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The oxDNAmodel of Deoxyribonucleic acid has been applied widely to systems in biology,
biophysics and nanotechnology. It is currently available via two independent open source
packages. Here we present a set of clearly documented exemplar simulations that
simultaneously provide both an introduction to simulating the model, and a review of
the model’s fundamental properties. We outline how simulation results can be interpreted
in terms of—and feed into our understanding of—less detailed models that operate at
larger length scales, and provide guidance on whether simulating a system with oxDNA is
worthwhile.
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1 INTRODUCTION

Deoxyribonucleic acid (DNA) is a macromolecule that acts as a storage medium for genetic information
for all living organisms (Alberts et al., 2002). In nature, the molecule is most often found as a double helix
of two strands. The structure of each strand comprises of a backbone of covalently linked sugar and
phosphate groups. Each sugar is further attached to a base moiety: adenine (A), guanine (G), cytosine (C)
or thymine (T). Certain intra- and intermolecular interactions between these bases drive the formation of
the aforementioned double helical structure.

Crucially, the base pairing that holds these duplexes together is highly specific; to a first approximation,
Awill only bind to T andCwill only bind toG, and vice versa.Matching—or complementary—sequences
therefore bind to each other much more strongly than to non-complementary sequences. The different
base identities, along with the rules of complementarity, allow information to be encoded into the single
strands and copied from generation to generation (Watson and Crick, 1953).

The DNA double helix has a diameter of about 2 nm, and a helical pitch of about 3.4–3.6 nm.
Double strands are relatively stiff, with large bending disfavoured on lengthscales below around
40–50 nm (Seeman, 2003). By contrast, single strands are very flexible (Murphy et al., 2004; Chen
et al., 2012) forming loops and kinks with only a handful of bases or fewer.

These thermodynamic, mechanical and structural properties influence DNA’s biological role, but
also make it an ideal material for nanoscale engineering. The simplicity of interactions between
strands, and the predictability of the structural and mechanical properties of the product, have
enabled the rational design of a host of synthetic structures (Fu and Seeman, 1993; Goodman et al.,
2005; Rothemund, 2006; Douglas et al., 2009; Ke et al., 2012; Zhang et al., 2015; Tikhomirov et al.,
2017; Wagenbauer et al., 2017), computing architectures (Adleman, 1994; Rothemund et al., 2004;
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Qian et al., 2011; Cherry and Qian, 2018; Woods et al., 2019) and
dynamic systems (Yurke et al., 2000; Shin and Pierce, 2004;
Muscat et al., 2011; Zhang and Seelig, 2011; Wickham et al.,
2012; Srinivas et al., 2017; Tomov et al., 2017).

DNA’s importance to biology, nanotechnology and simply as a
canonical model biopolymer for biophysicists means that modelling
its behaviour is a key challenge. Unsurprisingly, therefore, models
spanning an enormous range of complexity have been proposed to
analyse and rationalize the behaviour of DNA. In this pedagogical
review, we will first discuss this range of models and their interplay,
before focusing on a particular coarse-grained model, oxDNA.

The oxDNA model, first published in 2010 (Ouldridge et al.,
2010a) (and with a slightly updated potential in 2011 (Ouldridge
et al., 2011)), has now been extensively applied to problems in
nanotechnology (Ouldridge et al., 2013a; Doye et al., 2013; Srinivas
et al., 2013;Machinek et al., 2014; Snodin et al., 2016, 2019;Henning-
Knechtel et al., 2017; Hong et al., 2018), soft matter (De Michele
et al., 2012; Rovigatti et al., 2014; Procyk et al., 2020; Stoev et al.,
2020), biophysics (Matek et al., 2012; Romano et al., 2013; Matek
et al., 2015;Mosayebi et al., 2015; Harrison et al., 2019; Nomidis et al.,
2019) and biology (Lee et al., 2015; Wang et al., 2015; Craggs et al.,
2019). Numerous tools exist to generate and visualize systems with
oxDNA (Henrich et al., 2018; Suma et al., 2019), alongside two
independent, publicly-available code bases for actually running
simulations with at least three qualitatively distinct algorithms for
simulating the model (Ouldridge et al., 2011; Snodin et al., 2015).
One of these code bases has recently been incorporated into a
webserver (Poppleton et al., 2020).

Despite this uptake, however, there is insufficient clarity on
how the basic properties of the oxDNA model make it well- or
poorly-suited to studying certain systems. Moreover, many
interesting phenomena require non-trivial simulation
techniques if they are to be probed with oxDNA. Although
those techniques have been widely applied, and software
implementing them with oxDNA is available,
documentation supporting their use is limited. Equally,
there is very little help with the intuition required to use
these techniques successfully. Finally, a major aspect to
interpreting the results from oxDNA is rationalizing its
predictions in terms of less detailed models. Unfortunately,
however, there are many subtleties in doing so.

In this pedagogical review we implement a series of exemplar
simulations that allow us to address these shortcomings. These
simulations will establish a well-documented set of examples for a
series of approaches that can be adapted by users, and this review
will provide some of the intuition for how to use these approaches
successfully. Simultaneously, we will use these examples to
illustrate key aspects of the oxDNA model that determine its
usefulness, and will explore how to interpret the results in terms
of DNA models at different scales.

2 DNA MODELS ACROSS LENGTH SCALES

At the smallest and most fundamental scale, quantum chemistry
calculations can be used to estimate the nucleotide properties
from first principles (Hobza and Šponer, 1999; Pérez et al., 2004;

Šponer et al., 2004; Šponer et al., 2008). However, these
calculations are computationally extremely expensive and are
unable to capture the collective behaviour of whole strands in
solution. Nonetheless, insight from this field has been
incorporated into classical atomistic force fields AMBER
(Cornell et al., 1996) and CHARMM (Brooks et al., 1983) that
use empirical force fields to model interactions between atoms.
These force fields are iteratively parameterised using both
comparison to experimental data and information from lower-
level quantum mechanical descriptions. In recent years, advances
in computational resources have allowed these models to simulate
large systems—such as DNA origami—for long enough
timescales to analyse their equilibrium properties. Given long
simulations, these atomistic models are able to sample the
conformation of large structures (Nguyen et al., 2014; Rocklin
et al., 2017) and the breaking and formation of base pairs (Brown
et al., 2015). However, at the time of writing, a systematic study of
DNA duplex formation thermodynamics, as represented by
atomistic models, has not been performed. As such, it is
unknown how well these atomistic models represent DNA
thermodynamics—historically, the force fields have required
adjustment as new systems and longer time scales are studied
(Pérez et al., 2007; Yoo and Aksimentiev, 2012). This fact,
alongside the heavy computational load in simulating large
systems or significant structural changes, mean that atomistic
approaches are currently limited to a fraction of the systems of
interest in DNA-based biophysics, biology, soft matter and
nanotechnology.

In an effort to access longer timescales, a number of “coarse-
grained” or “mesoscale” models have been introduced (Savelyev
and Papoian, 2009; Ouldridge et al., 2011; Hinckley et al., 2013;
Korolev et al., 2014; Maciejczyk et al., 2014; Maffeo et al., 2014;
Machado and Pantano, 2015; Uusitalo et al., 2015; Dans et al.,
2016; Ivani et al., 2016; Chakraborty et al., 2018; Maffeo and
Aksimentiev, 2020). These models represent DNA with a much-
reduced set of degrees of freedom relative to atomistic
approaches. In particular, solvent (and solvated ions) are
usually treated implicitly, and groups of atoms in the DNA
are replaced by a single site with effective interactions. As a
result, these models can access longer length and time scales than
atomistic descriptions.

The procedure for coarse-graining ranges from “bottom-up”
approaches that seek to formally map the statistical behaviour of a
more detailed model into a coarse-grained description (Savelyev
and Papoian, 2009; Maciejczyk et al., 2014; Maffeo et al., 2014), to
“top-down” approaches such as oxDNA that are more ad hoc,
instead seeking to reproduce as many experimentally relevant
properties as possible (Ouldridge et al., 2009; Hinckley et al.,
2013; Machado and Pantano, 2015; Uusitalo et al., 2015;
Chakraborty et al., 2018; Maffeo and Aksimentiev, 2020).
Bottom-up approaches have been most successfully used to
study fluctuations within the duplex state, where the atomistic
models on which they are built are best parameterised. Top-down
approaches, by contrast, have found their application in the
analysis of processes that involve DNA outside of its canonical
B-form, including duplex hybridization (Ouldridge et al., 2013b),
strand displacement (Srinivas et al., 2013; Irmisch et al., 2020),
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stress-induced structural transitions (Romano et al., 2013; Wang
and Pettitt, 2014; Sutthibutpong et al., 2016) and the properties of
nanostructures with branched helices and single-stranded
sections (Rovigatti et al., 2014; Engel et al., 2020).

Although highly-simplified, all of the coarse-grained
models cited above attempt to represent the discrete, three-
dimensional structure of DNA explicitly. An important role in
our understanding of DNA is played by even simpler models.
In thermodynamic terms, two classes of model have received
particular attention. Firstly, the Peyrard-Bishop-Dauxois
model and its variants have been used to probe the
statistical properties of the duplex denaturation transition
in the thermodynamic limit (Dauxois et al., 1993; Cocco
and Monasson, 1999; Nisoli and Bishop, 2011). These
models represent DNA through two or three continuous
degrees of freedom per base pair.

A second approach dispenses with continuous degrees of
freedom altogether, taking an Ising-like approach in which
base pairs are either present or absent. Originally introduced
by Poland and Scheraga to probe the duplex denaturation phase
transition (Poland and Scheraga, 1966), the approach was
adapted and carefully parameterized (SantaLucia, 1998;
SantaLucia and Hicks, 2004; Huguet et al., 2010; Bae et al.,
2020) to describe binding equilibria for strands of moderate
length (oligonucleotides). It is difficult to overstate just how
influential the nearest neighbour model has been, particularly
in the development of nucleic acid nanotechnology, as it allows
rational design of an ensemble of strands to produce the desired
thermodynamics. The NUPACK software suite automates this
process of system analysis and thermodynamics-based design by
implementing the nearest-neighbour model (SantaLucia and
Hicks, 2004). A number of attempts have been made to
augment this thermodynamic model with realistic kinetics
(Flamm et al., 2000; Xayaphoummine et al., 2005; Srinivas
et al., 2013; Schaeffer et al., 2015).

At its simplest, the nearest-neighbour model allows a two-state
approximation to the binding of A and B, in which the strands are
either fully bound or fully dissociated. In this limit, the
concentration of the product [AB] can be estimated using the
equation

[AB]
[A][B] � exp(− ΔHAB − TΔSAB/kT). (1)

Here ΔHAB and ΔSAB are computed by summing contributions
from each nearest-neighbor set of two base pairs, together with
terms for helix initiation and various structural features, all of
which are assumed to be temperature independent.

Another class of models ignores thermodynamics entirely,
instead providing a continuum-level description of DNA
mechanics. Most notably, DNA is frequently modelled as a
semi-flexible polymer (or worm-like chain, WLC)
characterised by a bending modulus (Kratky and Porod, 1949).
This model can be augmented with an extensional modulus
(Odijk, 1995) and a representation of twist with associated
twist modulus (Yamakawa, 1977). It is also possible to
consider coupling between the modes of deformation (Gore
et al., 2006; Nomidis et al., 2019). As with the nearest-

neighbour model of DNA, the influence of these approaches is
enormous, particularly within the biophysics community. The
elastic rod is the starting point for understanding the geometry of
DNA, and the null model against which results are compared and
interpreted.

There is actually quite a large gap in complexity between
mesoscopic models such as oxDNA and the continuum WLC
models or the nearest neighbour model of thermodynamics.
The time required to analyse the same system with these
methods differs by many orders of magnitude. It is
intriguing that, to our knowledge, there are few approaches
that come close to bridging this gap. Fundamentally, it is not
easy to combine the mechanics of semiflexible DNA as captured
by theWLC, the geometry and topology of DNA structures, and
the thermodynamics of DNA duplex formation as described in
the nearest-neighbour model, in a representation that is
simultaneously quantitatively useful and substantially
simpler than the existing mesoscale models. Approaches
such as Benham’s description of melting in circularly
negatively-supercoiled DNA (Fye and Benham, 1999)
achieve this marriage in specific contexts. The variety of
possible behaviour, however, and the sensitive interplay of
topology, structure, mechanics and thermodynamics in
many systems of interest, make the development of such
models extremely hard and currently necessitate the
application of coarse-grained models such as oxDNA.

In the rest of this pedagogical review, we first provide a high-
level description of the basics of the oxDNA model and
simulation techniques. We then present prototypical
simulations to demonstrate key properties of oxDNA, and
discuss how results from these simulations can be interpreted
in terms of simpler DNA models at different length scales. While
doing so, we discuss specific challenges in obtaining meaningful
data from oxDNA simulations, and discuss where oxDNA
provides added value. Initialisation files, processing scripts and
supporting instructions are provided for all simulations presented
here at (Sengar, 2021). This review should then serve as an
introductory tutorial to applying oxDNA.

One drawback of this format is that the examples are presented
as a fait accompli; just re-running the code will provide a limited
experience of the real process of simulating oxDNA. We strongly
encourage readers using this document as a tutorial to attempt to
construct as much as possible of the simulations for themselves,
and then to compare to the results obtained here. Alternatively,
users may try to construct variants to simulate similar systems.
Additional guidance on the nuts and bolts of running simulations
can be found at Ref (oxDNA wiki, 2015; LAMMPS
Documentation, 2021), where instructions on visualizing the
output can also be found. In general, we have found that
checking one or two snapshots of a simulation can avoid
many wasted hours simulating and studying faulty systems.

3 THE OXDNA MODEL

The oxDNA model was originally developed to study the self-
assembly, structure and mechanical properties of DNA
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nanostructures, and the action of DNA nanodevices—although it
has since been applied more broadly. To describe such systems, a
model needs to capture the structural, mechanical and
thermodynamic properties of single-stranded DNA, double-
stranded DNA, and the transition between the two states. It
must also be feasible to simulate large enough systems for long
enough to sample the key phenomena. As discussed in Section 2,
mesoscopic models in which multiple atoms are represented by a
single interaction site are the appropriate resolution for
these goals.

We will now outline the key features of the oxDNAmodel, the
specific mesoscale model that is the focus of this review. While
doing so, we note that there are effectively three versions of the
oxDNA potential that are publicly available. The original model,
oxDNA1.0 (Ouldridge et al., 2011), lacks sequence-specific
interaction strengths, electrostatic effects and major/minor
grooving. oxDNA1.5 adds sequence-dependent interaction
strengths to oxDNA1.0 (Šulc et al., 2012), and oxDNA2.0
(Snodin et al., 2015) also includes a more accurate structural
model, alongside an explicit term in the potential for screened
electrostatic interactions between negatively charged sites on the
nucleic acid backbone. In addition to these three versions of the
DNA model, an RNA parameterisation “oxRNA” has also been
introduced (Šulc et al., 2014).

It is worth noting that the three versions of oxDNA are very
similar; most of the changes involve small adjustments of the
geometry and strength of interactions. Structurally, the most
significant change is the addition of a screened electrostatic
interaction in oxDNA 2.0, which is typically small unless low
salt concentrations are used. Moreover, subsequent versions of
the model have been explicitly designed to preserve aspects of
earlier versions that performed well. So oxDNA 1.5 and oxDNA
1.0 are very similar, except that oxDNA predicts sequence-
dependent thermodynamic effects that are absent in oxDNA
1.0. oxDNA 2.0 is designed to preserve the thermodynamic
and mechanical properties of oxDNA 1.5 at high salt as far as
possible, but improves the structural description of duplexes (and
structures built from duplexes) and allows for accurate
thermodynamics at lower salt concentrations.

As a result, therefore, the discussion provided here for
simulation of one version of the model largely applies to all.
Moreover, it is worth noting that, even given the improved
accuracy of oxDNA 2.0 in certain contexts, simulations of
earlier versions of the model are still potentially valuable.
oxDNA 2.0 comes into its own when it is essential to
incorporate longer-range electrostatics at low salt
concentrations, or when the detailed geometry of the helices
are particularly important. A good example would be when
simulating densely packed helices connected by crossover
junctions in DNA origami (see Section 8). In other contexts,
the reduced complexity of oxDNA 1.5 and hence its improved
computational efficiency (along with slightly greater focus on
basic thermodynamics and mechanics) may be beneficial.
Further, it is often helpful to use oxDNA 1.0 in these contexts,
as the comparison of versions 1.0 and 1.5 can help to distinguish
sequence-dependent and generic effects.

In all three parameterisations, oxDNA represents each
nucleotide as a rigid body with several interaction sites,
namely the backbone, base repulsion, stacking and hydrogen-
bonding sites, as shown in Figure 1. In oxDNA1.0 and
oxDNA1.5, these sites are co-linear; the more realisic geometry
of oxDNA2.0 offsets the backbone to allow for major and minor
grooving.

Interactions between nucleotides depend on the orientation of
the nucleotides as a whole, rather than just the position of the
interaction sites. In particular, there is a vector that is
perpendicular to the notional plane of the base, and a vector
that indicates the direction of the hydrogen bonding interface.
These vectors are used to modulate the orientational dependence
of the interactions, which allows the model to represent the
coplanar base stacking, the linearity of hydrogen bonding and
the edge-to-edge character of the Watson–Crick base pairing.
Furthermore, this representation allows the encoding of more
detailed structural features of DNA, for example, the right-
handed character of the double helix and the anti-parallel
nature of the strands in the helix.

The potential energy of the system is calculated as:

V0 � ∑
〈ij〉

(Vb.b. + Vstack + V ′
exc) + ∑

i,j ∉ 〈ij〉
(VHB + Vcr.st. + Vexc + Vcoax),

(2)

with an additional screened electrostatic repulsion term for
oxDNA 2.0. In Eq. 2, the first sum is taken over all pairs of
nucleotides that are nearest neighbors on the same strand and the
second sum comprises all remaining pairs. The terms represent
backbone connectivity (Vb.b.), excluded volume (Vexc and V ′

exc),
hydrogen bonding between complementary bases (VHB), stacking
between adjacent bases on a strand (Vstack), cross-stacking (Vcr.st.)
across the duplex axis and coaxial stacking (Vcoax) across a nicked
backbone. The excluded volume and backbone interactions are a
function of the distance between repulsion sites. The backbone
potential is a spring potential mimicking the covalent bonds
along the strand. All other interactions depend on the relative
orientations of the nucleotides and the distance between the
hydrogen-bonding and stacking interaction sites.

A crucial feature of the oxDNAmodel is that the double helical
structure is driven by the interplay between the hydrogen-
bonding, stacking and backbone connectivity bonds. The
stacking interaction tends to encourage the nucleotides to
form co-planar stacks; the fact that this stacking distance is
shorter than the backbone bond length results in a tendency
to form helical stacked structures. In the single-stranded state,
these stacks can easily break, allowing the single strands to be
flexible. The geometry of base pairing with a complementary
strand locks the nucleotides into a much more stable double
helical structure.

The model was deliberately constructed with all interactions
pairwise (i.e., only involving two nucleotides, which are taken as
rigid bodies). This pairwise character allows us to make effective
use of cluster-move Monte Carlo (MC) algorithms, which
provide efficient equilibrium sampling (see Section 8).
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It is convenient to use reduced units to describe lengths,
energies and times in the system. A summary of the
conversion of these “oxDNA units” to SI units is provided in
Supplementary Appendix A.

4 SIMULATING THE MODEL: MOLECULAR
DYNAMICS (MD) VS VIRTUAL-MOVE
MONTE CARLO (VMMC)
The oxDNA model is far too complicated to approach
analytically. Publicly released code to simulate oxDNA is
available as a standalone package (oxDNA wiki, 2015), or as a
module (LAMMPS Documentation, 2021) for the popular
LAMMPS simulation software. We note that in the process of
preparing this manuscript, a small error was identified in the
potential as implemented in LAMMPS (see Supplementary
Appendix B). This error is only really noticeable when
simulating unpaired DNA bases. Nonetheless, we recommend that
potential users of the LAMMPS implementation wait for the stable
LAMMPS release in Summer 2021. Thefixwill be verified through an
erratum attached to the original publication Henrich et al. (2018).

There are two broad types of simulation technique that can be
applied to probe the model: molecular dynamics (MD) and
Monte Carlo (MC). Molecular dynamics (Frenkel and Smit,
2002) algorithms evolve their constituent molecules according
to Newton’s laws of motion, and so are a natural choice for
simulating particle systems. For coarse-grained models such as
oxDNA, in which the solvent is implicit, it is necessary to include
a thermostat to both set the temperature and ensure diffusive
rather than ballistic dynamics. The default MD algorithm for the
standalone version of oxDNA is an Andersen-like algorithm
(Russo et al., 2009), in which particle velocities and angular
velocities are resampled from a Boltzmann distribution with a
frequency that sets the effective diffusion coefficient. In the

LAMMPS implementation, the model utilises a Langevin
thermostat for rigid bodies (Davidchack et al., 2015), which
applies small friction- and noise-based updates to the
momentum and angular momentum at each step. The relative
size of these contributions sets the temperature.

A challenge of MD simulations is that when strong, short-
ranged interactions are present—as in oxDNA—they place a limit
on the maximum integration time step that can be used while
preserving numerical stability. Interestingly both the Andersen-
like and Langevin thermostats act to stabilise the simulations,
allowing larger time steps to be used than if the equations of
motion were integrated without noise or drag to generate energy-
conserving, ballistic motion.

Both MD algorithms generate dynamical trajectories that can
be used to probe system kinetics (more on this in Section 7).
However, it is also common to use MD to take equilibrium
averages over the configurations of a particular system. In the
limit of small time steps, both Andersen-like and Langevin
algorithms will converge on a steady state in which they
sample configurations x from the Boltzmann distribution
peq(x)∝ exp(−βV0(x)/kBT), where V0(x) is the potential
energy of the model. How small the step size needs to be
depends on a number of details, such as the strength of
coupling to the thermostat. For parameters that have become
an unofficial default for oxDNA, we illustrate the accuracy of the
algorithm as a function of step size in Supplementary
Appendix B.

Monte Carlo (MC) (Metropolis and Ulam, 1949) simulations
are an alternative approach for sampling from the same
Boltzmann distribution, but evading the drawbacks caused by
the presence of a timestep altogether. In the standard MC
approach (Frenkel and Smit, 2002), configurational moves
x→ y are proposed randomly, with a symmetric probability
distribution that satisfies pgen(x→ y|x) � pgen(y→ x|y). If these
proposed moves are accepted with a probability

FIGURE 1 | Structure and interactions of the oxDNA model (adapted from (Snodin et al., 2015; Doye et al., 2020). (A) Three strands forming a nicked duplex as
represented by oxDNA2.0, with the central section of the complex illustrating key interactions fromEq. 2 highlighted. Individual nucleotides have an orientation described
by a vector normal to the plane of the base (labelled n), and a vector indicating the direction of the hydrogen bonding interface (labelled b). (B) Comparison of structure in
oxDNA1.0 and oxDNA1.5 vs oxDNA2.0. In the earlier version of the model, all interaction sites are co-linear; in oxDNA2.0, offsetting the backbone site allows for
major and minor grooving.
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pacc(x→ y) � max(exp(−(V0(y) − V0(x))/kBT , 1)), then the
Boltzmann distribution peq(x)∝ exp(−βV0(x)) is the
stationary distribution of the simulation and a long simulation
will sample from that distribution, assuming ergodicity.

In principle, the moves x→ y can be arbitrarily large without
leading to errors, since it is not necessary to integrate the
derivative of the potential, only calculate its values at the
endpoints. However, standard MC techniques incorporate
sequential updates of individual particles as the moves x→ y.
For a model of a strongly-attractive system such as oxDNA, these
moves must be extremely small or the acceptance factor will
always be small. The result is painfully slow equilibration,
particularly if large scale movements of strands is required to
observe it.

Virtual-move Monte Carlo (VMMC) (Whitelam and Geissler,
2007; Whitelam et al., 2009) is an alternative that circumvents the
drawbacks of MC algorithms. VMMC first proposes a single
particle move, then generates a co-moving cluster of particles
based on which interactions are best preserved by moving the
particles in unison while ensuring that the correct, detailed-
balanced stationary distribution is retained. The cluster
building process is based on assessing the change in pairwise
interactions, and so VMMC is especially suited to oxDNA, which
has exclusively pairwise interactions. We have implemented the
variant from the appendix of Ref (Whitelam et al., 2009). in the
standalone code.

For those with limited experience of simulating oxDNA, it is
not obvious whether VMMC or MD is the optimal approach to
sampling a given system. We illustrate the relative efficiencies of

the two algorithms when simulating ssDNA of length 20, 100 and
1,000 bases, in terms of the computational time required to reach
states representative of equilibrium from the same
unrepresentative starting condition.

We simulate the poly (dT) molecules with (a) 20 bases, (b) 100
bases and (c) 1,000 bases, using oxDNA1.0 (Ouldridge et al.,
2011). Simulations are performed at T � 27oC, in a periodic box
of 20, 100 and 1,000 simulation units for 20, 100 and 1,000 bases,
respectively. For the MD simulations, we simulate for 60,000
simulation units of time (a nominal 182 ns), with a time step of
dt � 0.003 (see Supplementary Appendix B); each simulation
therefore has 2 × 107 steps in total. For VMMC, we attempted
60,000 VMMC steps per particle. The proposed moves are:
rotation about a random axis, through an angle up to 0.22
radians; and translation through a distance of up to 0.22 units.
These choices produce a nice balance of cluster sizes, ranging
from individual nucleotides to entire strands.

Strands are initialized in a fully stacked, helical conformation
as illustrated in Figures 2A,C, and relax to more-representative,
partially-stacked conformations (Figures 2B,D) as the simulation
is run. The relaxation of the strands is associated with an increase
in the potential V0, and so we illustrate equilibration by plotting
that potential averaged over 20 independent simulations as a
function of simulation progress in Figure 3. The average value of
the potential in equilibrium, 〈V0〉eq, can be approximated by the
average over the data collected in the second half of the
simulations. We then estimate the equilibration time scale as
the time required for 〈V0(t)〉 − 〈V0〉eq to reach 1/e of its initial
value for the first time.

FIGURE 2 | Snapshots of poly (dT) molecules used in the equilibration time tests. Non-representative initial states of poly (dT) molecules (left), and representative
configurations obtained post-equilibration (right). (A) and (B): poly (dT) with 20 nucleotides; (C) and (D) poly (dT) with 100 nucleotides.
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The “simulation progress” axes in Figure 3 are not directly
comparable for MD and VMMC; one measures simulation time,
the other attempted VMMC steps per particle. The most relevant
quantity is the actual computational time required to equilibrate
the system on a given architecture; in simple contexts, this time is
also indicative of the speed with which the algorithm samples the
equilibrium ensemble. Table 1 shows the total runtime of the
simulations and the equilibration time as a fraction of that
runtime. In computational time, the VMMC algorithm is able
to equilibrate the poly (dT) molecules more quickly (compared to
MD algorithm) in all the three cases. VMMC is around 15 times
as fast for the 20-nucleotide strand, dropping to around 4 times as
fast for the 1000-nucleotide strand. The large moves available to
VMMC, and the lack of a requirement to differentiate potentials,
provide this benefit. Note, however, that the ratio of the

equilibration times for MD to VMMC algorithms decreases as
the system size increases; as can be seen in Table 1, the
equilibration time for VMMC simulations increases super-
linearly with system size. This super-linear increase arises
because more steps must be taken to equilibrate larger systems
and because larger clusters tend to be built for larger systems,
resulting in each step taking longer on average.

The relative efficiency of VMMC and MD approaches will
depend to some degree on the choice of damping parameters and
seedmoves; we have not carefully optimised our choices for either
technique, but have used values that generally work well. The
relative efficiency will also depend on the particular system:
VMMC lends itself to systems in which large movements are
important. Our metric for efficiency (speed with which systems
reach a state that is representative of equilibrium) is also fairly

FIGURE 3 | Equilibration plots for the ploy (dT) molecules with (A) 20 bases, (B) 100 bases, (C) 1,000 bases, obtained as averages over 20 independent
simulations. For both MD and VMMC, the potential V0 is plotted as a function of simulation progress, in units of reduced time (3.03 ps) for MD and attempted steps per
particle for VMMC.

TABLE 1 | Computational time for equilibration of poly (dT) molecules of various lengths. Simulations were performed using a single core Intel(R) Core(TM) i5-4300U CPU @
1.90GHz.

Strand
length

Total runtime (MD)
in seconds

Total runtime (VMMC)
in seconds

Equilibration time as a fraction of
total runtime (MD)

Equilibration time as a fraction of
total runtime (VMMC)

20 409.67 14.804 0.0118 0.0244
100 1804.18 147.57 0.0128 0.0287
1,000 32493.0 4187.03 0.0134 0.0299
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crude. Nonetheless, the general rule of thumb that VMMC is
more efficient for smaller systems—particularly those with
significantly fewer than 1,000 nucleotides, such as the
sampling of duplex formation in oligonucleotides - is a helpful
one. It is also particularly easy to enhance VMMC using umbrella
sampling, as explained in Section 6.1.1.

For sufficiently large systems, such as DNA origami, MD
should equilibrate faster, and therefore provide improved
sampling. Another major advantage of the MD approach is
much more facile parallelisation when simulating large
systems. The standalone code allows for parallel simulation on
GPUs (graphical processing units), and the LAMMPS module for
parallel simulations across multiple CPUs (central processing
units) using MPI. These approaches are demonstrated in
Section 8.

5 MECHANICAL PROPERTIES OF DNA

The mechanical properties of DNA are central to its role across
nanotechnological, biophysical and biological contexts. DNA’s
flexibility and response to applied stress determine the
conformation and accessibility of the genome inside cells
(Lewis et al., 1996; Nikolov et al., 1996; Widom, 2001;
Richmond and Davey, 2003). Moreover, not only is the
stiffness of dsDNA important in maintaining the
conformation of DNA nanostructures, but the relative
flexibility of ssDNA crucially allows for joints and flexible
hinges. These properties are widely-studied in bulk and single-
molecule experiments in vitro (Crothers et al., 1992; Smith et al.,
1996; Strick et al., 1996; Wang et al., 1997; Rivetti et al., 1998;
Mills et al., 1999; Podtelezhnikov et al., 2000; Dessinges et al.,
2002; Bryant et al., 2003; Seol et al., 2004; Fujimoto et al., 2006;
Gore et al., 2006; Lionnet et al., 2006; Seol et al., 2007; Du et al.,
2008; Forth et al., 2008; Mosconi et al., 2009; Demurtas et al.,
2009; Brutzer et al., 2010; Gross et al., 2011; Salerno et al., 2012;
Tempestini et al., 2013; Fields et al., 2013; Le and Kim, 2014; Kim
et al., 2015).

It is therefore essential that a coarse-grained model provides a
reasonable representation of these properties. In this section, we
both discuss the mechanical properties of oxDNA, and show how
to construct simulations that can probe these properties.

5.1 Stiffness of Duplex and
Single-Stranded DNA
Themost commonmetric used to quantify the stiffness of DNA is
the persistence length, defined in the textbook of Cantor and
Schimmel as (Cantor and Schimmel, 1980)

Lps � 〈L · l0〉
〈l0〉

. (3)

Here, L is the end-to-end vector of the polymer and l0
represents the vector between the first two monomer units.
dsDNA is most commonly thought of as a semi-flexible
polymer or wormlike chain (Kratky and Porod, 1949). In this

picture, the discrete series of inter-base pair vectors are
approximated as a continuous, differentiable polymer axis with
a quadratic free energy of curvature. For an infinitely long, semi-
flexible polymer, correlations in the alignment of the polymer axis
decay exponentially with separation, with a decay rate given
determined by Lps. When translated back to the language of
inter-base-pair vectors, we obtain

〈ln · l0〉
〈l0〉2

� exp(− n〈l0〉/Lps), (4)

where ln is the vector between base pair n − 1 and base pair n.
It is relatively straightforward to both assess whether the

wormlike chain model is a good model for oxDNA, and to
extract Lps. We simply simulate a duplex system for long
enough to sample a representative set of configurations,
calculate the correlation between inter-base-pair vectors as a
function of separation, and fit the results to the exponential
decay of Eq. 4.

In Figure 4, we plot the results of such a procedure. To obtain
these data, we simulate a DNA duplex of length 500 base pairs at
27°C using oxDNA1.5. We perform 20 VMMC simulations with
2 × 107 attempted steps per particle for VMMC. The first 105

moves are treated as an initialization period and no data is
collected. Additionally, the base pairs at the ends of the duplex
are more flexible than those well within the bulk; to obtain
properties representative of bulk DNA, we therefore do not
include the five base pairs at either end in our analysis.
Correlations are calculated from the default configurational
outputs of the model, using the code provided in (Sengar,
2021). In order to obtain a good sample, it is helpful to output
these configurations with a high frequency; we use a small value
for the parameter to output energy configurations after a single
VMMC move per particle.

As is evident from Figure 5, the correlation of the duplex axis
indeed follows an exponential fall-off, to within sampling error.
Fitting Eq. 4 to ln(〈ln .l0〉

〈l0〉2 ) gives Lps ≈ 131〈l0〉 � 131 ×

FIGURE 4 | Plot of correlation of inter-segment vectors vs distance
(number of base pairs along the DNA) for 500 dsDNA (blue curve) and 100
ssDNA (red curve). dsDNA fitted with an exponential decay with a decay
constant of 0.0076134.
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0.4118 ≈ 53.95 simulation units� 45.91 nm, consistent with
experimental estimates of 40–50 nm (120–150 base pairs) at
high [Na+] concentrations (Savelyev, 2012; Herrero-Galán
et al., 2013).

Indeed, more generally, the mechanical properties of double-
stranded oxDNA are well-described by a semiflexible polymer
model, and its torsional and extensional moduli have been
analysed elsewhere (Ouldridge et al., 2011; Matek et al., 2015).
Significant deviations from this behaviour - such as sharp kinks
facilitated by broken base pairs—are generally only observed
when large stresses are applied to the molecule (Romano et al.,
2013; Matek et al., 2015), in agreement with experiment.

ssDNA behaves very differently in oxDNA. In Figure 4, we
plot the correlations of backbone-site-to-backbone-site vector for
a 100-base poly (dT) ssDNA, obtained from running simulation
in oxDNA1.5 at 27°C. We perform 20 VMMC simulations with
2 × 107 attempted steps per particle. The first 105 moves are
treated as an initialization period and no data is collected. For
these simulations, we have set the stacking strength between the
nucleotides to zero (the consequences of non-zero stacking
strength will be addressed in Section 5.2). From Figure 4 and
Figure 5, it is apparent that the correlation drops very rapidly,
meaning that unstacked ssDNA is very flexible in oxDNA, as it
should be; adjacent backbone-to-backbone vectors can bend
through a large angle. But importantly, it is worth noting that
the drop in correlation between vectors with separation along the
polymer cannot be well described by an exponential as in Eq. 4.
The convexity of ln(〈ln .l0〉

〈l0〉2 ) is indicative of more distant
backbone-to-backbone vectors being aligned more strongly
than would be expected from the alignment of two adjacent
backbone-to-backbone vectors.

The reason for this behaviour is that it is the excluded volume
of nucleotides that gives unstacked ssDNA its “stiffness” in
oxDNA. The excluded volume of nucleotides discourages
ssDNA from folding back on itself, but importantly it leads to
very different polymer properties than assumed in common
polymer models such as the freely-jointed chain and the

wormlike chain. For these classic polymer models, the
statistical properties are entirely determined by interactions
between parts of the polymer that are adjacent along the
backbone, whereas the curvature of ln(〈ln .l0〉

〈l0〉2 ) in Figure 5 is
indicative of interactions between more distant points along the
polymer contour playing a role.

As a result, using a wormlike chain with a given Lps (or a freely
jointed chain with a given Kuhn length) to understand ssDNA in
oxDNA is misleading. The overall tendency of the polymer to
swell to fill a large volume - due to its excluded volume - would
suggest a far greater degree of local stiffness than actually present.
This effect is retained even when stacking between adjacent
nucleotides is included.

Importantly, these complexities also apply to physical ssDNA,
as well as the oxDNA model. Single DNA have linear dimensions
on the order of 1 nm, and experimental attempts to measure the
mechanical properties of oxDNA (usually reported as persistence
lengths) are of a similar order of magnitude (Smith et al., 1996;
Rivetti et al., 1998; Mills et al., 1999; Murphy et al., 2004).
Describing ssDNA in this way is not self-consistent; any
polymer with this cross-section and flexibility would be
strongly affected by excluded volume, so these models cannot
be accurate. The result has been that experiments on large scale
properties of relaxed ssDNA (Rivetti et al., 1998; Murphy et al.,
2004), which are sensitive to excluded volume effects, tend to
produce larger estimates for quantities like Lps than experiments
on shorter sections of ssDNA, or ssDNA under high tension
(Smith et al., 1996; Rivetti et al., 1998).

Low salt concentrations, which lead to weaker screening of
electrostatic interactions between non-adjacent nucleotides make
the above effect stronger (Smith et al., 1996; Dessinges et al.,
2002). Base-pairing interactions in non-homopolymeric ssDNA
have a confounding effect; the formation of secondary structure
tends to condense the strand, making it appear more flexible
when its statistics are modelled with a wormlike chain or a freely-
jointed chain (Smith et al., 1996). Overall, as for oxDNA, simple
descriptions of the mechanical properties of physical ssDNA
should be treated with caution.

5.2 Response of ssDNA to Tension
A common mechanism for probing the mechanical properties of
DNA is to apply force, whether torsional (Strick et al., 1996;
Bryant et al., 2003; Forth et al., 2008; Mosconi et al., 2009; Brutzer
et al., 2010; Salerno et al., 2012; Tempestini et al., 2013),
extensional (Smith et al., 1996; Strick et al., 1996; Wang et al.,
1997; Dessinges et al., 2002; Seol et al., 2004; Gore et al., 2006; Seol
et al., 2007; Huguet et al., 2010; Gross et al., 2011) or shearing
(Forth et al., 2008; Hatch et al., 2008; Mosconi et al., 2009; van
Mameren et al., 2009; Brutzer et al., 2010; Salerno et al., 2012;
Tempestini et al., 2013; Wang and Ha, 2013).

Experiments have focused on both the elastic properties
associated with small deformations (Smith et al., 1996; Strick
et al., 1996; Wang et al., 1997; Bryant et al., 2003), and large scale
structural transitions (Smith et al., 1996; Strick et al., 1996;
Dessinges et al., 2002; Bryant et al., 2003; Seol et al., 2004;
Gore et al., 2006; Seol et al., 2007; Hatch et al., 2008; Forth
et al., 2008; Mosconi et al., 2009; van Mameren et al., 2009;

FIGURE 5 | Log plot of correlation of inter-segment vectors vs distance
(number of base pairs along the DNA) for 500 dsDNA (blue curve) and
100ssDNA (red curve). dsDNA fitted with an exponential decay with a decay
constant of 0.0076134.
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Brutzer et al., 2010; Gross et al., 2011; Salerno et al., 2012; Wang
and Ha, 2013; Tempestini et al., 2013).

Applying external tension is relatively straightforward in
molecular simulation; there are more subtleties associated with
applying boundary conditions for external torsion (Matek et al.,
2012; Matek et al., 2015), but it is also possible. In the case of
oxDNA, small external stresses have been used to help
parameterise and characterise the model (Ouldridge et al.,
2011; Matek et al., 2015; Skoruppa et al., 2017; Nomidis et al.,
2019); larger stresses have been applied to provide insight into
experiments on structural transitions (Matek et al., 2012; Romano
et al., 2013; Wang and Pettitt, 2014; Matek et al., 2015; Mosayebi
et al., 2015;Wang et al., 2015; Engel et al., 2018; Desai et al., 2020).

Systems with internally-induced stress, where the drive to
form base pairs in one part of an assembly applies stress to
another part, have also been studied (Harrison et al., 2015;
Sutthibutpong et al., 2016; Wang and Pettitt, 2016; Wang
et al., 2017; Tee and Wang, 2018; Caraglio et al., 2019;
Harrison et al., 2019; Engel et al., 2020; Fosado et al., 2021;
Park et al., 2021).

As an example, in this section we demonstrate the force-
extension properties of ssDNA as represented by oxDNA. Optical
tweezer experiments with ssDNA have a long history (Smith et al.,
1996). These original experiments with naturally-occurring DNA
exhibited formation and stabilization of secondary structure in
high salt conditions and low-moderate force, although this was
not explicitly modelled at the time. The presence of this secondary
structure makes simulation of DNA heteropolymers hard; it is
challenging to equilibrate a long strand with many competing
base-pairing configurations (we have had some success using
methods based on parallel tempering (Romano et al., 2013).
Instead, therefore, we simulate 100-nucleotide-long
homopolymeric poly (dA) using oxDNA1.0 and oxDNA1.5.

The helicity in oxDNA is driven by stacking interactions
between adjacent nucleotides. As is evident from Figure 2,
this stacking has a residual effect on the structure of ssDNA

strands, which are partially stacked in equilibrium. We will use
force-extension simulations to probe the consequences of single-
stranded stacking in oxDNA.

For these simulations, which are similar to original results in
(Šulc et al., 2012), we use both a version of the parameters
with no stacking interacting, a sequence-averaged stacking
interaction (oxDNA1.0), and a sequence-specific stacking
interaction (oxDNA1.5) for which poly (dA) has the strongest
interaction of all sequences. All simulations are performed at
T � 27oC, in a periodic box of length 100 simulation units with
each simulation running for 4 × 8 steps with dt � 0.005 which
equals to a total run time of 2 × 106 units. Four sets of simulations
are performed for 12 difference values of force.

Figure 6A shows that extensive stacking has only a moderate
effect on the force-extension properties of the ssDNA at low force.
In the sequence-dependent model, poly (dA) is close to 90%
stacked at 27°C—see Figure 6B. However, the increased stiffness
due to the tendency to form stacked single helices (akin to the
initial state in Figure 3) is counteracting by the shorter end-to-
end distance of the backbone when it is forced to wind around
the helix.

At larger forces, however, we clearly see a signal of stronger
stacking. Larger force is required to extend the strands with
stronger stacking, and a plateau-like feature is evident in the
system with the strongest stacking. A similar plateau was
observed by Seol et al. for RNA stretching (poly(A) and
poly(C)) (Seol et al., 2004; Seol et al., 2007) but was absent for
poly(U). Those authors hypothesised that the plateau arises as the
shorter end-to-end distance in helical stacked confirmations
becomes prohibitive; additional force is then required to
disrupt the stacking interaction to allow further extension,
causing an increase in the gradient of the force-extension
curve. After the bases have unstacked, the gradient becomes
less steep again.

Broadly speaking, this explanation is borne out by oxDNA.
Notably, however, Seol et al. (Seol et al., 2004; Seol et al., 2007)

FIGURE 6 | The response of ssDNA to tension, and the role of stacking therein. (A) Force-extension plots for 100-nucleotide poly (dA) using three models: no
stacking (black); average stacking strength (oxDNA1.0, blue) and sequence-dependent stacking (oxDNA1.5, red). Stronger stacking leads to an increased force at larger
extensions, and extremely strong stacking results in a plateau-like feature as stacking is disrupted. (B) Stacking probability for average stacking strength (oxDNA1.0,
blue) and sequence-dependent stacking (oxDNA1.5, red) as a function of applied force. Adjacent nucleotides are defined as stacked if the stacking energy between
the pair is more than -0.1 units.
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concluded that a relatively low stacking probability should give a
pronounced plateau. By contrast, in Figure 6B—obtained by
probing configuration output files to assess the degree of stacking
(Sengar, 2021) we see that strands with an initial stacking
probability of 78% show only a hint of the plateau. This
discrepancy arises because, in the minimal model of Seol et al.
(Seol et al., 2004; Seol et al., 2007), even a single pair of stacked
nucleotides has a much shorter end-to-end distance along the
ssDNA backbone than an unstacked pair. The explicit
representation of 3D structure in oxDNA, however, captures
the fact that the shortening of the end-to-end distance along the
DNA backbone is only significant when several bases in a row are
stacked into a helix, so that the backbone really has to wrap back
round upon itself. As a result, extension can occur while
disrupting only a fraction of the stacking interactions, and
ssDNA in oxDNA remains significantly stacked even at high
force (Figure 6B).

While oxDNA’s representation of the polynucleotide
backbone is simplistic, these geometrical arguments also apply
to physical DNA - suggesting that even weak plateau-like
behaviour in ssDNA force-extension curves is evidence of
strong stacking, and the absence of a plateau is not proof
of an absence of stacking. More generally, this system is
indicative of the value that oxDNA can provide. The system
involves an interplay between basic structure, mechanics and
thermodynamics of ssDNA. When applied, oxDNA reveals
subtleties that are not directly apparent from a more minimal
model. Indeed, it is quite common to construct very simple
models to interpret biophysical experiments on the mechanical
properties of DNA (Hatch et al., 2008; Qu and Zocchi, 2011;
Salerno et al., 2012; Vafabakhsh and Ha, 2012; Fields et al., 2013;
Tempestini et al., 2013; Wang and Ha, 2013; Meng et al., 2014);
simulations with oxDNA often reveal physically reasonable
relaxation mechanisms that aren’t factored into these simpler
models (Harrison et al., 2015; Matek et al., 2015; Mosayebi et al.,
2015; Skoruppa et al., 2017; Harrison et al., 2019). At this stage, it
is also worth highlighting a general virtue of coarse-grained
models that is apparent in these simulations. It is very simple
just to switch off interactions—such as the stacking here—to
isolate the effect those interactions have on the system. Doing so
can be incredibly helpful in interpreting the physical cause of
experimental signals.

6 THERMODYNAMIC SIMULATIONS WITH
OXDNA

6.1 Duplex Formation Thermodynamics
As well as representing the structure andmechanical properties of
ssDNA and dsDNA, oxDNA is also designed to capture the
thermodynamics of the hybridization transition from ssDNA to
dsDNA. Needless to say, accurately capturing the
thermodynamics of this transition is essential for any model
hoping to describe biological and nanotechnological processes
involving the forming and disruption of base pairs.

To assess the thermodynamics of a simple duplex, it is typical
to simulate an isolated pair of strands in a periodic cell that is

large enough to prohibit self-interactions (unit cell size of >
≈
2n

oxDNA length units, where n is the duplex length, is generally
sufficient). Given a sufficiently long VMMC or MD simulation,
the fraction of time spent in the bound state can be estimated and
used to infer quantities such as melting temperatures, as
outlined below.

However, particularly for longer strands, simulating this
process can be prohibitively slow. For two short strands in
solution, the vast majority of configurations have well-
separated strands and no base-pairing interactions.
Enthalpically favourable base-pairing provides a compensatory
advantage to configurations with many well-formed base pairs
(fully-formed duplexes). To obtain a good estimate of the fraction
of strands bound in equilibrium, it is necessary to pass between
these two sub-ensembles (completely unbound and fully bound)
many times; as a rule of thumb, we have found that around 10
interconversions will start to provide meaningful statistics.

Unfortunately, interconversion requires the system to
transition through states with only one or two base pairs that
benefit neither from the large ensemble of configurations
accessible to dissociated strands, nor the favourable
interactions of fully-bound strands. These configurations with
Q � 1, 2 base pairs are rare in the equilibrium ensemble, and have
a relatively high free energy

F(Q) � −kTln(peq(Q)) + C, (5)

where C is a Q-independent constant, and peq(Q) is the
probability of observing Q base pairs in equilibrium. The high
free energy of these intermediate states makes dissociation and
association rare event processes that are challenging to sample
directly.

6.1.1 Umbrella Sampling
To overcome this difficulty, simulations can be augmented with
umbrella sampling (Torrie and Valleau, 1977). For a system with
coordinates x (in our case, nucleotide positions and orientations),
umbrella sampling involves identifying a collective order
parameter λ(x) for the transition of interest, and then
applying a bias W(λ(x)) to force the system to occupy
otherwise undesirable values of λ(x) that lie along the
transition path more frequently. Unbiased statistical averages
can be extracted from these biased samples using

〈A(x)〉eq �〈 A(x)
W(λ(x))〉biased

, (6)

where A(x) is a quantity of interest. Essentially, the contribution
of each configuration sampled to the average is reduced by a
factor of the bias applied.

A common approach with umbrella sampling is to
perform a series of separate simulations with very strong
biases tightly centred on distinct values of λ(x). Simulations
centred on adjacent values of λ(x) can then be knitted
together using procedures such as the Weighted
Histogram Analysis Method (WHAM), allowing the
calculate of the free energy difference between the start
and end point (Kumar et al., 1992).
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Generally, however, we have found that this sophisticated
approach is not necessary for oxDNA, and a particularly
straightforward umbrella sampling method is built into the
standalone oxDNA code. When using VMMC, it is possible to
specify discrete order parameters λ(x) based on the number of
base pairs between user-defined groups of nucleotides. For duplex
formation, it is fairly straightforward to iteratively identify a
biasing potential that facilitates both the sampling of all states
and the rapid transition between fully bound and completely
detached configurations.

This biasing potential doesn’t need to be fine tuned so that all
values of λ(x) are equally probable in the biased sample—just
good enough to facilitate multiple transitions backwards and
forwards. Typical examples for 5-base and 8-base duplexes are
given in (Sengar, 2021). For more complex systems, more
sophisticated λ(x) and the use of multiple sampling windows
are sometimes necessary—we refer the reader to (Ouldridge et al.,
2010a; Ouldridge et al., 2013a; Machinek et al., 2014; Harrison
et al., 2019). Even in these cases, however, the principles are
similar to those outlined here.

We perform umbrella sampling simulations on an 8-
nucleotide duplex at 312K in a simulation volume of side
length 15 units, using the oxDNA1.5 version of the model.
Five independent simulations are performed for 7.7 × 108

VMMC steps per particle. The quantity peq(Q) obtained from
simulations is used to calculate a free energy F(Q) according to
Eq. 5 and plotted in Figure 7. The shape of this graph is typical
for duplex formation, showing the expected large jump in free
energy from 0 to 1 base pairs. From 1 to 6 base pairs there is a
steady drop in the free energy as configurations are stabilised by
additional base-pairing interactions that are favoured once the
strands are in close proximity. The final base pairs are less
favourable, as base pairs at the end of a duplex are prone to
fraying (SantaLucia and Hicks, 2004; Ouldridge et al., 2011).

The shape of F(Q) gives a good guide to constructing first
estimates of umbrella biases W(λ(x)) for duplex formation in
general. Ignoring the dissociated state, W(λ(x)) should increase

roughly exponentially with the number of base pairs broken, since
it must counteract exp(−F(Q)/kT). The slope of F(Q), and hence
the required rate of exponential growth in W(λ(x)), is
determined by the temperature; as a crude rule of thumb, a
bias of a factor of 10–15 is required per base pair broken at 300K;
this required bias falls to a factor of 3-4 by 330 K.

The initial jump in free energy from 0 to 1 in 7 is largely
determined by the simulation volume; for simulation cells similar
in size to this one, a factor of 3000–10000 is a reasonable first
guess for the required weight of the 1-base-pair state relative to
the 0-base-pair state.

In addition to biasing by the number of base pairs formed, it is
sometimes helpful to also use a distance-based contribution to
the order parameter. Built in to the standalone oxDNA code is the
ability to define additional dimensions of λ(x) that depend on
the minimum separation between sets of nucleotides, rather than
the number of base pairs. We have found that a simple division of
the 0-base-pair state into configurations in which the strands are
close (less than 4 units apart) and far apart (4 or more units apart)
can reduce the amount of time spent sampling the independent
diffusion of strands around the simulation volume. For
simulation volumes similar to this one, the close state should
be weighted by around 5–10 relative to the distant state, which
dominates the unbound ensemble.

6.1.2 Melting Temperature Curves
Although free-energy profiles for a single pair of strands are
informative, they aren’t directly comparable to the majority of
experiments. Indeed, the thermodynamics of the oxDNA model
was parameterised to reproduce the nearest neighbour model
(SantaLucia, 1998), which in turn was fitted to—and
predicts—experimental melting curves in bulk conditions. The
Santalucia parameterisation of the nearest neighbour model
(SantaLucia and Hicks, 2004) assumes that DNA duplex
formation is essentially a two-state transition between a well-
formed duplex and separated single strands. The free-energy
profiles produced by oxDNA, such as Figure 7 are consistent
with this picture; the ensemble is dominated by configuration
with either zero base pairs, or a large number. In this limit, the
melting behaviour can be well-characterised by the fraction of
strands that are expected to have base pairing with another strand
at a temperature T in a bulk system, f∞(T).

To calculate f∞(T) in this two-state description, it is first
necessary to obtain data at a range of temperatures. In principle,
these data can be obtained through separate simulations.
However, we have found that a technique called single
histogram reweighting (Ferrenberg and Swendsen, 1988) is
sufficient to infer f∞(T) accurately over a large enough range
of temperatures to describe the melting transition. The basic idea
is to treat a simulation at a temperature T as a biased sample of the
ensemble at another temperature T ′; this bias can be corrected in
the same way as the bias applied during umbrella sampling:

〈A(x)〉T ’ � 〈A(x)exp(V0(x,T)/kT − V0(x,T ′)/kT ′)〉T. (7)

Here V0(x,T) is the value of the potential in the original
simulation at temperature T (V0(x,T ′) is slightly different due to

FIGURE 7 | Free-energy profile of an 8-base-pair duplex (3′-ACTGACGT-5′
and 3′-ACGTCAGT-5′) at 312K in a simulation volume of side length
15 units.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 69371012

Sengar et al. A Primer on oxDNA

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


a T-dependent term in the potential (Ouldridge et al., 2011)).
Extrapolation to nearby temperatures using single histogram
reweighting is built into the oxDNA standalone code. It is
important to note that if umbrella sampling, and particularly
temperature reweighting, are applied, then it is especially
important to simulate for a good equilibration time before
results are collected. Normally, any initial unrepresentative
states will be swiftly overwhelmed within an average taken
over the whole course of the simulation. The unbiasing
factors in Eq. 6 and Eq. 7, however, can cause
unrepresentative initial states to be assigned enormous
weights in the ensemble average that are effectively
insurmountable, rendering the simulation results
meaningless.

Given well-sampled data of the formation of a single duplex
in a simulation volume, it is tempting to assume that the
fractional yield of states with more than one base pair in a
single duplex simulation, f1(T), is equal to the bulk yield of
duplexes f∞(T) in a system with the same total concentration
of strands. Unfortunately this is not the case; simulations of
only a single target duplex neglect concentration fluctuations
within unit cells that have large effects on the yield of products
(Ouldridge et al., 2010b; Ouldridge, 2012). Quantitative
comparison to experimental data is therefore impossible
unless extrapolations to bulk conditions can be performed.
Assuming ideal behaviour of solutes, Extrapolation is possible.
For dimerisation between non-self-complementary strands
(Ouldridge et al., 2010b)

f∞(T) � (1 + 1
2Φ(T)) −

���������������(1 + 1
2Φ(T))2

− 1

√√
, (8)

where Φ(T) � f1(T)/(1 − f1(T)). A similar result holds for self-
complementary duplexes (Ouldridge et al., 2010b), and
algorithms exist to extrapolate to bulk for more complex
assemblies (Ouldridge, 2012).

Melting curves obtained for 5-base and 8-base duplexes, using
umbrella sampling, temperature reweighting and extrapolation to
bulk, are reported in Figure 8. The melting temperatures Tm for
these duplexes – defined, in the two state model, as the
temperature at which f∞(T) is 0.5 – are close to the values
predicted by the nearest neighbour model at the same conditions
(17.8°C and 56.1°C) (SantaLucia and Hicks, 2004). This
agreement is, of course, due to the model being fitted to these
data. However, it is worth noting that although duplexes are often
described as having a single “melting temperature”, the
temperature at which f∞(T) is 0.5 depends on the
concentration of the individual strands, [C] with (Ouldridge
et al., 2011)

dTm

d[C] ∼
ΔT
[C]. (9)

Here, ΔT is the width of the transition over which f∞(T) goes
from largely bound to largely unbound. To match nearest
neighbour predictions for melting temperatures over a range
of concentrations, therefore, it is necessary that transition widths
are also comparable; achieving a good match was a major part of
oxDNA’s parameterisation.

6.2 Thermodynamics of More Complex
Structures
Although accurately simulating basic duplex formation was
necessary for the parameterisation of oxDNA, little new
information is to be gained from performing these simulations
again. The model is trained to reproduce the thermodynamics of
the nearest neighbour model, so simulating the thermodynamics
of duplex formation is an expensive way to get at an
approximation to said nearest neighbour model.Where
oxDNA can add value is if duplex formation occurs as part of
some more complex system - possibly one in which internally or
externally-applied stresses, or topological constraints, are relevant
(Romano et al., 2012; Šulc et al., 2012; Ouldridge et al., 2013a;
Mosayebi et al., 2015; Kočar et al., 2016; Fonseca et al., 2018; Tee
and Wang, 2018; Harrison et al., 2019). As an example, we
simulate the formation of a small pseudoknotted structure
(Figure 9) leveraging the intuition and techniques discussed in
Section 6. Here, the two sequences 3′-AGCTTCCATG-5′ and 3′-
AAGCTCATGG-5′ cannot form a single continuous duplex, but
can form two 5-bp duplexes section if both strands bend back on
themselves. The stability of this structure cannot be inferred from
the nearest neighbour model, but it can easily be simulated with
oxDNA. Applying umbrella sampling, we simulate the system at a
temperature of 308K in a periodic cell of side-length 20 using
oxDNA1.5.

The resulting free-energy profile, Figure 10, shows that, at the
temperatures of interest, forming two arms is less favourable than
forming only one. The advantage obtained by bringing the strand
into close proximity via the binding of the first duplex is not
enough to overcome the internal stress generated by the structure.
This internal stress is evidenced by the much shallower slope of
the free energy profile for forming base pairs 6–10 than 1-5.

FIGURE 8 | Melting transition of oligonucleotides. Fractional yield of
5mer (3′-AGTCT-5’/3′-AGACT-5′) and 8mer (3′-ACTGACGT-5’/3′-ACGTCA
GT-5′) duplexes in bulk (f∞(T))) as predicted by oxDNA1.5 at a total
concentration of 7.96 × 10− 4 M for each strand.
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7 DYNAMICAL SIMULATIONS

The simulations described hitherto probe static quantities
obtained in the equilibrium ensemble. However, the dynamics
of DNA-based systems can be equally important. In particular,
the time required for reactions to happen is crucial when
constructing complex self-assembling systems or functional
circuits, particularly those that are intended to remain out of
equilibrium, or exhibit an extremely slow relaxation to
equilibrium (Dunn et al., 2015; Srinivas et al., 2017; Fern and
Schulman, 2018; Cabello-Garcia et al., 2021).

Unlike the thermodynamic and structural properties, oxDNA
has not been carefully parameterised to the dynamics of physical
DNA. Coarse-graining is generally known to speed up timescales
by smoothing free-energy landscapes (Murtola et al., 2009).
Moreover, the explicitly dynamical algorithms (particularly the
Andersen-like thermostat) give a fairly crude approximation to

the dynamics expected from small molecules in solution. Neither
the Anderson-like nor the Langevin thermostat incorporates
cooperative hydrodynamics (an updated version of the
Langevin thermostat developed to describe hydrodynamic
effects (Davidchack et al., 2017) has not yet been implemented
in LAMMPS), and both are typically run with large effective
diffusion coefficients to enhance sampling (see Supplementary
Appendix A).

Nonetheless, the dynamics of oxDNA is fundamentally
constrained by the combination of its free-energy landscape
and its embedding of that free-energy landscape in an explicit
geometrical description. For comparison, it is surprisingly
difficult to generate meaningful dynamics based on just the
free-energy landscape predicted by the nearest neighbour
model without an explicit geometrical representation (Srinivas
et al., 2013; Schaeffer et al., 2015) [add commented-out citation].

As a result, dynamical simulations of oxDNA can provide
useful insight into dynamical properties of physical DNA; the
model has been particularly successful in describing toehold-
mediated strand displacement (Srinivas et al., 2013; Machinek
et al., 2014; Haley et al., 2020; Irmisch et al., 2020), one of the
fundamental reactions of DNA nanotechnology. Importantly, the
focus should always be on comparing the relative dynamics of two
similar systems – for example, the dependence of strand
displacement rates on toehold lengths. Unlike the
thermodynamic and mechanical properties of oxDNA,
absolute values of dynamical properties are largely irrelevant.

As an example, we simulate the dissociation kinetics of
duplexes of length 4 (3′-ATAT-5’/3′-ATAT-5′), 5 (3′-ATATA-
5’/3′-ATATA-5′) and 6 (3′-ATATAT-5’/3′-ATATAT-5′) at
320 K using the Anderson-like thermostat applied to
oxDNA1.5, Figure 11. Example trajectories, showing the
energy of the system per nucleotide, illustrate the two-state
nature of the system discussed earlier in Section 6. The
strands spend a substantial amount of time in states with an
energy of approximately -1.0 in oxDNA units (duplex
configurations), before suddenly transitioning to states with an

FIGURE 9 | Pseudoknot unbound (A) and bound (B) states, for seqeunces 3′-AGCTTCCATG-5’/3′-AAGCTCATGG-5’.

FIGURE 10 | Free energy vs number of base pairs formed for the complex
3′-AGCTTCCATG-5’/3′-AAGCTCATGG-5′ in a simulation volume of side length
20 oxDNA units.
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energy around -0.2 (single-stranded states). As hinted at by these
examples, longer strands take exponentially longer to dissociate
(the simulation steps taken to reach an energy of -0.2 per
nucleotide, averaged over 10 simulations for each length, are:
9117 ± 2883, 64032 ± 20249, 279744 ± 88463). This exponential
suppression of the dissociation rate with strand length is
consistent with dissociation being a rare event that requires
the crossing of a free energy barrier whose height grows
linearly with duplex length at fixed temperature (here, 320 K),
as suggested by the free-energy profile in Figure 7.

In this case, all systems studied showed the required behaviour
on relatively short time scales. Frequently, it is necessary to
simulate much slower processes. We have found that the
forward flux sampling (FFS) technique (Allen et al., 2009) is
an effective tool for simulating dynamical processes with a longer
timescale. However, FFS is trickier to implement than umbrella
sampling, and is not yet built in to the released code in an
optimal way.

8 Simulation of Large Structures
Another significant application area for oxDNA has been the
simulation of large structures to assess their conformation,
stability and flexibility (Fernandez-Castanon et al., 2016;
Schreck et al., 2016; Sharma et al., 2017; Shi et al., 2017;
Benson et al., 2018; Choi et al., 2018; Coronel et al., 2018;

Berengut et al., 2019; Brady et al., 2019; Hoffecker et al., 2019;
Snodin et al., 2019; Berengut et al., 2020; Chhabra et al., 2020;
Poppleton et al., 2020; Tortora et al., 2020; Yao et al., 2020).

In this context, oxDNA represents an alternative to the CanDo
model and simulation package (Castro et al., 2011). The added
complexity of oxDNA has a computational cost, but means that it
is better able to handle irregular systems. For such simulations,
use of oxDNA2.0 is strongly recommended given its better
representation of structure, particularly in the context of DNA
origami. A more detailed primer on setting up these simulations
can be fund in Ref (Doye et al., 2020); here we focus only on
technical aspects of the simulations.

As briefly mentioned in Section 4, MD algorithms can
facilitate the simulation of really large systems by allowing
parallelisation across GPU threads or multiple CPUs. The
oxDNA standalone code is GPU-enabled via the CUDA C
API and supports runs on single CPUs and single GPUs,
whereas the LAMMPS version of oxDNA uses the Message
Passing Interface (MPI) and is optimised for parallel runs on
multi-core CPUs and distributed memory architectures.

To provide benchmarks and examplar codes, we have
performed large-scale simulations with both implementations
on two different compute architectures, namely a NVIDIA
V100 PCIe GPU with 5,120 CUDA cores at Arizona State
University’s High Performance Computing Facility, and the

FIGURE 11 | Energy per nucleotide vs simulation time step for (a) 4mer, (b) 5mer, (c) 6mer duplexes at 320 K. Sudden transitions from low to high energy are
indicative of rare-event melting.
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ARCHIE-WeSt HPC facility at the University of Strathclyde
consisting of 64 Intel Xeon Gold 6138 (Skylake) processors
@2.0GHz with 40 cores per node and 2,560 cores in total. The
GPU and single-core CPU runs were performed with the oxDNA
standalone code SVN version 6989. The GPU runs all used mixed
precision and an edge-based approach (Rovigatti et al., 2015). The
LAMMPS stable version from March 3, 2020 was used for the
multi-core CPU runs (the small error in the LAMMPS
implementation highlighted in Supplementary Appendix B is
irrelevant for the purposes of these efficiency comparisons). All
runs were performed with the oxDNA2.0 model featuring
sequence-dependent stacking and hydrogen-bonding
interactions.

Two different benchmarks were studied to analyse the
performance of both implementations. The first one consisted
of a varying number of double-stranded octamer duplexes and
investigated the performance at different system sizes, ranging
from 8 octamers with 128 nucleotides in total to 262,144 octamers
with 4,194,304 nucleotides in total. The concentration of
octamers was kept constant at one octamer per 203 oxDNA
length units, whereas the temperature and salt concentration
were set to T � 293K and [Na+] � 500 mM, respectively.

The second benchmark consisted of a DNA origami “pointer”
structure (Bai et al., 2012) (15,238 nucleotides) and tested the
performance at different salt concentrations between [Na+] �
100mM and 1 M. The salt concentration is another performance-
critical aspect in the simulation of nucleic acids that is often
neglected. The reason is that the salt concentration affects the
Debye screening length, which is proportional to the inverse
square root of the salt concentration. The temperature of this
second benchmark was fixed at T � 293K . The initial
configuration was converted from the cadnano format using
the TacoxDNA server (Suma et al., 2019), then relaxed using
oxdna.org (Poppleton et al., 2021), implementing the protocol

from (Doye et al., 2020) followed by a simulation at the respective
salt concentration.

It is worth emphasising that origami structures such as the
pointer are a setting in which the improved structural model of
oxDNA2.0 is essential. Unless an accurate model is used,
relatively small discrepancies can contribute strain that builds
up across the structure, resulting in large scale distortion.

Figure 12 shows the results of the oligomer benchmark, which
are expressed as time per integration time step in milliseconds.
On a single Intel Xeon Gold CPU the standalone code
implements a single timestep slightly faster than the LAMMPS
implementation. Note, however, that the actual efficiency will
depend on the choice of coefficients of coupling to the
thermostats (see Supplementray Appendix B).

When deployed in parallel on more CPUs, the LAMMPS
implementation offsets this disadvantage almost immediately. Its
performance at the larger side of system sizes is more or less ideal
as evidenced through the linear increase of time per integration
step with system size. For smaller system sizes, and depending on
how many CPUs were used, the performance levels off due to a
build-up of MPI communication overheads. However, there is
still a noticeable speed-up e.g. for 8,192 nucleotides on 320 MPI-
tasks or 65,536 nucleotides on 2,560 MPI-tasks, which comes
down to a very low 25 nucleotides per MPI-task. This unusually
good performance of a parallel molecular dynamics code has been
reported before (Henrich et al., 2018) and is owed to the rather
complex oxDNA force field as the code spends a good deal of time
carrying out the force calculation.

The GPU-implementation of the standalone code retains a
significant advantage over the LAMMPS implementation for all
but the largest benchmark sizes and runs on the full ARCHIE-
WeSt system size (2,560 MPI-tasks) and its performance levels
only off when the GPU becomes under-subscribed with threads at
smaller system sizes. We can conclude that the LAMMPS
implementation of oxDNA, besides its capability to run on a

FIGURE 12 | Performance of the oligomer benchmark as time per time
step for various system sizes: Shown are results of the oxDNA standalone
code on a single CPU and NVIDIA V100 GPU and of the LAMMPS
implementation of the oxDNA2 model at different CPU counts.

FIGURE 13 | Performance of the pointer benchmark as time per time
step at various salt concentrations: Shown are results of the oxDNA
standalone code on a single CPU and NVIDIA V100 GPU and of the LAMMPS
implementation of the oxDNA2.0 model at different core counts.
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variety of CPU architectures, is very suitable for studying small
and intermediate system sizes, whereas the GPU-implementation
has clearly the edge at large-scale simulations.

Figure 13 shows the performance with the pointer benchmark,
again expressed as time per time step in milliseconds. This time the
LAMMPS implementation is marginally faster than the oxDNA
standalone code on a single CPU. Again, the GPU-runs of the
standalone code features significantly shorter run times on all but
the largest core counts and lowest salt concentrations. It appears
the increase in run time between high and low salt concentration is
slightly larger for the GPU-implementation of the standalone code.
This could be due to a slightly better handling of neighbour lists in
LAMMPS.

Most importantly, however, an increase in runtime by a factor
8–9 can be seen at all core counts when moving from high to
moderate salt concentrations. This slowdown is in line with the
increase in Debye length by about a factor 3 and reflects the
longer cutoff radii and neighbour lists of the pair interactions.
This large performance difference should be taken into account
when choosing simulation parameters: For instance it is nearly
always more convenient to perform relaxation runs to create well-
initialized configurations at high salt concentrations (e.g. [Na+] �
1 M). Indeed, unless the response of the system to decreased salt
concentration is of specific interest, we would generally
recommend using high monovalent salt concentration such as
[Na+] � 1 M for the actual data collection.

9 CONCLUSION

We have reviewed the properties of, and simulation methods
available for, the oxDNA model. In the process we have created a
well-documented library of examplar simulations available from
(Sengar, 2021). Equally importantly, however, we have attempted
to provide the necessary intuition both for successfully running
oxDNA-based simulations, and also for identifying which
systems would actually benefit from those simulations in the
first place.

Having explored the model’s strengths in some detail, it is worth
noting a few natural directions for improvements. Although the
model has well-parameterised sequence-dependent thermodynamics,

and a good representation of average mechanical properties, it lacks
sequence-dependent structure and mechanics. Incorporating this
feature would be useful in and of itself, but would also be a useful
first step towards building a model that could interface with other
molecules such as proteins (Procyk et al., 2020).
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Snodin, B. E., Randisi, F., Mosayebi, M., Šulc, P., Schreck, J. S., Romano, F., et al.
(2015). Introducing Improved Structural Properties and Salt Dependence into a
Coarse-Grained Model of DNA. J. Chem. Phys. 142, 234901. doi:10.1063/1.
4921957

Snodin, B. E., Romano, F., Rovigatti, L., Ouldridge, T. E., Louis, A. A., and Doye,
J. P. K. (2016). Direct Simulation of the Self-Assembly of a Small DNAOrigami.
ACS Nano 10, 1724–1737. doi:10.1021/acsnano.5b05865

Snodin, B. E., Schreck, J. S., Romano, F., Louis, A. A., and Doye, J. P. K. (2019).
Coarse-grained Modelling of the Structural Properties of DNA Origami.
Nucleic Acids Res. 47, 1585–1597. doi:10.1093/nar/gky1304
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Suma, A., Poppleton, E., Matthies, M., Šulc, P., Romano, F., Louis, A. A., et al.
(2019). TacoxDNA: A User-Friendly Web Server for Simulations of Complex
DNA Structures, from Single Strands to Origami. J. Comput. Chem. 40,
2586–2595. doi:10.1002/jcc.26029

Sutthibutpong, T., Matek, C., Benham, C., Slade, G. G., Noy, A., Laughton, C., et al.
(2016). Long-range Correlations in the Mechanics of Small DNA Circles under
Topological Stress Revealed by Multi-Scale Simulation. Nucleic Acids Res. 44,
9121–9130. doi:10.1093/nar/gkw815

Tee, S. R., and Wang, Z. (2018). HowWell Can DNA Rupture DNA? Shearing and
Unzipping Forces inside DNA Nanostructures. ACS omega 3, 292–301. doi:10.
1021/acsomega.7b01692

Tempestini, A., Cassina, V., Brogioli, D., Ziano, R., Erba, S., Giovannoni, R., et al.
(2013). Magnetic Tweezers Measurements of the Nanomechanical Stability of
DNA against Denaturation at Various Conditions of Ph and Ionic Strength.
Nucleic Acids Res. 41, 2009–2019. doi:10.1093/nar/gks1206

Tikhomirov, G., Petersen, P., and Qian, L. (2017). Fractal Assembly of Micrometre-
Scale DNA Origami Arrays with Arbitrary Patterns. Nature 552, 67–71. doi:10.
1038/nature24655

Tomov, T. E., Tsukanov, R., Glick, Y., Berger, Y., Liber, M., Avrahami, D., et al.
(2017). DNA Bipedal Motor Achieves a Large Number of Steps Due to
Operation Using Microfluidics-Based Interface. Acs Nano 11, 4002–4008.
doi:10.1021/acsnano.7b00547

Torrie, G. M., and Valleau, J. P. (1977). Nonphysical Sampling Distributions in
Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comp. Phys. 23,
187–199. doi:10.1016/0021-9991(77)90121-8
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