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Owing to its clinical significance, modulation of functionally relevant amino acids in
protein-protein complexes has attracted a great deal of attention. To this end, many
approaches have been proposed to predict the partner-selecting amino acid positions
in evolutionarily close complexes. These approaches can be grouped into sequence-
based machine learning and structure-based energy-driven methods. In this work,
we assessed these methods’ ability to map the specificity-determining positions of
Axl, a receptor tyrosine kinase involved in cancer progression and immune system
diseases. For sequence-based predictions, we used SDPpred, Multi-RELIEF, and
Sequence Harmony. For structure-based predictions, we utilized HADDOCK refinement
and molecular dynamics simulations. As a result, we observed that (i) sequence-based
methods overpredict partner-selecting residues of Axl and that (ii) combining Multi-
RELIEF with HADDOCK-based predictions provides the key Axl residues, covered by the
extensive molecular dynamics simulations. Expanding on these results, we propose that
a sequence-structure-based approach is necessary to determine specificity-determining
positions of Axl, which can guide the development of therapeutic molecules to combat
Axl misregulation.

Keywords: protein selectivity, sequence analysis, molecular dynamics, Axl, HADDOCK

INTRODUCTION

The functional identification of proteins is essential to understand the grounds of innate cellular
processes. Several computational tools have been deployed to annotate protein function from ever-
accumulating protein sequences (Friedberg, 2006). These approaches aim to define functionally
important residues through comparative sequence analysis (Whisstock and Lesk, 2004). Resolving
the functionally key amino acids is particularly interesting, as modulation of these residues holds a
great potential to design protein-based therapeutics (Moll et al., 2016). Such key amino acids can
be identified upon searching for conserved positions across different species. Alternatively, within a
species, one could look for the differentially mutated amino acid positions of closely-related protein
families, i.e., paralogs (Gogarten and Olendzenski, 1999; Mirny and Gelfand, 2002; Chagoyen
et al., 2016). In paralogs, some mutations are evolved to act as specificity-determining positions
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(SDPs) for regulating selective protein interactions (Rausell et al.,
2010; Sloutsky and Naegle, 2016). Thus, SDPs are often ascribed
to the specialized functions of proteins (Capra and Singh,
2008; Chakraborty and Chakrabarti, 2015; Wong et al., 2015).
SDPs can either select a binding partner (partner-selecting) or
tune the affinity of a protein toward different ligands (affinity-
tuning) (Chagoyen et al., 2016; Sloutsky and Naegle, 2016;
Pitarch et al., 2020).

During the last three decades, several sequence-based SDP
predictors have been proposed (Pirovano et al., 2006; Chakrabarti
and Panchenko, 2008; Chakraborty and Chakrabarti, 2015;
Chagoyen et al., 2016). These methods rely on the application of
different machine learning techniques, which can be grouped into
entropy-, evolution-, and feature-based (Teppa et al., 2012). The
majority of these methods expand on the use of a precalculated
multiple sequence alignment (MSA) file. The entropy-based
methods compute the variability of specific amino acid positions
in an alignment of related protein sequences, allowing the
identification of highly varying positions (Kalinina et al., 2004; Ye
et al., 2006; Feenstra et al., 2007). As an example, SDPpred uses
mutual information entropy scores to predict SDPs (Kalinina
et al., 2004). The evolutionary-based methods, on the other
hand, use substitution matrices or phylogenetic trees to calculate
residue-based variability scores (del Sol Mesa et al., 2003; Pazos
et al., 2006; Capra and Singh, 2008). The evolutionary-based
method Xdet, for example, combines the substitution matrix with
GO or EC annotations, together with the available interactome
data (Pazos et al., 2006). Different than the other sequence-based
methods, Xdet can provide partner-specific SDPs, though, it only
works on large protein families (Pitarch et al., 2020). Finally,
the feature-based methods perform feature extraction of each
amino acid position. The extracted feature vectors are fed into
a classifier, such as random forest, support vector machine or
neural network (Ahmad and Sarai, 2005; Wong et al., 2015). For
instance, Ahmad and Sarai proposed a position-specific scoring
matrix-based SDP prediction of DNA binding proteins (Ahmad
and Sarai, 2005). Here, each residue is represented as a feature
vector by using its and its neighbors’ conservation scores. Then,
the feature vectors are processed by a neural network classifier
to categorize the input residues as SDP or non-SDP for DNA
binding. As the sequence-based SDP prediction methods do
not use heavy input data, they are computationally efficient.
However, the application of these methods is rather limited as
they are mostly trained with small sequence datasets with classical
machine learning algorithms.

The available structure-based SDP prediction methods make
use of the core-support-rim model, as proposed by Levy.
According to this model, the protein-protein interaction surface
can be dissected into three, as: (i) the core; the amino acids, which
get buried upon complexation, (ii) the support; the residues,
which are buried in the uncomplexed state and become more
buried upon complexation, (iii) the rim; the amino acids, which
stay solvent accessible both in free and complexed states (Levy,
2010). In a recent work of Ivanov et al., this definition was used
to discriminate SDPs of four paralog protein families (Ivanov
et al., 2017). Here, the authors structurally modeled and analyzed
all paralog interactions, for which the experimental affinities

were at hand. Their analysis showed that SDPs are located at
the rim, where they form strong electrostatic (charge-charge)
interactions (Chakrabarti and Janin, 2002; Ivanov et al., 2017).
Other groups utilized atomistic molecular dynamics simulations
to trace partner-selecting paralog interactions. For example, van
Wijk et al. demonstrated that a single salt bridge is the key
determinant for selective ubiquitin-conjugating enzyme (E2) and
ubiquitin ligase (E3) interactions (van Wijk et al., 2012). Being
at the rim of E2-E3 surface, the partner-selecting role of this
salt bridge was validated by mutagenesis and yeast two-hybrid
screening. Another recent example explored how protocadherins
specifically find their partners to polymerize, which is an essential
mechanism for neuronal development. For this, Nicoludis et al.
combined molecular dynamics simulations with evolutionary
coupling information (Nicoludis et al., 2019). Compared to the
sequence-based SDP prediction methods, the structure-based
approaches provide a refined and thus an experimentally testable
SDP set. However, these approaches generally require expertise in
computational structural biology tools and depending on the size
of the system, they could be computationally intensive.

As the sequence- and structure-based methods have different
advantages, we chose a model system to map the prediction
landscape of these approaches. For this, we concentrated on
a paralogous protein receptor tyrosine kinase family (TAM),
made by Tyro3, Axl, and Mer proteins. TAM receptors, like
the other receptor tyrosine kinases, are activated through
their interactions with extracellular proteins, triggering receptor
dimerization and autophosphorylation of their kinase domains
(Rothlin and Lemke, 2010). Earlier studies identified two
related proteins, the growth arrest-specific protein 6 (Gas6)
and vitamin K-dependent protein S (Pros1) as TAM ligands
(Hafizi and Dahlbäck, 2006). The binding of these ligands
to TAM leads to downstream activation of diverse signaling
pathways (Wium and Paccez, 2018). Besides Gas6/Pros1, three
other ligands (tubby, tubby-like protein and galactin-3) were
shown to bind to TAM proteins (Myers et al., 2019). These
structures are neither sequence- nor structure-wise related
to Gas6 and Pros1. This suggests that they bind to TAM
family by using a different mechanism compared to Gas6 and
Pros1. As there is little information on the binding profiles
of these new ligands, in this work, we focused only on
TAM:Gas6/Pros1 interactions.

TAM receptors share 52–57%, while Gas6/Pros1 share 40%
pairwise sequence similarity. Across TAM members, Pros1 binds
to Tyro3 and Mer, while it cannot bind to Axl. Gas6 binds to all
three receptors with the highest affinity toward Axl (Hafizi and
Dahlbäck, 2006; Yanagihashi et al., 2017). Among the different
combinations, the Axl:Gas6 interaction is particularly interesting
given its involvement in numerous types of signaling pathways
(e.g., tumor-cell growth, metastasis, epithelial to mesenchymal
transition, drug resistance, etc.) (Zhu et al., 2019). Relatedly, Axl
aberrant regulation was shown to lead to different types of cancer
and infectious diseases (Van Der Meer et al., 2014), as well as
to promote SARS-CoV-2 entry into cell (Wu et al., 2017; Wium
and Paccez, 2018; Wang et al., 2021). Although the structure
Axl:Gas6 complex is resolved, Axl’s ligand-selecting residues is
still unknown. To help to close this knowledge gap, we used three
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FIGURE 1 | (A) The domain organization of TAM family and its ligands, Gas6 and Pros1. TAM family consists of Ig1, Ig2, two FNIII, and tyrosine kinase domains
(Linger et al., 2008; Lemke, 2013). Gas6 and Pros1 are composed of GLA domain, loop region, EGF Repeat, and LG2, LG1 domains (Linger et al., 2008; Lemke,
2013). (B) Axl(Ig1-Ig2):Gas6(LG1-LG2) interaction involves two interfaces: The major interface is formed between Axl-Ig1:Gas6-LG1 and the minor one is established
among Axl-Ig2:Gas6-LG1 [PDB ID: 2C5D, Sasaki et al. (2006)]. The inset represents the charged frontal side of the major interface (Axl is depicted in pink cartoon,
whereas Gas6 is represented in purple cartoon). (C) Conservation scores of Axl residues predicted via ConSurf webserver (Glaser et al., 2003; Landau et al., 2005;
Ashkenazy et al., 2016). The most conserved sites are colored with deep purple and the least conserved ones with deep teal. (D) Electrostatic potential of Axl:Gas6
interacting site. The color scale ranges from -5 (red) to 5 (blue). One side of Axl’s Gas6 binding surface is heavily charged, while the other side is composed of neutral
amino acids.

sequence-based SDP predictors, SDPpred, Multi-RELIEF (both
feature-based), and Sequence Harmony (entropy-based) to map
Axl partner-selecting SDPs. In addition, we analyzed the selective
Axl:ligand interactions, by using simple refinement and extensive
molecular dynamics simulations.

RESULTS

Axl:Gas6 Interface
TAM receptors share two immunoglobulin (Ig)-like, two
fibronectin type III domains (FNIII), followed by a single-
pass transmembrane helix, and an intracellular kinase domain
(Figure 1A). TAM ligands, Gas6 and Pros1 contain an
N-terminal gamma-carboxyglutamic acid (GLA) domain, four
epidermal growth factor-like (EGF) repeats, and two laminin
G (LG)-like domains (Figure 1A). The crystal structure of
Axl:Gas6 interaction is the only available TAM:ligand structure
[PDB ID: 2C5D (Sasaki et al., 2006)]. In the Axl:Gas6 structure,
two Ig-like domains of Axl interact with two LG-like domains

of Gas6, without involving any receptor-receptor or ligand-
ligand interactions (Figure 1B). Axl and Gas6 interact through
two symmetric copies of major and minor interfaces, burying
2366 Å2 and 765 Å2 surface areas, respectively (Figures 1B,C).
While the minor interface is highly conserved across TAM,
the major interface is not. The major interface is spatially
segregated into a frontal site, involving a series of charged
residues, and a hydrophobic distal site (Figure 1D; Sasaki et al.,
2006). The segregated characteristics of the major interface
contribute to its ligand selection, as well as to Axl’s high affinity
toward Gas6 (Sasaki et al., 2006). Thus, for studying the ligand
selectivity of Axl, we focused on the major Axl:Gas6 interface
(Figure 1B-inset).

Sequence-Based Axl SDP Predictions
Agree in One Residue
Among the available sequence-based SDP predictors, we selected
three methods to probe Axl ligand selectivity (Supplementary
Table 1). These algorithms, i.e., SDPpred, Sequence Harmony,
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FIGURE 2 | (A) The mean van der Waals and electrostatics energetics of the top scoring Axl:Gas6 and Axl:Pros1 major interfaces calculated by HADDOCK. The
mean van der Waals energies of Axl:Gas6 (blue) and Axl:Pros1 (gray) are –69.8 ± 1.2 kcal/mol and –68.9 ± 2.2 kcal/mol, respectively. The mean electrostatics of
Axl:Gas6 and Axl:Pros1 are –635.8 ± 29.3 kcal/mol and –173.5 ± 21.4 kcal/mol, respectively. (B) Residue-based electrostatics contribution of Gas6-facing Axl
residues. Axl residues behaving differently than the rest of the population are R48, E59, E70, D73, E83 in the case of Axl:Gas6 (blue), and E48, E59 in the case of
Axl:Pros1 (gray). The whiskers were computed with a whisker length of 2xIQR. (C) The distribution of the salt bridges (SBs) across Axl:Gas6 interface. Axl is
represented in light pink and Gas6 in marine blue. Only SB1 is located on the back and rather neutral side of the complex. This and all the structural images were
generated with PyMOL molecular visualization software (Schrödinger, 2015). (D) The arrangement of the potential SB-making residues in the case of crystal (first
row, pdb id: 2C5D) and HADDOCK-refined (second row) Axl:Gas6 complex. The pairs forming SBs are encircled.

and Multi-RELIEF, were selected based on their widespread
use and their availability as a web service (Kalinina et al.,
2004; Feenstra et al., 2007; Ye et al., 2008). Initially, to analyze
the TAM sequences, the mammalian (human, mouse, rat, pig,
chimpanzee) TAM Ig1 sequences were retrieved from UniProtKB
(The UniProt Consortium, 2018). These sequences were grouped
into Axl and Tyro3 & Mer sequence groups. The MSA of each
group was constructed with Clustal Omega (Sievers and Higgins,
2017). For each approach, MSAs were formatted according to the
requirements of the webservers. As earlier studies showed that
partner-selecting SDPs are located at the rim of protein-protein
interfaces, we filtered out the sequence-based SDP predictions by
keeping the positions corresponding to the rim of the Axl:Gas6
complex (Ivanov et al., 2017). Within this framework, SDPpred
predicted 19 SDPs, five of which (T46, R48, Q50, D84, K96) were
at the rim of Axl:Gas6. The majority of the SDPpred predictions
corresponded to the non-interacting regions of the Axl:Gas6
complex (as calculated by the EPPIC web server, Duarte et al.,
2012). The same trend was observed for Multi-RELIEF, which
contained two rim Axl amino acids out of 15 SDP predictions
(R48, E70). In the case of Sequence Harmony, the minority of the
predictions (4/15) were located at the rim of Axl:Gas6 (T46, R48,
Q50, K96). As such, the combined Axl SDP list, predicted by these

TABLE 1 | Positional sequence comparison of R48, E56, E70, D73, E83. E56 and
D73 are conserved in both Axl and Tyro3 (shown in bold).

Axl Tyro3 Mer

R48 N63 N114

E56 E70 Q124

E70 Q85 L138

D73 D87 H141

E83 - D151

three webservers became T46, R48, Q50, E70, D84, K96, where
they only agreed on R48. The complete list of the SDP predictions
is provided under Supplementary Table 2.

Axl Selectivity Is Regulated by Salt
Bridges
To study partner-selecting Axl SDPs, we modeled the three-
dimensional structure of Axl:Pros1 (Ig1:LG1) complex, to use
it as the negative (non-binder) control. We refined the two
Axl:ligand complexes with HADDOCK 2.2 webserver (van
Zundert et al., 2016). We chose HADDOCK, since it provides a
user friendly web service to carry out the analysis proposed here.
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FIGURE 3 | (A) The distributions of hydrophobic contact (left), hydrogen bond (middle) and SB numbers (right) for Axl:Gas6 (marine blue) and Axl:Pros1 (light gray)
simulations. The distributions are interpreted with box-and-whisker statistics. The associations between two Axl:Gas6 and Axl:Pros1 distributions were reflected in r
values, according to which the SB distributions do not have anything in common. (B) Consistently and stably observed SBs formed in Axl:Gas6 and Axl:Pros1
simulations. Each row indicates the observation frequency of the indicated SB. The frequency data came from replica 1 simulations (Table 2). The SB numbering
follows the ones used in Figure 2C. SB1 is denoted with * as in this case R48 couples with a different Gas6 residue than observed in Figure 2C. (C) The positioning
of potential SDPs on Axl:Gas6 structure predicted by molecular dynamics analysis.

When used for refinement, HADDOCK skips docking stages
and performs several independent short molecular dynamics
simulations in explicit solvent. The top-scoring Axl complexes,
ranked by the HADDOCK score, differed mostly in interface
electrostatics: Axl:Gas6 has ∼3.6 times better electrostatics
energy than Axl:Pros1 (−635.8 ± 29 kcal/mol vs. −173.5 ± 21
kcal/mol) (Figure 2A). Other interface features and energy terms,
such as buried surface area and van der Waals energies, were
comparable between the complexes. These results underscore
that Axl selectivity is mainly driven by the electrostatics
interactions. We analyzed per-residue electrostatics of interfacial
Axl residues (31 for the Axl:Gas6 complex and 27 for Axl:Pros1)
(Figure 2B). In the case of Axl:Gas6, Axl R48, E56, E59,
E70, E73, E83 contributed to the interface electrostatics the
most (Figure 2B). Being at the rim of the Axl:Gas6 complex,
these residues formed six different salt bridges (Figure 2C and
Supplementary Table 2). As introduced earlier, previous studies
have shown that the ligand-selecting SDPs are rim amino acids,
capable of forming opposing charge interactions. This made these
salt bridge forming residues the perfect SDP candidates. Among
these six salt bridges (SBs), SB2-6 were located on the charged
frontal side of the complex (Figure 2C, left). Interestingly,
SB1 and SB3 (mediated by R48, E59) were also present at the
Axl:Pros1 interface. We, therefore, eliminated R48, E59 from the
initial Axl SDP list. This left E56, E70, D73, E83 Axl residues
as the strongest partner-selecting SDPs. Here, we should note
that SB3-SB6 were not present in the Axl:Gas6 crystal structure

(Figure 2D). The proper establishment of these salt bridges was
secured only after the HADDOCK refinement. Finally, if E56,
E70, D73, E83 were Gas6-selective, their positions should be
substituted with different amino acids in Tyro3 and Mer. This
turned out to be the case for E70 and E83, leaving those as the
final HADDOCK-based Axl SDP predictions (Table 1).

To explore the time-dependent interaction profiles of
Axl:Gas6 and Axl:Pros1, we carried out molecular dynamics
(MD) simulations of the HADDOCK-refined Axl complexes.
Even though running MD simulations requires expertise, we
used it to gain the highest resolution information on our
system. For each complex, we ran four independent (replica)
MD simulations, totaling 1.6 microseconds. The analysis of
these trajectories showed that the Axl:Gas6 complex is more
stable than Axl:Pros1, as reflected in the lower root mean
square deviation (RMSD) (0.15 ± 0.01 nm vs. 0.23 ± 0.03 nm)
(Supplementary Figure 1), and radius of gyration profiles
(Supplementary Figure 2). To perform a more in-depth analysis
of the interactions between Axl and its ligands, we calculated the
inter-molecular hydrophobic, hydrogen bonds and salt bridges
formed during the simulations by using the interfacea python
package (Figure 3A). When we pooled the interaction data
of each Axl complex, we observed that Axl:Pros1 contained
a fewer number of contacts in all interaction types. The
most significant difference between Axl:Gas6 and Axl:Pros1
interaction distributions was observed in the case of salt bridges.
Axl:Gas6 trajectories reflected, on average, four to five stable
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salt bridges, where this number dropped to two in the case
of Axl:Pros1 (Figure 3A, right panel). We then looked for
the salt bridges, which were seen in four different trajectories
consistently for more than 25% of the simulation time (Table 2).
Here, our assumption was that the SDP positions should form
stable salt bridges within a trajectory and should be observed
consistently across four trajectories. These criteria left us with
five salt bridges, four of which were the same as the ones
selected by the HADDOCK refinement: E70:R414Gas6 (SB4),
D73:R313Gas6 (SB5), E83:R467Gas6 (SB6), E59:R310Gas6 (SB3)
(listed in the decreasing observation frequency in Figure 2B).
E56-mediated SB2, coming from our HADDOCK refinement
analysis was observed only in one replica, indicating that it could
be coincidental (Table 2). As another surprising outcome, R48
of SB1 formed a stable and consistent salt bridge with D455Gas6,
instead of E460Gas6, which was suggested by the HADDOCK
refinement. Interestingly, E460Gas6 has also a glutamic acid
correspondence on Pros1, while in D455Gas6 matches with an
alanine in Pros1. In the case of Axl:Pros1, only E59:K314Pros1 was
observed in a statistically significant manner, which corresponds
to SB3 of Axl:Gas6 (Figure 3B and Table 2). These observations
left us with four possible selective salt bridges, three of which
were formed by the positions unique to Axl: R48, E70, E83
(Table 1). Our across-ortholog comparison revealed that R48,
E70, E83 are all conserved, supporting the SDP candidacy of these
positions (Supplementary Figure 3). The spatial distribution of
the final list of salt bridges formed by these residues is illustrated
in Figure 3C.

DISCUSSION

In this work, we used three sequence-based SDP predictors,
namely, SDPpred, Multi-RELIEF, and Sequence Harmony to
map Axl’s ligand-selecting SDPs. Next to these approaches, we
also carried simple refinement and extensive MD simulations
of Axl:ligand interactions. As the primary outcome of this
exercise, we found that the sequence-based SDP predictors
largely overpredict the potential SDP positions. Hence, we used
available literature data to filter out the structurally non-viable
ligand-selecting SDPs. As a result, the three methodologies in
combination proposed six SDPs, where they agreed only on
R48. Our HADDOCK-refinement-based approach suggested R48
as a strong electrostatic contributor to the Axl:Gas6 interface.
Though, by only following HADDOCK refined structures, we had
to eliminate R48 from the potential SDP list, as it significantly
contributed to the Axl:Pros1 interaction energetics too. Elaborate
MD simulations were necessary to rescue R48’s SDP candidacy.
During our MD simulations, R48 formed a new salt bridge,
which was neither observed in the crystal nor in the HADDOCK
refined complexes. In the end, HADDOCK refinement proposed
four selective SBs, three of which were supported by the MD
simulations. Checking the evolutionary variance of MD-deduced
SDP positions suggested R48, E70, and E83 as the strongest
Axl SDP candidates. Strikingly, Multi-RELIEF (plus the rim
information) could predict two of these (R48, E70) without
running extensive simulations.

TABLE 2 | SBs formed in parallel (A) Axl:Gas6 and (B) Axl:Pros1 simulations.

(A) Axl
Resi

Gas6
Resi

Axl:Gas6-
replica #1

(%)

Axl:Gas6-
replica #2

(%)

Axl:Gas6-
replica #3

(%)

Axl:Gas6-
replica #4

(%)

SB4 70 414 81.14 34.57 55.41 70.57

SB5 73 313 72.86 81.71 69.43 76.86

SB6 83 467 60.29 48.00 68.57 71.14

SB3 59 310 59.43 32.86 83.14 56.86

SB1* 48 455 43.71 44.00 53.43 30.57

SB2 56 308 – – – 25.14

(B) Axl Pros1 Axl-Pros1-
replica #1

(%)

Axl-Pros1-
replica #2

(%)

Axl-Pros1-
replica #3

(%)

Axl-Pros1-
replica #4

(%)

SB3 59 314 97.67 97.67 94.33 94.33

SB2 59 316 – – – 66.66

SB1 48 465 64.67 51.67 – 33.00

Each row indicates the observation frequency of the denoted salt bridge. The SB
numbering follows the ones used in Figure 2C. The consistent and stable SBs
are marked in bold. * corresponds to the SB1* presented in Figure 3B.

To validate R48, E70, and E83 as the ligand-selecting
Axl SDPs, we artificially mutated the SB1, SB4, and SB6
forming Gas6 residues their Pros1 counterparts, and vice
versa, by using EvoEF1 (Pearce et al., 2019; Figures 3, 4).
EvoEF1 is a machine learning approach, poised to calculate
the impact of point mutations across protein-protein
interfaces. According to EvoEF1, Axl:Gas6 interaction stability
was significantly reduced when individual and combined
Gas6-to-Pros1 and Gas6-to-alanine mutations were imposed.
On the other hand, individual and combined Pros1-to-Gas6
mutations led to a significant increase in the stability of
Axl:Pros1 complex (Figure 4). These findings underscore the
vitality of SB1, SB4, and SB6 to the formation of Axl:Gas6
complex (Figure 3C).

Future of the SDP Prediction Field
Given the importance of the knowledge of SDPs for protein
design, it is essential to use an economically feasible and
accurate predictor. To this end, using machine learning (ML)
methodologies in SDP prediction is very suitable, as ML
tools would allow calculating dozens of SDP predictions in
seconds. Though, the current ML-based approaches face many
challenges. As an example, the majority of the sequence-
based SDP prediction methods require a precalculated MSA
file, together with subfamilies or subgroups definition. Here,
caution should be taken as different MSA algorithms produce
different alignment results based on varying parameters, which
in the end will affect the final SDP list. Besides, dividing
protein families into subfamilies requires expert knowledge. As
another important limitation, the experimentally determined
SDP datasets are rather small, which, in turn, prevents creating
large-scale training of the feature-based methods. Construction
of such large-scale SDP training datasets will make it possible
to use deep learning algorithms, which have outperformed
state-of-the-art methods in similar problems (LeCun et al., 2015;
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FIGURE 4 | EvoEF1 44G predictions for the selective Gas6-to-Pros1 or
Pros1-to-Gas6 mutations. R414, R467, and D455 correspond to SB4, SB6,
and SB1* forming residues, as presented in Figure 3B. The significant
changes are marked with *. The stabilizing and destabilizing mutation color
scheme ranges from –4 (brown) to 4 (yellow). Gas6-to-Ala and Pros1-to-Ala
mutations were run as a control. Comb refers to combined mutations.

Zamora-Resendiz and Crivelli, 2019; Gao et al., 2020; Dai and
Bailey-Kellogg, 2021). The energy-based methods, as presented in
this work under the umbrella of HADDOCK refinement and MD
simulations, could offer a refined SDP list, which can be tested
experimentally. These approaches, however, take much longer
time as they explicitly use structures and calculate forces acting
on these structures. As an example, HADDOCK refinement
of complexes can take up to half an hour, depending on the
available computing resources. MD simulations, on the other
hand, can take up to days or weeks, based on the dedicated
number of computing cores used. Considering the pros and
cons of both approaches, it is evident that new SDP prediction
methods, which combine the advantages of both sequence- and
structure-based methodologies, should be developed. However,
until then, to predict SDPs, conservation-filtered HADDOCK
refinement can be used in combination with structurally-filtered
Multi-RELIEF predictions. Both of these approaches are easily
accessible through web services. Their combination covers all of
the conservation-filtered MD-based SDP predictions, without the
requirement of heavy calculations.

METHOD

Sequence-Based Methods
SDPpred is an entropy-based SDP prediction method which
utilizes mutual information to determine well-conserved residues
within the same groups but differ between them (Kalinina et al.,
2004). The equation to mutual information score for a column p
in the alignment is given below:

Ip =

N∑
i =1

20∑
a =1

fp(α, i)log(
fp(a, i)

fp(a)fp(i)
)

In this equation, N is the number of specificity groups, a is
the amino acid type, fp(i) ratio of protein sequences belonging
to group i. fp(a) is the number of occurrences of residue a
in the whole alignment at position p. fp(a, i) is the number
of occurrences of residue a in group i at position p. SDPpred
calculates column-wise scores for each position in the MSA and
outputs SDPs over the protein sequences. The server can be
reached at http://monkey.belozersky.msu.ru/~psn/query.htm.

Multi-RELIEF a machine-learning based SDP prediction
method which employs RELIEF algorithm to identify specificity
determining residues (Kononenko, 2005; Ye et al., 2008). Multi-
RELIEF algorithm requires predefined groups and their MSA as
input. The aim of this method is to calculate a weight vector
for each position in MSA. The weight vector is initialized with
zeros at the beginning. At each iteration, a random sequence
seq is selected and its nearest neighbors from the same class
(i.e., hit(seq)) and opposite class (i.e., miss(seq)) are determined
based on the Hamming distance. Subsequently, the weight of each
residue is calculated with the following equation:

w [i] = w [i]−
diff

(
seq [i] , miss

(
seq
)

[i]
)

m

+
diff

(
seq [i] , hit

(
seq
)

[i]
)

m

where

diff
(
a, b

)
=

{
0, a = b
1, a 6= b

In the above equation, i represents the ith position in the
weight vector or sequences and m represents the number of
sequences. The algorithm outputs a weight vector whose length
is the same as the number of positions in the alignment. Higher
weights indicates the higher probability of being SDP for the
corresponding position.

Sequence Harmony is another entropy-based SDP prediction
method (Feenstra et al., 2007). It takes MSA and two user-
specified groups as input and calculates relative entropy scores
for each residue that shows degree of conservations. Sequence
Harmony provides ranking of the entropy scores as outputs.
Sequence Harmony and Multi-RELIEF methods are merged
under the Multi-Harmony web server at https://www.ibi.vu.nl/
programs/shmrwww/ (Brandt et al., 2010).

Template-Based Modeling of Axl:ligand
Complexes
LG1 domain of Pros1 was modeled with i-TASSER (Roy
et al., 2010). Pros1-to-Gas6 structural alignment was carried
out with FATCAT web-tool (Ye and Godzik, 2003) (by using
the Gas6 coordinates of 2C5D). The final Axl:Pros1 coordinates
were visualized and saved in PyMOL (Schrödinger, 2015). All
Axl:ligand complexes were water refined with HADDOCK2.2
web server (van Zundert et al., 2016). The standard HADDOCK
refinement protocol samples 20 models. These models slightly
differ from each other as each one is refined with molecular
dynamics simulation starting with a different initial velocity.
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In the end, the generated models are ranked with the HADDOCK
score, which is a sum of electrostatics (E_Elec), van der Waals
(E_vdW) and desolvation terms (E_desolv): 1.0. E_vdW+ 0.2.
E_elec+ 1.0. E_desolv. The top ranking four models, i.e., the best
four models with the lowest HADDOCK scores, are offered as the
final complex states. We generated 200 refined structures for each
Axl:ligand complex. The top four ranking models were isolated as
the final solutions.

HADDOCK refinement outputs residue-based energy
scores of each complex (expressed in E_Elec, E_vdW and
E_elec+E_vdW), deposited in ene-residue.disp file (can be found
under HADDOCK output folder: structures/it1/water/analysis).
This file describes the contributions of each interface amino
acid to the intermolecular interaction. These residue-based
HADDOCK energies were analyzed by using R (R Core Team,
2013) and Rstudio (RStudio Team, 2020).

Molecular Dynamics Simulations
GROMACS 5.1.4 software and its tools were used to run
molecular dynamics simulations (MD) and quality controls (e.g.,
temperature, pressure, RMSD, Rg analyses) (Van Der Spoel
et al., 2005). The AMBER99SB-ILDN force field (Lindorff-Larsen
et al., 2010) was used to parameterize the protein molecules,
while the TIP3P water model was used to represent the solvent
(Jorgensen et al., 1983). The simulation was run in a rhombic
dodecahedron unit cell. The minimum periodic distance to the
simulation box was set to be 1.4 nm. The mdp simulation files
were adapted from https://github.com/haddocking/molmod-
data (Rodrigues et al., 2016).

Before the production run, each complex was minimized
in vacuum by using the steepest descent algorithm (Mandic,
2004). They were then solvated with the TIP3P water, together
with neutralizing ions (51 NA+ and 48 CL- ions were added
to neutralize Axl:Gas6, while 58 NA+ and 49 CL- ions were
added to neutralize Axl:Pros1). The relevant topology files were
edited according to the newly included NA+ and CL- ions.
The second cycle of energy minimization was performed on
the solvated systems. The solvent and hydrogen atoms were
relaxed with a 20 ps long molecular dynamics simulation under
constant volume where the temperature was equilibrated to
300 K (NVT). This was followed by 20 ps long molecular
dynamics simulation under constant pressure where the pressure
is equilibrated to 1 bar (NPT). As a last step before the
production run, position restraints were released upon reduction
of its force constant from 1,000 to 100, 100 to 10, and
10 to 0. To generate a parallel run of a given complex,
random seed was changed before running the NVT step. The
coordinates were written in every 10 ps. The integration time step
was set to 2 fs.

For each Axl complex, we ran four independent (replica)
MD simulations, totaling 1.6 microseconds. In each simulation,
upon reaching 200 ns, the periodic boundary conditions were
corrected. The system was stripped off solvent and ion atoms.
The Root Mean Square Deviations (RMSDs) were calculated by
using the average coordinates as a reference. After leaving the
equilibration periods out (25 ns for Axl:Gas6 and 50 ns for

Axl:Pros1), 350 snapshots for Axl:Gas6 and 300 snapshots from
Axl:Pros1 were extracted.

Interface Analysis
The interfacial hydrophobic contacts, hydrogen and salt
bridges were calculated with interfacea python library (https:
//github.com/JoaoRodrigues/interfacea) (Rodrigues et al.,
2019). interfacea classifies an inter-monomer interaction as
hydrophobic, if there are at least two non-polar atoms within
4.4 Å. It considers a pairwise contact as a hydrogen bond, if
a hydrogen donor (D) and acceptor (A) gets within 2.5 Å. It
then filters D-H-A triplets with a minimum angle threshold
(default 120 degrees). Finally, it classifies an interaction as a salt
bridge if there are oppositely charged groups within 4.0 Å. For
the interface classification as core and rim, EPPIC webserver
was used (Duarte et al., 2012). Core residues are the ones that
are buried at least in the protein structure (>95%). The rest of
interface residues were counted as rim residues.

For comparing different simulations, the box-and-whisker
statistics were generated with the standard boxplot function of
R. The salt bridges were classified as stable if they were observed
for >25% of a simulation time. They were classified as consistent
if they were observed to be stable in all simulations.
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