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ADAM and ADAMTS are two large metalloproteinase families involved in numerous
physiological processes, such as shedding of cell-surface protein ectodomains and
extra-cellular matrix remodelling. Aberrant expression or dysregulation of ADAMs and
ADAMTSs activity has been linked to several pathologies including cancer, inflammatory,
neurodegenerative and cardiovascular diseases. Inhibition of ADAM and ADAMTS
metalloproteinases have been attempted using various small molecules and protein-
based therapeutics, each with their advantages and disadvantages. While most of
these molecular formats have already been described in detail elsewhere, this mini
review focuses solely on peptide-based inhibitors, an emerging class of therapeutic
molecules recently applied against some ADAM and ADAMTS members. We describe
both linear and cyclic peptide-based inhibitors which have been developed using different
approaches ranging from traditional medicinal chemistry and rational design strategies to
novel combinatorial peptide-display technologies.
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INTRODUCTION

The “A-disintegrin and metalloproteinase” (ADAM) and “A-disintegrin and metalloproteinase with
thrombospondin motifs” (ADAMTS) are closely related matrix zinc-dependent metalloproteinases
that belong to the adamlysin protein family (Takeda, 2016). Most ADAM metalloproteinases are
membrane-anchored enzymes while the ADAMTS family comprises only secreted proteins. Both
ADAM and ADAMTS proteins show a multi-domain structure and are mainly localised in the
extracellular matrix (ECM) (Zhong and Khalil, 2019). Despite their structural similarities, each
protein member possesses different variable domains which ensure both function and tissue
specificity (Supplementary Figure 1). The domain organisation and function of each ADAM
and ADAMTS protein has been extensively described elsewhere (Takeda, 2016). Briefly, ADAM
proteins are responsible for shedding cell-surface protein ectodomains, such as the latent forms of
growth factors, cytokines, receptors, and other molecules. Furthermore, ADAMs contribute to a wide
array of biological processes, including cell adhesion, migration and signaling (Huovila et al., 2005;
Seegar and Blacklow, 2019). From the twenty-one human ADAM members identified so far, only
thirteen are proteolytically active (ADAM−8, −9, −10, −12, −15, −17, −19, −20, −21, −28, −30, −33,
and −DEC1) whereas the other eight appear to be catalytically inactive (ADAM−2, −7, −11, −18, −22,
−23, −29, and −32) (Edwards et al., 2009; Seegar and Blacklow, 2019). It has been shown that
members of the latest group play important roles in development, and function as adhesion
molecules rather than proteinases. However, the physiological function of the inactive ADAMs
remains largely unknown.
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Unlike ADAMs, all ADAMTS proteins are catalytically active
and contain a varying number of C-terminal thrombospondin
type-1 (TSP-1) motifs instead of the ADAM transmembrane and
cytoplasmic domains (Apte, 2020). ADAMTSs participate in
ECM maintenance, tissue morphogenesis and remodeling by
cleaving a large number of matrix proteins (Kelwick et al.,
2015; Apte, 2020). ADAMTS family consists of nineteen
members that can be sub-classified according to their known
substrates, namely aggrecanases or proteoglycanases
(ADAMTS−1, −4, −5, −8, −9, −15 and −20), procollagen
N-propeptidases (ADAMTS−2, −3 and −14), cartilage
oligomeric matrix protein (also known as thrombospondin-5)
cleaving proteinases (ADAMTS−7 and −12), von Willebrand
factor (VWF) cleaving proteinase (ADAMTS-13) and a group
of orphan enzymes (ADAMTS−6, −10, −16, −17, −18 and −19)
(Kelwick et al., 2015; Apte, 2020).

Aberrant expression or dysregulation of ADAMs and
ADAMTSs activity has been linked to the development of
cancer (Sun et al., 2015; Jackson et al., 2017) and numerous
inflammatory (Lambrecht et al., 2018; Mead and Apte, 2018),
neurodegenerative (Duffy et al., 2009; Lemarchant et al., 2013)
and cardiovascular (Zhong and Khalil, 2019; Santamaria and de
Groot, 2020) diseases to name but a few. Hence, ADAM and
ADAMTS proteins represent important drug targets for the
prevention and treatment of several human diseases.

Inhibition of ADAM and ADAMTS metalloproteinases have
been attempted using various small molecules. The majority of
these molecules bear either the hydroxamate, carboxylate,
thiolate, tartrate, phosphinate, thiadiazole, hydroxyquinoline or
imida-zolidine-2,4-diones groups, which are capable of
competitively binding the zinc ion present in the catalytic site
of the metalloproteinase (Moss et al., 2001; Georgiadis and
Yiotakis, 2008; Yiotakis and Dive, 2009). In addition,
inhibitory molecules lacking a zinc-binding moiety have also
been reported (Gilbert et al., 2011). Despite the different
approaches attempted, these conventional small molecule-
based inhibitors have mostly had limited success in the clinic
(Georgiadis and Yiotakis, 2008; Moss and Minond, 2017).
Failures have often been attributed to off-target effects due to
structural similarities among the active sites of the different
metalloproteinases and the consequent toxicities associated
(Supplementary Figure 2) (Georgiadis and Yiotakis, 2008;
Tortorella et al., 2009; Raeeszadeh-Sarmazdeh et al., 2020). As
a result, there is a great interest in developing novel ADAM and
ADAMTS inhibitors that can selectively target a single member of
each family. Efforts to generate more effective therapies have led
to the development of protein-based inhibitors such as
monoclonal antibodies and tissue inhibitors of
metalloproteinases (TIMPs) which are currently being tested
in advanced clinical trials (Santamaria and de Groot, 2019;
Raeeszadeh-Sarmazdeh et al., 2020). Unlike small molecule-
based inhibitors, protein-based therapeutics offer a higher
selectivity due to a larger surface of interaction and therefore,
reduced toxicity. Indeed, most protein-based inhibitors do not
bind the active site of the ADAM and ADAMTS enzymes but
recognise surface-exposed loops that are poorly conserved
between closely related family members. Inhibition appears to

occur through a variety of mechanisms including i) binding at or
near the active site to block substrate access (direct manner) or ii)
binding to regions that are allosterically linked to the active site
region (indirect manner) (Wu et al., 2007; Raeeszadeh-
Sarmazdeh et al., 2020). A major drawback of protein-based
therapeutics compared to small molecule inhibitors is that they
are not orally available and therefore need to be injected either
subcutaneously or intravenously.

While most of these small-molecules and protein-based
inhibitors have been thoroughly described elsewhere (Moss
et al., 2001; Georgiadis and Yiotakis, 2008; Yiotakis and Dive,
2009; Murumkar et al., 2010; Gilbert et al., 2011; El Bakali et al.,
2014; Santamaria et al., 2017; Malemud, 2019) this mini review
focuses exclusively on peptide-based inhibitors, an alternative
and emerging type of ADAMs and ADAMTSs
metalloproteinase inhibitors. Similar to the protein-based
inhibitors, peptides inhibitors are capable of binding the
target with a surface of interaction large enough to obtain
high efficiency and selectivity (Pelay-Gimeno et al., 2015;
Atangcho et al., 2019). Like small molecules, peptide-based
inhibitors can be synthesised chemically, possess ease of
modification, low toxicity, and reduced antigenicity. Their
modular structure and the commercial availability of
hundreds of amino acid building blocks simplifies the rapid
development of peptides with tailored properties (Rastogi et al.,
2018; Muttenthaler et al., 2021). Here, we will mention examples
of both linear and cyclic peptide-based inhibitors and the
different approaches undertaken for their development will
be described.

PEPTIDE-BASED INHIBITORS OF ADAMs

To date, peptide-based inhibitors have been successfully
developed against only two members of the ADAM family:
ADAM-8 and ADAM-17 (Figure 1 and Supplementary
Table 1). The latter one, also known as tumor necrosis factor-
α converting enzyme (TACE), is involved in shedding the
proinflammatory cytokine tumor necrosis factor-a (TNF-α) at
the cell surface (Zunke and Rose-John, 2017). Altered activity of
ADAM-17 has been associated with the onset of numerous
inflammatory diseases, such as cardiac hypertrophy, arthritis,
Chron’s disease and cancer (Feldmann and Maini, 2008; Moss
and Minond, 2017; Lambrecht et al., 2018). The first peptide-
based inhibitors targeting ADAM-17 were identified using
synthetic combinatorial libraries of seven amino acids-long
peptidomimetics (Hu et al., 2005a; Hu et al., 2005b). Libraries
were designed to mimic the sequence of the cleavage sites in
denatured collagen type II and include zinc-ion chelating side-
groups. The screening revealed two low micromolar inhibitors,
named regasepin 1 (Figure 1A) and regasepin 2, that inhibit
related metalloproteinases MMP-8 and MMP-9 with similar
potency (Supplementary Table 1; (Hu et al., 2005b; Dillen
et al., 2006)). Further structure-based optimisation of
regasepin 1 led to the generation of a small peptide repertoire
bearing different D-form amino acids in place of Val and Lys in
position P1′ at P2′, respectively. The best selected peptide, named
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(D-Pyr)-(D-Cys)-Bip-(D-Cys) (Figure 1B), showed an 8-fold
higher potency (IC50 � 600 nM) than regasepin 1, 14-fold
better selectivity against MMP-9 and 46-fold against MMP-3.
However, no specificity for MMP-8 has been shown yet
(Supplementary Table 1; (Qiu et al., 2012)). Similarly,
Geurink and colleagues applied a synthetic combinatorial
library of ninety-six enantiopure peptidomimetics bearing a
zinc binding hydroxamate group at the N-terminal and
identified eight peptide variants capable of inhibiting ADAM-
17 with potencies in the sub-nanomolar to low micromolar range
(Geurink et al., 2008). One peptide, named PL (Figure 1C),
revealed an IC50 of 92 nM against ADAM-17 and showed 40-fold
better selectivity against MMP-9 but limited selectivity for MMP-
12 (Supplementary Table 1). By using a virtual combinatorial
library of peptides derived from the TNF protease inhibitor 2
(TAPI-2), a broad-spectrum peptide inhibitor of ADAM-17
bearing a hydroxamate group, Wang and colleagues identified
two linear peptides, named Hxm-Phe-Arg-Gln (Figure 1D) and
Hxm-Phe-Ser-Asn (Figure 1E) that exhibited high potency
toward ADAM-17 (Ki � 47 and 92 nM, respectively) and

moderate selectivity toward ADAM-10 (5-fold and 7-fold,
respectively; Supplementary Table 1; (Wang et al., 2016)).
Furthermore, Schaal and colleagues discovered novel peptide-
based inhibitors of ADAMs by screening θ-defensins, a family of
eighteen-amino acid macrocyclic peptides expressed exclusively
in granulocytes and selected epithelia of Old World monkeys
(Schaal et al., 2017)). The octadecapeptide rhesus θ-defensin-1
(RTD-1) includes six disulfide-linked cysteines (Figure 1F) and
inhibited ADAM-17 and ADAM-10 with an IC50 of 110 and
450 nM, respectively (Supplementary Table 1). Notably, RTD-1
showed at least 4-fold better selectivity toward a panel of related
MMPs (IC50 � 2–20 μM; Supplementary Table 1). When tested
in vivo in a rodent model of rheumatoid arthritis, RTD-1 rapidly
suppressed joint disease progression, restored limb mobility, and
preserved normal joint architecture (Schaal et al., 2017). Further
characterisation of five RTD isoforms (RTDs 1–5) revealed the
presence of two macrocycles, RTD-2 (Figure 1G) and RTD-5
(Figure 1H), that inhibited ADAM-17 with IC50 values of 52 and
55 nM, respectively (Supplementary Table 1; (Schaal et al.,
2018)).

FIGURE1 | Peptide inhibitors of ADAM proteins. (A)Chemical structure of regasepin 1 linear peptide (PRC(Bip)CGE); (B)Chemical structure of regasepin 1-derived
linear peptide (D-Pyr)-(D-Cys)-Bip-(D-Cys); (C) Chemical structure of peptide PL (Hisb-LPK-NH2); (D) Chemical structure of linear peptide Hxm-FRQ; (E) Chemical
structure of linear peptide Hxm-FSN; (F) Schematically depicted structure of polycyclic octadecapeptide rhesus θ-defensin-1 (RTD-1) peptide; (G) Schematically
depicted structure of polycyclic octadecapeptide rhesus θ-defensin-2 (RTD-2) peptide; (H) Schematically depicted structure of polycyclic octadecapeptide rhesus
θ-defensin-5 (RTD-5) peptide; (I)Chemical structure of cyclic peptide BK1361 (RLsKDK); (L)Chemical structure of cyclic peptide 3 (RLhSβKDK); (M)Chemical structure
of cyclic peptide 9 (RL*AβKDK); (N)Chemical structure of cyclic peptide 19 (RL*hSβKDK). Indicated half maximal inhibitory concentration (IC50) and inhibition constant (Ki)
values were reported as published. The targeted ADAM protein is reported near the IC50 or Ki value. Legend: Bip � biphenylalanine, Pyr � pyridylalanine, Hisb � (R)-2-
isobutylsuccin hydroxamate moiety, Hmx � hydroxamate moiety, s � D-serine; hSβ � β-homoserine, Aβ � β-alanine, L* � homoleucine. The side chains that differentiate
from the parental peptide are shown in red.
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Another widely investigated sheddase is ADAM-8, a
proteolytically active member of the ADAM protease family
involved in numerous inflammatory processes (Schlomann
et al., 2000) and neoplasia (Fritzsche et al., 2006; Romagnoli
et al., 2014). By applying structural modeling and peptidomimetic
approaches, Schlomann and colleagues generated a series of six
amino acids cyclic peptides mimicking the RLSKDK motif of the
mouse ADAM-8 (Schlomann et al., 2015). To enhance its potency
and further increase its stability in vivo, the peptide sequence was
constrained through cyclisation and modified with D-form
amino acids in place of Arg, Leu, or Ser. The most potent
cyclic peptide sequence contains a D-Ser (“s”) (RLsKDK)
(Figure 1I). The RLsKDK, also named BK-1361, inhibited
ADAM-8 with IC50 of 182 nM. Importantly, BK-1361 showed
more than 100-fold better selectivity toward other related
metalloproteinases such as ADAM−9, −10, −12, −17 and
MMP-2, −9, −14 (Supplementary Table 1). Notably, when
tested in a mouse model of pancreatic ductal adenocarcinoma
(PDAC), BK-1361 led to reduction of tumor load, infiltration and
metastasis. Thus, further supporting the important role of
ADAM-8 in PDAC development (Schlomann et al., 2015).

Additional structure-activity relationship studies on BK-1361
enabled the generation of eighteen structural analogue
peptidomimetics (Yim et al., 2016). Among all tested cyclic
peptides, peptides 3 (Figure 1L), 9 (Figure 1M) and 19
(Figure 1N) showed comparable or slightly higher inhibitory
potency than the parental BK-1361 (Supplementary Table 1)
(Yim et al., 2016).

PEPTIDE-BASED INHIBITORS OF
ADAMTSs

The physiological function of ADAMTSs and their role in
numerous pathologies have been described only recently
(Zhong and Khalil, 2019; Apte, 2020). The first member
of this family, ADAMTS-1, was characterised for the first
time in 1997 (Kuno et al., 1997). Since then, few examples
of peptide-based inhibitors against ADAMTSs have been
reported (Tortorella et al., 2000; Hills et al., 2007; Di Stasio
et al., 2008; Moriki et al., 2010; Pillai et al., 2016; Zhang et al.,
2018).

FIGURE 2 | Peptide inhibitors of ADAMTS proteins. (A) Aminoacidic sequence of linear peptide 2 derived from the C-terminus TSP-1 motif of aggrecanase-1; (B)
Chemical structure of B05-derived linear peptide 4 (KHN(e)FRQRETYMVFKGK); (C) Chemical structure of B06-derived linear peptide 3 (DVQ(e)FRGVTAVIR); (D)
Chemical structure of cyclic peptide 62CASESLC68; (E) Chemical structure of cyclic peptide 60CTEASESLAGC70; (F) Chemical structure of cyclic peptide
61CEASESLAGC70; (G) Aminoacidic sequence of linear peptide VWF-73 peptide (Met1606-Arg166) derived from C-terminal region of the multimeric von Willebrand
factor (VWF); (H) Aminoacidic sequence of linear peptide epitope-A (PP-a); (I) Aminoacidic sequence of linear peptide epitope-B (PP-b); (L) Aminoacidic sequence of
polycyclic human neutrophil peptide 1 (HNP-1); (M) Aminoacidic sequence of polycyclic human neutrophil peptide (HNP-2). Indicated half maximal inhibitory
concentration (IC50), inhibition constant (Ki) and dissociation constant (Kd) values were reported as published. The targeted ADAMTS protein is reported near the IC50,Ki,

or Kd value.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 7037154

Pluda et al. ADAM and ADAMTS Peptide Inhibitors

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Recently, major efforts have been devoted to developing
peptide-based inhibitors against two members of the ADAMTS
family: ADAMTS-4 and ADAMTS-13 (Figure 2 and
Supplementary Table 2). ADAMTS-4 cleaves proteoglycans
such as aggrecan and versican, which play a structural role in
many tissues (Fosang and Little, 2008). In fact, degradation of
aggrecan is a clinical hallmark of degenerative joint disorders such
as osteoarthritis Zhang et al. (2013), Yang et al. (2017) and
rheumatoid arthritis (Mead and Apte, 2018). The first peptide-
based inhibitors targeting ADAMTS-4 were identified using linear
peptides derived from the TSP-1motif located at the C-terminus of
the aggrecanase-1, an enzyme involved in cartilage degradation.
The best selected peptide, peptide 2 (Figure 2A), showed an IC50 of
3 µM against ADAMTS-4 (Supplementary Table 2; (Tortorella
et al., 2000)). With the aim of identifying the cleavage motif of
ADAMTS-4, Hills and co-workers applied phage display of
random thirteen-amino acid linear peptide libraries to isolate
seven-amino acid cleaved peptides with a wide range of
potencies (Hills et al., 2007). Two linear peptides, B05 and B06,
inhibited ADAMTS-4 with potencies in the micromolar range
(IC50 � 35 μM) and exhibited good selectivity toward the
homologue ADAMTS-5 (Supplementary Table 2; Hills et al.,
2007). Further studies revealed the importance of Glu in
position P1 for substrate recognition and led to the
development of novel synthetic peptides with modified
stereochemistry of P1 and P1’. These two selected peptides
inhibited ADAMTS-4 with IC50 values of 8 μM (peptide 4,
Figure 2B) and 10 μM (peptide 3, Figure 2C) (Hills et al.,
2007). Recently, Zhang and colleagues used computational
modeling to develop peptide-based inhibitors from a loop of the
N-terminal domain of TIMP3, a protein inhibitor of ADAMTS-4
(Zhang et al., 2018). Further peptide cyclisation diminished
flexibility and enabled the generation of constrained molecules
with reduced entropic penalty and improved binding affinities.
Cyclised peptides 62CASESLC68 (Figure 2D), 61CEASESLAGC70

(Figure 2F) and 60CTEASESLAGC70 (Figure 2E) showed bindings
constants in the micromolar range (Kd � 25 μM, Kd � 3.7 μM and
Kd � 18 μM, respectively) and three- to 9-fold increased affinity
over the linear peptides (Supplementary Table 2).

In addition to ADAMTS-4, peptide-based inhibitors against
ADAMTS-13 have been also developed. ADAMTS-13 is a
metalloproteinase which cleaves the von Willebrand factor
(VWF), a blood glycoprotein involved in haemostasis (Zheng,
2013). The levels of ADAMTS-13 correlate with ischaemic stroke
risk, thrombotic thrombocytopenic purpura and microvascular
thrombosis (South and Lane, 2018; Santamaria and de Groot,
2020). The first peptide-based inhibitor of ADAMTS-13 was
identified by analysing the C-terminal region of the multimeric
VWF factor, the VWF-73 peptide (Glu1660—Arg1668; Figure 2G) (Di
Stasio et al., 2008). By elucidating the interaction of linear VWF-73
peptide with ADAMTS-13, Di Stasio and colleagues determined that
inhibition occurs with a Ki value of 1 μM (Supplementary Table 2).
Furthermore, Moriki and colleagues applied phage display
technology to identify two novel ADAMTS-13-derived peptide
epitopes capable of binding VWF factor. Selected synthetic linear
peptides PP-a and PP-b (Figures 2H,I) exhibited Kd values of 4.1
and 0.3 µM, respectively, and inhibited ADAMTS-13 with IC50

values of 125 μM (PP-a) and 50 μM (PP-b) (Supplementary
Table 2) (Moriki et al., 2010). Finally, Pillai and co-workers
showed that polycyclic human neutrophil peptides (HNP) inhibit
the proteolytic cleavage of peptide VWF-73 and multimeric von
Willebrand factor in a concentration-dependent manner. HNP-1
and -2 (Figures 2L,M) showed inhibitory concentrations in the low
micromolar range and binding constants in the sub-micromolar
range (Supplementary Table 2) (Pillai et al., 2016).

CONCLUSIONS AND PERSPECTIVES

ADAM and ADAMTS metalloproteinases play a significant yet
complex role in several types of cancer, as well as in diverse
inflammatory, neurodegenerative and cardiovascular diseases. Thus,
a plethora of small chemical molecules and a few large proteins, such
asmonoclonal antibodies, have been developed to inhibit ADAM and
ADAMTS metalloproteinases. While small chemical molecules often
lack specificity and turn to be toxic, therapeutic proteins require high
manufacturing costs and subcutaneous or intravenous administration.
In this sense, peptide-based drugs offer a good alternative strategywith
a surface of interaction large enough to obtain both high potency and
selectivity, and yet small enough to diffuse into tissues. Other
distinctive properties of peptides include chemical synthesis, ease of
modification, low toxicity and reduced antigenicity. However, despite
these favourable traits, peptides often have a relatively short circulating
half-life and exhibit poor membrane permeability, which limit their
broad applicability. While their systemic half-life can be prolonged by
chemical conjugation to synthetic and natural polymers, or through
non-covalent binding to endogenous proteins, such as serum albumin
(Zorzi et al., 2019), reaching intracellular targets, on the other hand, is
still a daunting task for peptide-based drugs. Although recent
developments in chemical cyclization, methylation and the use of
non-proteinogenic amino acids have led to promising results to
overcome this problem, more accessible targets would also help to
bypass the delivery strategies challenges (Cunningham et al., 2017;
Lenci and Trabocchi, 2020). In this regard, ADAM and ADAMTS
proteins have a peripheral extracellular localisation, which makes
them ideal targets of peptide-based drugs. Moreover, the existence
of multiple ADAM and ADAMTS homologues leverage the better
selectivity of peptides (driven by their larger surface area and chiral
complexity) over small-molecule drugs. The majority of linear and
cyclic peptide inhibitors described in this mini review were
developed using traditional medicinal chemistry approaches and
structure–activity relationship studies on natural substrates and/or
endogenous inhibitors. However, the specificity of some of the
peptide inhibitors described here have not been fully investigated
and none of them have reached a pre-clinical stage yet. Nevertheless,
their development demonstrates that peptides represent valid
molecular modalities for blocking the activity of ADAM and
ADAMTS proteins. Indeed, the advent of novel DNA-encoded
chemical libraries (Neri and Lerner, 2018) and superior peptide
display technologies (Linciano et al., 2019; Sohrabi et al., 2020;
Peacock and Suga, 2021) will enable the high-throughput screening
of large combinatorial libraries, facilitating the discovery of novel
potent and selective compounds with improved properties on short
timescales (Sohrabi et al., 2020). Integration of these powerful
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combinatorial approaches with better automation, innovative
chemical modification strategies and emerging computational
methods will contribute to the development of better peptide-
based inhibitors against ADAM and ADAMTS proteins, which
have the potential to be used in the clinic in the near future.
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