quality) were selected if available,
including at most 50 high-quality decoys, at most 50 medium-
quality decoys, and the rest were selected from acceptable quality
decoys. Then, the remaining 400 decoys were filled with negative
decoys. One-third of negative decoys were selected from those
with an iRMSD less than 7 Å, another third came from those with
an iRMSD between 7 and 10 Å, and the rest came from those with
ones with an iRMSD over 10 Å.

Finally, we tested GNN-DOVE on decoy sets of 13 targets in
the CAPRI Score_set (Lensink and Wodak, 2014), which consists
of 13 scoring targets from the CAPRI round 13 to round 26
(Janin, 2010; Janin, 2013). Each decoy set included 500 to 2,000
models generated using different methods by CAPRI
participants.

The GNN-DOVE Algorithm
In this section, we describe GNN-DOVE, which uses the graph
neural network. The GNN-DOVE algorithm is inspired by a
recent work in drug–target interactions (Lim et al., 2019), which
designed a two-graph representation for capturing
intermolecular interactions for protein–ligand interactions.
We will first explain how the 3D structural information of a
protein–complex interface is embedded as a graph. Then, we
describe how we used a graph attention mechanism to focus on
the intermolecular interaction between a receptor and a ligand
protein. The overall protocol is illustrated in Figure 1. For an
input protein docking decoy, the interface region is identified as
a set of residues located within 10.0 Å of any residues of the
other protein. A residue–residue distance is defined as the
shortest distance among any heavy atom pairs across the two
residues. Using the extracted interface region, two graphs are
built representing two types of interactions: the graph G1

describes heavy atoms at the interface region, which only
considers the covalent bonds between atoms of interface

residues within each subunit as edges. Another graph G2

connects both covalent (thus includes G1 ) and non-covalent
residue interaction as edges, where a non-covalent atom pair is
defined as those which are closer than 10.0 Å of each other.
Both graphs will be processed by a graph neural network
(GNN) to output a score, which is a probability that the
docking decoy has a CAPRI acceptable quality (thus making
higher scores better).

Building Graphs
A key feature of this work is the graph representation of an
interface region of a complex model. Graph G is defined by G �
(V, E, andA), whereV denotes the node set, E is a set of edges, and
A is the adjacency matrix, which numerically represents the
connectivity of the graph. For a graph G with N nodes, the
adjacency matrix A has a dimension of N*N, where Aij > 0 if the i-
th node and the j-th node are connected, and Aij � 0 otherwise.
The adjacency matrixA1 for graphG1 describes covalent bonds at
the interface and thus defined as follows:

A1
ij � { 1 if atom i and atom j are connected by a covalent bond or if i � j

0 otherwise
.

(1)

The matrix A2 for G2 describes both covalent bonds and non-
covalent interactions between atoms within 10.0 Å to each other.
It is defined as follows:

A2
ij �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1
ij, if i, j ∈ receptor or i, j ∈ ligand

e
−(dij−μ)2

σ , if dij ≤ 10 Å and i ∈ receptor and j ∈ ligand;

or if dij ≤ 10 Å and j ∈ receptor and i ∈ ligand

0, otherwise

(2)

where dij denotes the distance between the i-th and the j-th atoms.
μ and σ are learnable parameters, whose initial values are 0.0 and
1.0, respectively. The formula e−(dij−μ)

2/σ decays as the distance
increases between atoms.

Compared to the previous voxel representation used in
DOVE, the graph representation encodes the distance
information more flexibly and naturally. Note that the
representation is rotationally invariant and any size of
interaction regions can be taken into analysis. Also, memory
usage is more efficient as void spaces are not represented as is
needed for the voxel representation.

TABLE 1 | Dockground dataset splits for training and testing GNN.

Fold PDB ID

1 1A2K, 1E96 (1he1, 1he8, 1wq1), 1F6M, 1MA9 (2btf), 1G20, 1KU6, 1T6G, 1UGH, 1YVB, 2CKH, 3PRO
2 1AKJ (1p7q, 2bnq), 1DFJ, 1NBF (1r4m, 1xd3, 2bkr), 1GPW, 1HXY, 1U7F, 1UEX, 1ZY8, 2GOO, 1EWY
3 1AVW (1bth, 1bui, 1cho, 1ezu, 1ook, 1oph, 1ppf, 1tx6, 1xx9, 2fi4, 2kai, 1r0r, 2sni, 3sic)
4 1BVN (1tmq), 1F51, 1FM9, 1A2Y (1g6v, 1gpq, 1jps, 1wej, 1l9b, 1s6v), 1W1I, 2A5T, 3FAP

There are in total 29 representative targets shown in the upper case; targets in the lower case in a parenthesis indicate that they belong to the same group.
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As for the node features in the graph, we considered the
physicochemical properties of atoms. We used the same features
as used in previous works (Lim et al., 2019; Torng and Altman,
2019) as shown in Table 2. Thus, the length of a feature vector of a
node from Table 2 was 23 (�5 + 6+5 + 6+1), which was embedded
by a one-layer fully connected (FC) network into 140 features.

Attention and Gate-Augmented Mechanism
The constructed graphs are used as the input to the GNN. More
formally, graphs are the adjacency matrix A1 and A2, and the
node features, xin � {xin1 , xin2 , /, xinN } with x ∈ RF , where F is the
dimension of the node feature.

We first explain the attention mechanism of our GNN. With
the input graph of xin, the pure graph attention coefficient is
defined in Eq. 3, which denotes the relative importance between
the i-th and the j-th node:

eij � x′Τi Ex
′
j + x′Τj Ex

′
i , (3)

where x′i and x′j are the transformed feature representations
defined by x′i � Wxini and x′j � Wxinj . W, E ∈ RF×F are learnable
matrices in the GNN. eij and eji become identical to satisfy the
symmetrical property of the graph by adding x′Τi Ex

′Τ
j and x′Τi Ex

′
i .

The coefficient will only be computed for i and j where Aij > 0.
Attention coefficients will also be computed for elements in

the adjacency matrices. They are formulated in the following
form for the element (i, j):

aij �
exp(eij)
∑
j∈Ni

exp(eij)Aij, (4)

where aij is the normalized attention coefficient for the i-th and
the j-th node pair, eij is the symmetrical graph attention
coefficient computed in Eq. 3, and Ni is the set of neighbors
of the i-th node that includes interacting nodes j where Aij > 0.
The purpose of Eq. 4 is to consider both the physical structure of
the interaction,Aij, and the normalized attention coefficient, eij, to
define the attention.

Based on the attention mechanism, the new node feature of
each node is updated by considering its neighboring nodes, which
is a linear combination of the neighboring node features with the
final attention coefficient aij:

FIGURE 1 | Framework of GNN-DOVE. GNN-DOVE extracts the interface region of protein complex and further reconstructs graph with/without intermolecular
interactions as input, then outputs the probability that indicates if the input structure is acceptable or not. (A) Overall logical steps of the pipeline. (B) Architecture of the
GNN network with the gated graph attention mechanism.

TABLE 2 | Atom features.

Features Representation

Atom type C, N, O, S, H (one hot)
The degree (connections) of atom 0, 1, 2, 3, 4, 5 (one hot)
The number of connected hydrogen atoms 0, 1, 2, 3, 4 (one hot)
The number of implicit valence electrons 0, 1, 2, 3, 4, 5 (one hot)
Aromatic 0 or 1
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xi″ � ∑
j∈Ni

aijx′j . (5)

Furthermore, the gate mechanism is further applied to update the
node feature since it is known to significantly boost the
performance of GNN (Zhang et al., 2018). The basic idea is
similar to that of ResNet (He et al., 2016), where the residual
connection from the input helps to avoid information loss,
alleviating the gradient collapse problem of the conventional
backpropagation. The gated graph attention can be viewed as
a linear combination of xi and xi″, as defined in Eq. 6:

xouti � cixi + (1 − ci)xi″, (6)

where ci � σ[D(xi||xi″) + b], D ∈ R2F is a weight vector that is
multiplied (dot product) with the vector xi||xi″, and b is a constant
value. Both D and b are learnable parameters and are shared
among different nodes. xi||xi″ denotes the concatenation vector of
xi and xi″.

We refer to attention and gate-augmented mechanism as the
gate-augmented graph attention layer (GAT). Then, we can
simply denote xouti � GAT(xini ,A). The node embedding can
be iteratively updated by GAT , which aggregates information
from neighboring nodes.

Graph Neural Network Architecture of
GNN-DOVE
Using the GAT mechanism described before, we adopted four
layers of GAT in GNN-DOVE to process the node embedding
information from neighbors and to output the updated node
embedding (Figure 1B). For the two adjacency matrices A1 and
A2, we used a shared GAT. The initial input of the network is
atom features. With two matrices, A1 and A2, we have x1 �
GAT(xin,A1) and x2 � GAT(xin,A2). To focus only on the
intermolecular interactions within an input protein complex
model, we subtracted the embedding of the two graphs as the
final node embedding. By subtracting the updated embedding x1
from x2, we can capture the aggregation information that only
comes from the intermolecular interactions with other nodes in
the protein complex model. Thus, the output node feature is
defined as

xout � x2 − x1. (7)

Then, the updated xout will become xin to iteratively augment the
information through the three following GAT layers. After the
node embeddings were updated by the four GAT layers, the node
embedding of the whole graph was summed up as the entire
graph representation, which is considered as the overall
intermolecular interaction representation of the protein
complex model:

xgraph � ∑
k∈G

xk. (8)

Finally, FC layers were applied to xgraph to classify whether the
protein complex model is correct or incorrect. In total, four FC
layers were applied. The first layer takes 140 feature values from

Eq. 8. The three subsequent layers have a dimension of 128.
RELU activation functions were used between the FC layers, and
a sigmoid function was applied for the last layer to output a
probability value.

The source code of GNN-DOVE is available at https://github.
com/kiharalab/GNN_DOVE.

Training Networks
Since the dataset was highly imbalanced with more incorrect
decoys than acceptable ones, we balanced the training data by
sampling the same number of acceptable and incorrect decoys in
each batch. We sampled the same number of correct and
incorrect decoys. To achieve this, a positive (i.e., correct)
decoy may be sampled multiple times in one epoch of training.

For training, cross-entropy loss (Goodfellow et al., 2016) was
used as the loss function, and the Adam optimizer (Kingma and
Ba, 2015) was used for parameter optimization. To avoid
overfitting, a dropout (Srivastava et al., 2014) of 0.3 was
applied for every layer, except the last FC layer. Models were
trained for 100 epochs with a batch size of 32. Weights of every
layer were initialized using the Glorot uniform (Glorot and
Bengio, 2010) to have a zero-centered Gaussian distribution,
and bias was initialized to 0 for all layers.

First, we performed four-fold cross-validation on the
Dockground dataset (Table 1). For fold 1, where we used the
fold 1 subset as testing and the other three subsets for training and
validation, 16 hyper-parameter combinations with learning rates
of 0.2, 0.02, 0.002, and 0.0002 and a weight decay in Adam of 0,
1e-1, 1e-2, 1e-3, 1e-4, and 1e-5 were tested. Among these
combinations, we found a learning rate of 0.002 with a weight
decay of 0 achieved the highest accuracy on the validation set. We
used this parameter combination throughout the other three folds
in the cross-validation. The training process generally converged
after approximately 30 epochs.

Next, we used the combined dataset of Dockground and
ZDOCK for further training. We adopted transfer learning on
this dataset by starting from the models pretrained on the
Dockground dataset. The training was performed in two
stages: In the first stage, nine hyper-parameter combinations
with learning rates of 0.002, 0.0002, and 0.00002 and weight
decay of 1e-4, 1e-5, and 0 were tested on the fold 1 model. We
found that a combination of a learning rate of 0.0002 and weight
decay of 0 performed the best when evaluated on its validation set.
We used this hyper-parameter combination to train the fold 2, 3,
and 4 models and selected the fold 1 model for further training
because it showed the highest accuracy on the validation set. In
the second stage, we used a smaller learning rate of 0.00002 and
weight decay 0 to further fine tune the fold 1 model for another 30
epochs. The resulting model was evaluated on the testing set of
the combined Dockground and ZDOCK dataset. Further, we
applied the model to the dataset of CAPRI scoring targets.

DOVE
We compared the performance of GNN-DOVE with its
predecessor, DOVE. Here, we briefly describe the DOVE
algorithm. DOVE is a CNN-based method for evaluating
protein docking models. It first extracts the interface region of
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an input protein complex model, and the region is put into a
40*40*40 Å3 cube as input. A seven-layer CNN, which consists of
three convolutional layers, two pooling layers, and two fully
connected layers, was adopted to process the voxel input. The
output of DOVE is the probability that indicates whether the
input model is acceptable or not. For input features, DOVE took
atom types as well as atom-based interaction energy values from
GOAP (Zhou and Skolnick, 2011) and ITScore (Huang and Zou,
2008). Since voxelized structure input is not rotationally
invariant, DOVE needed to augment training data by rotations.

RESULTS

Performance on the Dockground Dataset
We evaluated the performance of GNN-DOVE on the
Dockground dataset. GNN-DOVE was compared with DOVE
and five other existing structure model scoring methods, such as
GOAP (Zhou and Skolnick, 2011), ITScore (Huang and Zou,
2008), ZRANK (Pierce and Weng, 2007), ZRANK2 (Pierce and
Weng, 2008), and IRAD (Vreven et al., 2011). The test set results
were reported for GNN-DOVE and DOVE. Both GOAP and
ITScore were run in two different ways. First, as originally
designed, the entire complex structure model was input. The
other way was to input only the interface residues that are within
10 Å of the interacting protein (denoted as GOAP-Interface and

ITScore-Interface). Thus, GNN-DOVE was compared with a
total of eight methods. As for DOVE, we used a cube size of
403 Å3 and heavy atom distributions as input feature because this
setting performed the best among other settings tested on the
Dockground dataset in the original paper (Wang et al., 2020)
(Figure 4 in the paper, the setting was named as DOVE-Atom
40). For this work, DOVE was newly retrained using the same
four-fold cross-validation as GNN-DOVE.

Figure 2 shows the hit rate of GNN-DOVE in comparison
with the other methods. A hit rate of a method is the fraction of
target complexes where the method ranked at least one acceptable
model based on the CAPRI criteria within each top rank. Targets
were evaluated when they were in the heldout testing set from the
four-fold cross-testing we performed. In Figure 2, we show three
panels. Panel A shows the fraction of targets where a method had
at least one hit among each rank cutoff. Panel B shows the hit
rates for a method were averaged first within each of the 29
groups, and then re-averaged over the groups. Panel C shows the
hit rate when targets with similar interface structures were
grouped.

Figure 2 shows that GNN-DOVE (dotted line in light green)
performed better than the other methods. GNN-DOVE was able
to rank correct models within earlier ranks in many target
complexes. Within the top 10 rank, GNN-DOVE achieved a
hit rate of 89.7%, while the next best method, DOVE, achieved
81.0%, and the third best method, GOAP, obtained 70.7%

FIGURE 2 | Performance on the Dockground dataset. GNN-DOVE was compared with DOVE and seven other scoring methods. (A) The panel shows the fraction
of target complexes among the 58 complexes in the benchmark set for which a method selected at least one acceptable model (within top x scored models). (B)
Considering the complexes are grouped into 29 groups, we also compared the hit rate of different methods based on the group classification. The hit rates for complexes
in each group were averaged and then re-averaged over the 29 groups. (C) Results when 46 complex groups were considered that were formed with interface
similarity. The hit rates for complexes in each group were averaged and then re-averaged over the 46 groups.
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(Figure 2A). When we further compared the hit rates
considering the target groups (Figure 2B), GNN-DOVE
consistently outperformed other methods. The gap between
GNN-DOVE and DOVE against the other existing methods
also increased. Among the other seven existing methods, GOAP
showed the highest hit rate at 5th rank, followed by ZRANK2 in
both panels, while ITScore-Interface had the lowest hit rates on
this dataset. In Figure 2C, we evaluated the methods’
performance when target complexes were grouped
considering their docking interface area similarity, which was
evaluated by TM-Score. For a complex, an interface was defined
as residues that are closer than 10 Å to any residue of the
docking partner. To run TM-align to obtain TM-Score for
two interfaces, we prepared two versions of PDB files for
each interface: one with residues from the receptor first
followed by residues from the ligand and the other with the
opposite order. Then, we computed TM-Score for four
combinations of the files from the two interfaces and
selected the largest TM-Score among them. A pair of
interfaces was grouped if one of the computed TM-score
values of the interface regions was 0.5 or higher. This
process formed 46 groups. The hit rate was computed for
each complex first, then averaged within each group, and
finally re-averaged across 46 groups. GNN-DOVE still
showed the highest hit rate among the methods compared
when considering top 10 ranks.

In Figure 3, we show results on each test set from the four-fold
cross validation. GNN-DOVE showed the highest hit rate in
early ranks.

In Figure 4, we compared iRMSD, lRMSD, and fnat values of
the methods. These metrics are used for defining the quality levels
in CAPRI. The best value among the top 10 ranked decoys was
plotted. For the majority of the cases (49 out of the 58 targets),
GNN-DOVE selected a decoy within an iRMSD of 4 Å (one of the
criteria for the acceptable quality level in CAPRI). This is in sharp
contrast to the other methods (Figure 4A), where the iRMSD of
many targets they selected were larger (worse) than GNN-DOVE.
In terms of iRMSD, the second best method was DOVE, where 44
targets were within an iRMSD of 4 Å. A similar situation was
observed for lRMSD. GNN-DOVE selected a decoy within an
lRMSD of 10 Å (one of the criteria for the acceptable quality level
in CAPRI) for 50 targets, while the second best method, DOVE,
selected 45 targets within 10 Å lRMSD. In terms of fnat (larger
being more accurate), GNN-DOVE only missed 5 targets in
selecting at least one model with an fnat over 0.1 (one of the
criteria for acceptable quality level in CAPRI). The plot shows
that GNN-DOVE had a larger fnat value than the other existing
methods for most of the targets, as indicated by many data points
below the diagonal line.

Figure 4B compares GNN-DOVE against DOVE. In terms of
iRMSD, lRMSD, and fnat, GNN-DOVE outperformed DOVE for
26 targets (22 ties), 27 targets (20 ties), and 27 targets (17 ties

FIGURE 3 | The hit rate is shown for each fold in the cross validation on the Dockground dataset. Protein complexes in the test set of each fold are listed in Table 1.
In the same way as Figure 2A, a hit rate was computed for individual complexes separately and averaged over the complexes. (A) The hit rate of the fold 1 test set. The
model was trained on the fold 2, 3, and 4 subsets. (B) The fold 2 test set. (C) The fold 3 test set. (D) The fold 4 test set.
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targets), respectively. Overall, GNN-DOVE outperformed the
eight existing methods for all three metrics.

T-SNE Analysis
To illustrate how GNN-DOVE classified decoys, we used t-SNE
(Maaten and Hinton, 2008) to visualize GNN-DOVE’s encoding
of decoys in Figure 5. t-SNE is a dimension-reduction method to
visualize similarities of high-dimensional data points. Since we
employed a four-fold cross-validation, a plot was provided for
each of the four testing sets. In all the plots, particularly in Fold 3
and Fold 4, most of the acceptable decoys (black circles) were
distinguished from incorrect ones (gray crosses), which indicates
a good representation and generalization ability of the graph
neural networks for this problem.

Examples of Decoys for Comparison With
DOVE
We mentioned above that a limitation of DOVE is its usage of a
fix-sized cube of 403 Å3, which cannot capture the entire interface
region if the interface is too large to fit in the cube. Here, we show
two examples of such cases, which led to misclassification by
DOVE but correct classification by GNN-DOVE. In Figure 6, the
interface region of a decoy is shown in blue and green, and the
atoms that did not fit in the cube are shown in a sphere
representation in red.

The first example (Figure 6A) shows a decoy of a protein
complex of plasminogen and staphylokinase (PDB ID: 1bui),

which has an acceptable quality by the CAPRI criteria. For this
decoy, 59 atoms (in red) out of 1,022 atoms at the interface were
not included in the cube. Because of this, it was ranked the 65th
out of 110 decoys by DOVE, while it was ranked 15th by GNN-
DOVE. For this target, GNN-DOVE ranked five hits within the
top 10 scoring decoys and eight hits within the top 20. In contrast,
DOVE could not rank any hit within the top 20. The first hit by
DOVE was found at the 35th rank.

The second example (Figure 6B) is an acceptable model for
the nitrogenase complex (PDB ID: 1g20). As shown, many
interface atoms, 497 out of 1,843, were outside the cube.
DOVE ranked this decoy 28th, while GNN-DOVE ranked this
decoy 10th. DOVE had 0 hits within the top 10 and had only one
hit within top 20. On the other hand, GNN-DOVE was very
successful for this target, where all the top 10 selections were
correct models.

Performance on the Combined Dockground
and ZDOCK Dataset
Next, we examined the performance of GNN-DOVE on the 19
complexes in the test set of the combined Dockground and
ZDOCK dataset. In Table 3, we showed the total number of
hits among top 10 ranks by GNN-DOVE and the same five other
methods, that is, GOAP, ITScore, ZRANK, ZRANK2, and IRAD,
as we used in Figures 2–4. GNN-DOVE achieved the highest hit
rate of 0.842, followed by ZRANK with 0.789. GNN-DOVE
ranked at the top among the methods consistently when the

FIGURE 4 | Comparison of iRMSD, lRMSD, and fnat. For each method, the best value among the top 10 scored decoys was plotted. (A) Comparison against all
eight methods. (B) Comparison against DOVE.
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group hit rate was considered. We note that some of the existing
methods performed perfectly for specific complexes, choosing 10
hits within the top 10. However, many methods failed to select
any top hits for other target complexes. In contrast, GNN-DOVE
showed the most stable performance across different complexes.

Performance on the CAPRI Scoring Dataset
Finally, we evaluate GNN-DOVE on another independent
dataset, the CAPRI Score_set. This dataset was chosen to be
able to compare GNN-DOVE on a larger number of existing
methods which participated in the corresponding CAPRI rounds.

FIGURE 5 | t-SNE plots of decoy selection. Decoys from all the testing target complexes in the four different folds in the cross-testing are plotted, which in total
include 580 correct decoys (black circles) and 5,591 incorrect decoys (gray stars). Encoded features of those decoys are taken from the output of the last fully connected
layer of GNN, which is a vector of 128 elements. To visualize the different embedding, we use t-SNE to project them into a 2D space. The four panels correspond to the
embedding of models on the four-fold testing sets.

FIGURE 6 | Examples of decoys with an acceptable quality but not selected within the top 10 by DOVE. Two subunits docked are shown in cyan and light brown,
and the interface regions of the two subunits are presented in the stick representation and in blue and green, respectively. To highlight the missed atoms from the input
cube of DOVE, they are shown in red spheres. (A) A medium-quality decoy for 1bui. iRMSD: 2.54 Å, lRMSD: 2.93 Å, fnat: 0.551. (B) A medium-quality decoy for 1g20.
iRMSD: 2.14 Å, lRMSD: 3.86 Å, fnat: 0.453.
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InTable 4, we show detailed results of GNN-DOVE and the other
five methods for each target. For each method, the number of
decoys within the quality categories of acceptable, medium, and
high (in this order) of the top 10 models are listed.

GNN-DOVE had hits for the largest number of targets, that
is, nine, when decoys of acceptable or higher quality were
considered. When decoys in a medium or higher quality

were considered, ITScore, ZRANK2, and IRAD had hits for
five targets, while GNN-DOVE had hits for three targets. It is
worth noting that GNN-DOVE successfully identified correct
models in two difficult targets, T30 and T35, which only
contained two and three acceptable models in the decoy sets,
while all the other methods failed to select any correct decoys
among the top 10.

TABLE 3 | Performance on the Dockground+ZDOCK testing dataset.

ID GNN-DOVE GOAP ITScore ZRANK ZRANK2 IRAD Total

1AK4 1 10 1 1 7 0 179
1AY7 8 0 3 9 8 8 176
1EER 0 0 0 0 3 0 41
1GLA 5 1 0 8 4 8 165
1HCF 9 0 8 3 3 7 183
1JIW 3 0 2 0 1 2 106
1JTG 8 0 10 10 0 10 177
1KAC 7 0 5 8 2 6 183
1KTZ 0 1 0 1 3 0 77
1MAH 9 0 8 9 0 9 179
2MTA 7 0 4 9 0 9 186
2VDB 9 1 9 7 2 6 173
3D5S 7 0 10 6 1 5 156
1BUH (1) 3 8 9 6 4 9 183
1FQ1 (1) 0 0 0 0 0 0 20
1JWH (1) 6 6 7 6 2 8 171
2OZA (1) 1 0 1 0 0 0 19
1EFN (2) 1 0 0 4 3 4 130
1GCQ (2) 2 9 0 1 8 4 142
Hit rate 0.842 0.368 0.684 0.789 0.737 0.737 —

Group HR 0.867 0.333 0.717 0.833 0.767 0.767

In the ID column, the number in a parentheses indicates which group the target belongs to. Thus, four complexes belong to the same similarity group, and the other two belong to another
group. The rest of the complexes are single entry groups. Group HR indicates the group hit rate. In Group HR, the fraction of complexes within each group that have at least one hit
(acceptable model) within the top 10 ranks was first computed, and then averaged across all the groups. The total column indicates the total number of acceptable docking models for a
given target.

TABLE 4 | Performance on the CAPRI scoring dataset.

ID GNN-DOVE GOAP ITScore ZRANK ZRANK2 IRAD Total

(T29) 2/0/0 1/0/0 0/0/0 0/0/0 2/2/0 1/1/0 167/78/2
(T30) 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 2/0/0
T32 0/0/0 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0 15/3/0
T35 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/0/0
(T37) 0/0/0 1/0/0 3/0/1 1/0/0 4/1/0 4/1/0 99/46/11
T39 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 4/3/0
(T40) 4/4/0 1/0/1 7/3/4 1/1/0 9/8/1 3/3/0 588/206/193
T41 5/0/0 4/2/2 1/1/0 4/0/0 2/0/0 3/0/0 371/120/2
T46 1/0/0 0/0/0 0/0/0 5/0/0 6/0/0 6/0/0 24/0/0
T47 9/4/5 10/0/10 2/1/0 9/5/4 9/3/5 10/2/7 611/307/278
T50 6/0/0 0/0/0 4/1/0 0/0/0 2/0/0 2/0/0 133/36/0
T53 2/2/0 7/6/0 3/0/0 1/0/0 7/3/0 4/2/0 130/17/0
(T54) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 19/1/0
Hit 9/3/1 7/2/3 6/4/2 6/2/1 8/5/2 8/5/1 13/10/5
Hit-NR 6/2/1 4/2/2 4/3/0 4/1/1 5/2/1 5/2/1 8/7/2

The IDs in parentheses are thosewhich have structure or sequence similarity to one of the complexes used in training. Results for a complex by amethod have three numbers separated by
/. The first number is the number of decoys selected within the top 10 ranked models, which has an acceptable or better quality. The second and third numbers are the number of models
with medium or higher quality, and the number of high-quality models. The numbers in the total column indicate the total number of decoys in the three quality classifications in the decoy
set of each target. The last two rows report the summary of the performance. Three numbers are the number of targets where the method identified at least one acceptable or higher-
quality models, at least one medium- or higher-quality models, or at least one high-quality model, respectively. The hit row lists the results when all 13 targets were considered. Hit-NR only
considers targets that are not in parentheses.
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In Table 5, we further compared GNN-DOVE with the top
groups who participated in the model scoring task for the 13
CAPRI scoring targets. The results were taken from Table 2 of the
article by Geng et al. (2020). In total, 37 scoring groups have
submitted their scores during this challenge and among them we
list here only groups with five or more submitted targets. In
addition to the CAPRI participants the table also includes the
latest protein docking evaluation approaches, iScore (Geng et al.,
2020) and GraphRank (Geng et al., 2020).

GNN-DOVE tied with iScore when decoys of acceptable or
higher quality were considered. Whenmedium- or higher-quality
decoys were considered, GNN-DOVE performed second to
iScore. In this list, except for GNN-DOVE, iScore, and
GraphRank, all the other groups were human groups, which
may have used manual intervention using expert knowledge.
Thus, the results show that GNN-DOVE is also highly
competitive against human experts.

DISCUSSION

In this work, we developed GNN-DOVE for protein docking decoy
selection, which used a graph neural network (GNN). We used the
gate-augmented attention mechanism to capture the atom
interaction pattern at the interface region of protein docking
models. The benchmark on the Dockground dataset
demonstrated that GNN-DOVE outperformed DOVE, along
with other existing scoring functions compared. We further
trained GNN-DOVE on a larger dataset and evaluated two more
datasets, including the CAPRI Score_set, which confirmed superior
performance of GNN-DOVE to existing methods.

To assess the quality of structure models, considering multi-
body (atom or residue) interactions (Gniewek et al., 2011; Kim

and Kihara, 2014; Kim and Kihara, 2016; Olechnovic and
Venclovas, 2017) have been proven to be an effective
approach. GNNs consider patterns of multiatom interactions
by representing the interactions as a graph structure. Since a
graph is a natural representation of molecular structures, GNNs
may be applied in various problems in structural bioinformatics
and cheminformatics.

The performance of GNN-DOVE likely would be improved by
considering other physicochemical properties of atoms such as
atom-wise binding energies, as well as sequence conservation of
residues that can be computed from a multiple sequence
alignment of homologous proteins. Application to multichain
complexes remains a potential path for future work.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The Dockground docking dataset was downloaded
from the Dockground database (http://dockground.compbio.
ku.edu) at the link http://dockground.compbio.ku.edu/
downloads/unbound/decoy/decoys1.0.zip. The ZDOCK
dataset was downloaded from the ZDOCK decoy sets
(https://zlab.umassmed.edu/zdock/decoys.shtml) at the link
https://zlab.umassmed.edu/zdock/decoys_bm4_zd3.0.2_6deg.
tar.gz. The CAPRI score set was downloaded from http://cb.iri.
univ-lille1.fr/Users/lensink/Score_set.

AUTHOR CONTRIBUTIONS

XW and STF conceived the initial version of the study. XW and
DK designed this work in the current form. XW developed the
codes in communication with STF. XW performed the
computation, and XW and DK analyzed the results. XW wrote
the initial draft of the manuscript, and DK critically edited it. XW,
STF, and DK edited the manuscript in the revision.

FUNDING

We declare that all the sources of funding received for
this research have been submitted. This work was partly
supported by the National Institutes of Health (R01GM133840
and R01GM123055) and the National Science Foundation
(DMS1614777, CMMI1825941, MCB1925643, and
DBI2003635).

ACKNOWLEDGMENTS

The authors are grateful to Jacob Verburgt for proofreading the
manuscript, and Sai Raghavendra Maddhuri Venkata
Subramaniya and Aashish Jain for testing the GNN-DOVE
code on GitHub.

TABLE 5 | Ranking of GNN-DOVE among other scorer groups on the CAPRI
scoring dataset.

Group Performance # Submitted targets

All Nonredundant

iScore 9/6/2 6/5/1 13 (8)
GNN-DOVE 9/3/1 6/2/1 13 (8)
GraphRank 8/4/1 5/3/1 13 (8)
Bates 8/4/1 5/2/0 10 (5)
Bonvin 8/3/2 5/2/1 9 (5)
Weng 8/2/3 5/2/1 9 (6)
Zou 7/1/4 5/1/2 9 (6)
Wang 6/3/2 4/2/1 6 (4)
Fernandez-Recio 5/3/2 4/4/1 8 (7)
Elber 5/1/1 4/1/0 5 (4)
Wolfson 4/0/1 1/0/0 5 (2)
Camacho 3/1/2 1/1/1 5 (2)

Results of the existing methods were taken from Table 2 of the article by Geng et al.
(2020). The numbers in the nonredundant column only considered targets in Table 4 that
are not in the parentheses. The last column shows the number of targets that each group
has submitted their prediction among the 13 targets listed in Table 4. The numbers in
parentheses report the number of submitted targets among those which do not have
similarity to the training set we used (i.e., discarding the targets in parentheses in
Table 4).
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