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Triple-negative breast cancer (TNBC) is the most fatal type of breast cancer (BC). Due to the
lack of relevant targeted drug therapy, in addition to surgery, chemotherapy is still the most
common treatment option for TNBC. TNBC is heterogeneous, and different patients have an
unusual sensitivity to chemotherapy. Only part of the patients will benefit from chemotherapy,
so neoadjuvant chemotherapy (NAC) is controversial in the treatment of TNBC. Here, we
performed an NMR spectroscopy–based metabolomics study to analyze the relationship
between the patients’ metabolic phenotypes and chemotherapy sensitivity in the serum
samples. Metabolic phenotypes from patients with pathological partial response, pathological
complete response, and pathological stable disease (pPR, pCR, and pSD) could be
distinguished. Furthermore, we conducted metabolic pathway analysis based on identified
significant metabolites and revealed significantly disturbed metabolic pathways closely
associated with three groups of TNBC patients. We evaluated the discriminative ability of
metabolites related to significantly disturbed metabolic pathways by using the multi-
receiver–operating characteristic (ROC) curve analysis. Three significantly disturbed
metabolic pathways of glycine, serine, and threonine metabolism, valine, leucine, and
isoleucine biosynthesis, and alanine, aspartate, and glutamate metabolism could be used
as potential predictive models to distinguish three types of TNBC patients. These results
indicate that a metabolic phenotype could be used to predict whether a patient is suitable for
NAC. Metabolomics research could provide data in support of metabolic phenotypes for
personalized treatment of TNBC.
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INTRODUCTION

According to the American Cancer Society estimates, in the female patients, breast cancer (BC) was
the tumor with the highest incidence (about 30%) among the new invasive cancer cases in the US in
2020; in addition, BC had the second highest mortality rate, accounting for 15% among the new
cancer death cases (Siegel et al., 2020). Approximately 10–20% of all invasive BC cases were triple-
negative breast cancer (TNBC) (Kumar and Aggarwal, 2016). Due to the lack of estrogen receptor
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(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) expression, TNBC lacked standardized
treatment strategies (Yin et al., 2020). Chemotherapy is still the
most common treatment option for TNBC (Masuda et al., 2017).
Neoadjuvant chemotherapy (NAC) is controversial in the
treatment of TNBC. A part of the TNBC patients were
sensitive to chemotherapy drugs, and about 30–40% of
patients’ pathological symptoms disappeared completely. This
was defined as pathological complete response (pCR) (Liedtke
et al., 2008; Gluck et al., 2012). Patients whose pathological
symptoms have not changed at all were defined to have
pathological stable disease (pSD). Some patients’ pathological
symptoms were somewhere in between, and this was defined as
pathological partial response (pPR). On the contrary, the cancer
recurrence rate and metastasis rate of patients with residual
disease after NAC have greatly increased (Liedtke et al., 2008;
Masuda et al., 2013). After NAC differences in clinical response
and survival tips, it is necessary to consider a more detailed
classification in clinical TNBC. With the rise of metabolomics
research, differences in metabolic phenotypes could provide us
with a new idea of NAC for TNBC.

Metabolomics is the study of the multi-parametric metabolic
response of living systems to pathophysiological stimuli or genetic
modification (Nicholson et al., 1999). Metabolomics is a part of
systems biology, which is downstream concerning the other -omic
sciences (Vignoli et al., 2019). Metabolomics has a wide range of
applications, including human health and diseases (Johnson et al.,
2016), animals (Kirwan 2013), plants (Pontes et al., 2017),
microorganisms (Ramirez-Gaona et al., 2017), and other areas
(Kim H.-Y. et al., 2016; Munger et al., 2017). More and more
researchers were using metabolomics technology to study tumor
metabolism (Armitage and Ciborowski, 2017; Kumar and Misra,
2019). In the BC field, metabolomics has been fully applied
(McCartney et al., 2018). Four metabolites of glutamine, isoleucine,
threonine, and linolenic acid could be used as potential markers for
predicting response to NAC for BC, by comprehensive use of nuclear
magnetic resonance (NMR) spectroscopy and mass spectrometry
(MS) techniques (Wei et al., 2013). However, studies on the
prognosis of TNBC surgery have not been performed.

On the contrary, metabolomics was also applied to
individualize treatment (Jacob et al., 2019). Our early study
used NMR-based metabolomics for finding the new
biomarkers of colorectal cancer (Gu et al., 2019a). Mohammad
et al. reviewed the application of metabolomics in the prognosis
of acute coronary syndrome (Pouralijan Amiri et al., 2019).
Similarly, metabolomics was also applied to bariatric surgery
(Samczuk et al., 2018). In this study, we used metabolomics for
the evaluation of NAC for TNBC. Our work looks forward to
discovering metabolic phenotypes and differential metabolic
pathways between the patients with pCR, pPR, and pSD.

MATERIALS AND METHODS

Chemical Reagents
Deuterated reagents of D2O and sodium 3-(trimethylsilyl)
propionate-2,2,3,3-d4 (DSS) were purchased from Cambridge

Isotope Laboratories, Inc. (Andover, MA, United States).
Chromatographic grade methanol was bought from Sigma-
Aldrich (St. Louis, MO, United States). Other analytical grade
reagents (NaH2PO4·2H2O and K2HPO4·3H2O) were purchased
from J&K Scientific Ltd. (Beijing, China). All ultra-pure water
used in this study was produced by a Milli-Q IQ 7000 system.

Selection of TNBC Patients and Collection
of Serum Samples
TNBC patients were recruited and treated at the Department of
Breast Surgery, Zhejiang Cancer Hospital (tumor hospital
affiliated to the University of Chinese Academy of Sciences).
These female patients were enrolled in the study between 2019
and 2020. This study was performed in accordance with protocols
approved by the Zhejiang Cancer Hospital Ethics Committee.
The clinicopathological characteristics of participating subjects
are summarized in Supplementary Table S1. There were 52
patients in our study, of which 8 had pCR, 16 had pSD, and 28
had pPR. There was no difference in age and BMI index of these
patients. Based on T category, the classification of patients was
mainly concentrated in III and IV stages. The criteria for patient
selection included 1) pathologically confirmed primary TNBC; 2)
being in line with NAC indications; 3) age of 20–65 years; and 4)
performance status (PS) score 0–1. The criteria for patient
exclusion included 1) non-primary TNBC; 2) combination
with other malignant tumors; 3) not meeting NAC indications;
4) combination with blood system diseases and kidney diseases,
including hemophilia, aplastic anemia and myelodysplastic
syndromes, immune thrombocytopenia, sickle cell disease,
sickle cell trait, and other hemoglobinopathies, diabetes, and
thalassemias; 5) patients with advanced BC; 6) age >65°years
or <20°years; and 7) those who cannot tolerate chemotherapy and
surgery, or those who have a PS score >1.

The effect of NAC in the treatment of TNBC was
comprehensively obtained by magnetic resonance imaging
(MRI) and two-dimensional or three-dimensional ultrasound
and mammography with histopathology. According to these
test results, patients were divided into three groups, including
pCR, pPR, and pSD. Here, pCR indicates all tumor tissue is
disappeared, pPR indicates tumor volume is reduced by more
than 30%, while the tumor volume is reduced by less than 30% or
increased by not more than 20% in pSD (Neubauer et al., 2008).

Each patient had a light diet for 48 h before blood collection.
After blood collection (5 ml), it was coagulated and centrifuged
(4°C, 4,000 rcf, 15 min) to obtain serum. All serum samples were
frozen and stored in the −80 C refrigerator until the NMR
experiment.

Pretreatment of Serum Samples and
Acquisition of NMR Spectra
Before NMR data acquisition, the serum samples were thawed on
ice. 300 μL serum was mixed with 600 μL methanol (Tiziani et al.,
2008). Then, the mixed samples were stored in the −20 C
refrigerator for 30 min. The macromolecules in sera underwent
denaturation and precipitation and were removed by
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centrifugation (12,000 g, 4°C, 30 min). Then, all these supernatant
solvents were removed by the lyophilizer. The lyophilized
metabolites were redissolved in 450 μL of ultrapure water, and
then 50 μL of phosphate buffer (1.5 M K2HPO4/NaH2PO4, pH
7.4, D2O) was added for stabilizing the pH of serum and
deuterium lock-in NMR measurements. All samples were
analyzed in the BRUKER AVANCE III HD 600 MHz
spectrometer (BRUKER BioSpin, Germany). The one-
dimensional 1H spectra were operated in the TXI probe at
300 K by using a pulse sequence with water suppression
(NOESYPR1D [RD-90°-t1-90°-τm-90°-ACQ]) with 3s relaxation
delay and 120 m mixing time. The detailed acquisition
parameters were described in the following kinds of literature
(Gu et al., 2019b; Rohnisch et al., 2018; Shao et al., 2014). Then,
the metabolites were identified from the NMR spectra according
to the following reference (Rohnisch et al., 2018) and the HMDB
(http://www.hmdb.ca/) (Wishart et al., 2018). Meanwhile, the
two-dimensional (2D) NMR spectrum named “13C-1H HSQC”
(heteronuclear single-quantum coherence spectroscopy) was
used for the identification of metabolites (Bingo et al., 2016).

Multivariate Statistics
Data preprocessing including data organization, removal of
undesired areas, and binning was performed with MATLAB
2015b (MathWorks, Inc., United States). Minor adjustments in
peak alignment between different samples were performed using
the icoshift algorithm in MATLAB 2015b (Savorani et al., 2010).
At the same time, visualization of the data was also carried out in
MATLAB. According to the identified metabolites, we developed
and utilized a metabolite database in this study for metabolite
quantification. Using the same method of metabolite
quantification from the literature of Cuperlovic-Culf et al.
(2012), the relative concentrations of identified metabolites
were calculated, which were based on multivariable linear
regression of spectra with properly aligned metabolite data.
On the contrary, the calculation of the relative concentration
of the identified metabolites is also referred to as the AQuA
(Rohnisch et al., 2018). Before multivariate statistical analysis, all
data are normalized and par scaled. Then, principal component
analysis (PCA) was performed to show clusters among all
samples (Trygg et al., 2007). The partial least squares-
discrimination analysis (PLS-DA) was applied for
distinguishing the metabolic phenotypes among three groups
(Trygg et al., 2007), and the corresponding response permutation
test (RPT) was used for verifying the robustness of PLS-DA
models (Lin et al., 2019). The orthogonal PLS-DA (OPLS-DA)
was applied for differential metabolite analysis by using the
variable importance in projection (VIP) (Cloarec et al., 2005)
and the correlation coefficients (r) for the variables that are
related to the first predictive component (tp1) (Cho et al.,
2008). Besides, probability p values of the Kruskal–Wallis test
and fold changes were also calculated between the pSD group, the
pPR group, and the pCR group for assessing the statistical
significance of differential metabolites. These four parameters
(VIP value, correlation coefficients (r), p value, and fold change)
were employed in the enhanced volcano plots for visualizing the
differential metabolites (Hur et al., 2013; Lin et al., 2019).

Identifying the Disturbed Metabolic
Pathways
Metabolic pathway analysis was performed to identify
significantly disturbed pathways associated with the three
groups of TNBC patients in the Pathway Analysis module of
MetaboAnalyst 5.0 (www.metaboanalyst.ca/) according to the
relative concentration of the metabolites. Two parameters,
statistical p value and pathway impact value, were used to
evaluate the importance of the metabolic pathway. By
matching the different metabolites with the metabolites in
each metabolic pathway, the p value was calculated by the
hyper-geometric test (Goeman and Bühlmann, 2007). At the
same time, the pathway impact value was calculated from
the topological analysis using the out-degree centrality
algorithm through matched differential metabolites in
metabolic pathways (Chong et al., 2018). According to the
approaches described in other previous works (Gu et al., 2016;
Gu et al., 2020a), we identified significantly disturbed metabolic
pathways associated with p less than 0.05 and pathway impact
values greater than 0.3.

Analyzing the Discriminative Ability of
Disturbed Metabolic Pathways
Metabolomic analysis could help develop potential biomarkers
for early diagnosis in multiple medical fields (Ni et al., 2014;
Nobakht 2018; Gu et al., 2019a). In this study, the multi-
receiver–operating characteristic (multi-ROC) curve analysis
was operated on assessing discriminant capabilities of the
metabolites involved in the significantly disturbed metabolic
pathways (Zweig and Campbell, 1993; Gu et al., 2020b). In
multi-ROC curve analysis, the logistic regression arithmetic
was used for the classification of these three groups of
patients, and the area under the ROC curve (AUC) value was
used for evaluating the prediction performance of the metabolites
in the disturbed metabolic pathway as the AUC was greater than
0.70 (Mandrekar, 2010).

RESULTS

Characteristics of Enrolled TNBC Patients
In this prospective study, detailed clinical characteristics of the
participants are summarized in Supplementary Table S1. In our
study, we used the TNM system to stage cancer, which is
determined after cancer is assigned a letter to describe it,
including tumor (T), node (N), and metastasis (M). On the
contrary, a number after T (such as T1, T2, T3, or T4) might
describe the tumor size. Supplementary Table S1 shows that no
significant differences were observed in age, BMI, and clinical T
stage, between these three groups (p > 0.05).

Metabolic Profiles of Serum Samples
In the present study, all serum samples were collected from
TNBC patients before neoadjuvant chemotherapy. A total of
63 metabolites were identified and relatively quantified from
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the NMR spectra (Supplementary Table S2, Figure 1, and
Supplementary Figure S1), which were calculated out by
using the automated method based on multivariable linear
regression (Cuperlovic-Culf et al., 2012) in MATLAB (version
2015b, MathWorks, Inc., United States). Then, the multivariate
statistical analysis was utilized to analyze the quantitative data of
metabolites. Using the first three components, the PCA score
plots are shown in Figure 2. The metabolic phenotypes of the
three groups could be roughly distinguished (Figure 2A). Overall,
the pCR group was distinguished from the pSD group
(Figure 2B), and the pPR group was roughly distinguished
from the pSD group and pCR group (Figures 2C,D).

Furthermore, supervised multivariate statistical analysis was
also applied to distinguish the metabolic profiles. These PLS-DA
score plots and corresponding RPTs indicated the metabolic
phenotypes of the three groups could be distinguishable
(Supplementary Figure S2).

Comparison of the Relative Concentration
of Different Metabolites in TNBC Patients
According to the relative quantitative value of 63 metabolites in
serum samples, the mean and standard error of the mean (SEM)
were calculated for each group (Table 1). Then, we performed the
Kruskal–Wallis multiple-comparisons test to identify differential
metabolites with p < 0.05 (Table 1 and Supplementary Figure
S3). By comparing the serum metabolites of the three groups of
patients, it was found that a total of 26 metabolites changed in the
three groups. In the pCR group, there were 10 metabolites with
the highest relative concentration, including τ-methylhistidine,
phenylalanine, π-methylhistidine, lactic acid, glucose, alanine,
glutamic acid, citric acid, dimethylamine, and phosphocholine.
In the pSD group, these were seven metabolites with the highest
relative concentration, including valine, 2-aminobutanoic acid,

propionic acid, ethanol, proline, asparagine, and N,N-
dimethylglycine. In the pPR group, there were six metabolites
with the highest relative concentration, including 2-
hydroxyisovaleric acid, acetoacetate, trimethylamine, creatine,
myo-inositol, and ornithine, and there were five metabolites
with the lowest relative concentration, including isoleucine,
phenylalanine, threonine, dimethylamine, and
glycerophosphocholine.

Determination of Differential Metabolites
Between Different TNBC Patients
For analyzing the differential metabolites, the four-dimensional
enhanced volcano plots were used for data visualization (Lin
et al., 2017). Based on OPLS-DA models, the VIP value and
correlation coefficients (r) were calculated. The score plots of
OPLS-DA models also showed that the metabolic profiles of
different groups (pCR, pPR, and pSD) were differentiable
(Figures 3A–C). And the corresponding RPTs demonstrated
that the OPLS-DA models were not overfitting (Figures
3D–F). In the enhanced volcano plot (Figure 4), the
differential metabolites were determined using the following
four criteria: VIP value > 1, p value < 0.05, absolute log2 (fold
change) > 0.2, and correlation coefficient (r) > corresponding
threshold (|r|>0.297 in pPR vs. pSD; |r|>0.329 in pCR vs. pPR; |r|
>0.404 in pCR vs. pSD). The differential metabolites are located at
the upper-left and upper-right areas of the volcano plot with
larger circular shapes and gradually warm colors. In Figure 4A
(pPR vs. pSD), six metabolites were a significant difference.
Compared with the pSD group, three of the metabolites
(trimethylamine, glucose, and lactic acid) were increased and
three metabolites (N,N-dimethylglycine, proline, and
glycerophosphocholine) were decreased in the pPR group. The
relevant statistical parameters in Figure 4A are shown in

FIGURE 1 | NMR spectrum of metabolites used for multi-linear regression analysis of the global spectrum. Sixty-three metabolites used in the analysis included all
metabolites previously determined in the HMDB and also confirmed on the Chenomx NMRSuite. One-dimensional spectra of all sixty-three metabolites are shown along
with the outline of the average spectrum for the serum sample. Complete spectra of all metabolites were used in multivariate linear regression analysis.
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Supplementary Table S3. Compared with the pPR group, three
of the metabolites (lactic acid, glutamic acid, and alanine) were
increased and three metabolites (2-aminobutanoic acid, N,N-
dimethylglycine, and ornithine) were decreased in the pCR group
(Figure 4B). Similarly, the relevant statistical parameters in
Figure 4B are shown in Supplementary Table S4. Compared
with the pSD group, eight metabolites were a significant
difference, including three of the metabolites (lactic acid,
alanine, and glucose) which increased and five metabolites (2-
aminobutanoic acid, N,N-dimethylglycine, asparagine, proline,
and ornithine) which decreased in the pCR group (Figure 4C).
The relevant statistical parameters in Figure 4C are shown in
Supplementary Table S5.

Significantly Disturbed Metabolic Pathways
in Different Groups
Based on the differential metabolites, we identified significantly
disturbed metabolic pathways through pairwise comparison
(Figure 5). On comparison between the pSD group and the
pPR group, three metabolic pathways were changed, including
glycine, serine, and threonine metabolism, valine, leucine and
isoleucine biosynthesis, and alanine, aspartate, and glutamate
metabolism (Figure 5A). Simultaneously, on comparison
between the pCR group and the pSD group, more metabolic
pathways were disturbed, including glycine, serine, and threonine
metabolism, valine, leucine, and isoleucine biosynthesis, alanine,
aspartate, and glutamate metabolism, glutamine and glutamate

FIGURE 2 | PCA score plots of the relative concentration of metabolites’ data from three groups of TNBC patients: (A) all patients; (B) pSD patients vs. pCR
patients; (C) pSD patients vs. pPR patients; (D) pPR patients vs. pCR patients.
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TABLE 1 | Comparison of metabolite levels among the three groups on relative integrals calculated from 1D 1H-NMR spectra of TNBC patients’ serum samples.

Mean ± SEM Pairwise comparisons of Kruskal–Wallis test

pSD pPR pCR pPR vs. pSD pPR vs. pCR pCR vs. pSD

2-Hydroxybutyric acid 1.859 ± 0.052 1.877 ± 0.059 1.827 ± 0.124 0.656 0.497 0.638
2-Hydroxyisovaleric acid 0.612 ± 0.028 0.558 ± 0.028 0.540 ± 0.045 0.012 0.573 0.019
Isocaproic acid 0.067 ± 0.014 0.063 ± 0.016 0.100 ± 0.045 0.703 0.139 0.215
3-Methyl-2-oxovaleric acid 0.690 ± 0.023 0.662 ± 0.016 0.636 ± 0.024 0.058 0.092 0.005
Isovaleric acid 0.454 ± 0.046 0.489 ± 0.042 0.385 ± 0.090 0.279 0.068 0.212
Valine 0.066 ± 0.016 0.106 ± 0.018 0.162 ± 0.038 0.002 0.024 0.001
Isoleucine 0.326 ± 0.023 0.280 ± 0.021 0.317 ± 0.055 0.006 0.247 0.794
Leucine 1.355 ± 0.032 1.421 ± 0.057 1.544 ± 0.184 0.058 0.247 0.089
2-Aminobutanoic acid 0.450 ± 0.067 0.385 ± 0.073 0.188 ± 0.072 0.204 0.001 0.000
2-Oxoisocaproate 0.264 ± 0.016 0.257 ± 0.014 0.284 ± 0.049 0.507 0.327 0.465
Isobutyric acid 0.034 ± 0.007 0.033 ± 0.006 0.025 ± 0.011 0.812 0.194 0.157
Propionic acid 0.107 ± 0.004 0.098 ± 0.004 0.102 ± 0.007 0.006 0.342 0.348
Isopropanol 0.079 ± 0.007 0.075 ± 0.008 0.081 ± 0.005 0.427 0.264 0.683
Ethanol 0.151 ± 0.008 0.140 ± 0.006 0.133 ± 0.013 0.045 0.354 0.027
3-Hydroxybutyric acid 0.798 ± 0.118 0.753 ± 0.082 0.692 ± 0.142 0.543 0.488 0.278
Formic acid 0.005 ± 0.001 0.005 ± 0.001 0.006 ± 0.001 0.285 0.468 0.198
Hypoxanthine 0.006 ± 0.002 0.005 ± 0.002 0.004 ± 0.003 0.526 0.598 0.347
τ-Methylhistidine 0.075 ± 0.035 0.123 ± 0.030 0.169 ± 0.070 0.045 0.248 0.036
Histidine 0.584 ± 0.032 0.592 ± 0.037 0.530 ± 0.076 0.721 0.187 0.224
Hippuric acid 0.063 ± 0.013 0.080 ± 0.016 0.075 ± 0.030 0.123 0.765 0.488
Phenylalanine 0.174 ± 0.013 0.173 ± 0.025 0.218 ± 0.035 0.931 0.058 0.047
Tyrosine 0.214 ± 0.031 0.215 ± 0.024 0.216 ± 0.044 0.955 0.964 0.933
π-Methylhistidine 0.532 ± 0.018 0.578 ± 0.025 0.646 ± 0.074 0.004 0.132 0.019
Threonine 0.298 ± 0.023 0.261 ± 0.021 0.296 ± 0.055 0.023 0.277 0.965
Lactic acid 2.844 ± 0.300 3.363 ± 0.420 4.821 ± 0.778 0.044 0.007 0.001
3-Hydroxyisovaleric acid 0.229 ± 0.018 0.205 ± 0.017 0.250 ± 0.043 0.065 0.086 0.412
Proline 3.285 ± 0.140 2.978 ± 0.130 2.995 ± 0.161 0.002 0.857 0.013
Pyroglutamic acid 0.362 ± 0.042 0.349 ± 0.028 0.375 ± 0.041 0.601 0.335 0.689
Glucose 6.449 ± 0.591 7.571 ± 1.089 7.970 ± 1.421 0.042 0.678 0.043
Serine 0.997 ± 0.044 1.070 ± 0.081 1.055 ± 0.087 0.125 0.812 0.267
Glycerol 0.300 ± 0.047 0.262 ± 0.039 0.273 ± 0.086 0.244 0.827 0.627
Glycine 0.198 ± 0.025 0.225 ± 0.030 0.225 ± 0.050 0.168 0.692 0.364
Arginine 3.505 ± 0.094 3.582 ± 0.110 3.564 ± 0.234 0.303 0.848 0.666
Lysine 3.229 ± 0.112 3.341 ± 0.136 3.354 ± 0.243 0.221 0.937 0.381
2-Oxoglutaric acid 0.010 ± 0.004 0.009 ± 0.003 0.013 ± 0.016 0.624 0.627 0.726
Alanine 0.242 ± 0.048 0.300 ± 0.050 0.513 ± 0.085 0.111 0.001 0.000
Acetic acid 0.088 ± 0.006 0.098 ± 0.007 0.094 ± 0.011 0.062 0.635 0.346
Acetoacetate 0.012 ± 0.006 0.032 ± 0.012 0.023 ± 0.011 0.005 0.327 0.134
Glutamic acid 0.384 ± 0.068 0.402 ± 0.064 0.512 ± 0.072 0.678 0.037 0.017
Glutamine 0.863 ± 0.080 0.828 ± 0.092 0.936 ± 0.158 0.603 0.287 0.448
Pyruvate 0.053 ± 0.003 0.053 ± 0.004 0.062 ± 0.008 0.855 0.081 0.065
N-Acetylglycine 0.132 ± 0.009 0.119 ± 0.014 0.108 ± 0.021 0.131 0.414 0.075
Citric acid 0.006 ± 0.002 0.008 ± 0.002 0.016 ± 0.008 0.196 0.128 0.043
Methionine 0.199 ± 0.008 0.203 ± 0.010 0.211 ± 0.017 0.531 0.415 0.232
Acetone 0.018 ± 0.001 0.018 ± 0.002 0.020 ± 0.002 0.355 0.063 0.167
Aspartic acid 0.136 ± 0.018 0.139 ± 0.014 0.155 ± 0.013 0.823 0.135 0.121
Methylguanidine 0.024 ± 0.002 0.022 ± 0.003 0.026 ± 0.006 0.302 0.223 0.441
Asparagine 1.565 ± 0.112 1.452 ± 0.078 1.220 ± 0.211 0.121 0.084 0.013
Trimethylamine 4.513 ± 0.212 5.007 ± 0.298 4.912 ± 0.576 0.012 0.784 0.265
Sarcosine 0.016 ± 0.004 0.015 ± 0.003 0.021 ± 0.009 0.788 0.276 0.375
Dimethylamine 0.010 ± 0.001 0.009 ± 0.001 0.013 ± 0.002 0.674 0.021 0.027
N,N-Dimethylglycine 6.994 ± 0.217 6.424 ± 0.219 5.423 ± 0.443 0.002 0.001 0.000
Creatine 0.046 ± 0.014 0.069 ± 0.012 0.062 ± 0.022 0.022 0.702 0.224
Dimethyl sulfone 0.034 ± 0.002 0.036 ± 0.002 0.040 ± 0.005 0.401 0.186 0.088
Choline 0.217 ± 0.023 0.216 ± 0.014 0.196 ± 0.028 0.944 0.335 0.309
Phosphocholine 0.245 ± 0.035 0.279 ± 0.032 0.390 ± 0.054 0.189 0.003 0.002
Glycerophosphocholine 0.407 ± 0.036 0.325 ± 0.051 0.395 ± 0.127 0.020 0.502 0.799
Succinic acid 0.062 ± 0.004 0.060 ± 0.004 0.060 ± 0.007 0.403 0.952 0.608
Betaine 0.116 ± 0.033 0.098 ± 0.031 0.076 ± 0.034 0.448 0.421 0.215
Trimethylamine N-oxide 0.236 ± 0.043 0.209 ± 0.030 0.216 ± 0.083 0.225 0.884 0.567
myo-Inositol 1.022 ± 0.029 1.077 ± 0.042 1.057 ± 0.065 0.027 0.587 0.343
Creatinine 0.484 ± 0.018 0.502 ± 0.022 0.472 ± 0.043 0.277 0.208 0.658
Ornithine 8.057 ± 0.245 8.080 ± 0.264 7.454 ± 0.476 0.912 0.037 0.046

SEM means the standard error of the mean, confidence interval.
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metabolism, histidine metabolism, and arginine biosynthesis
(Figure 5B). On comparison between pCR and pPR groups,
we found the disturbed metabolic pathways were the same as the
metabolic pathways which were changed in comparison between
the pSD and pPR groups (Figure 5C).

Potential Discriminant Analysis of Disturbed
Metabolic Pathways in Different TNBC
Patients
Based on the discriminant capabilities of the significant
metabolites predicted from the multivariate ROC curve
analysis, we analyzed the potential discriminative ability of
disturbed metabolic pathways which could metabolically
discriminate the different TNBC groups (Figures 6–8).
Compared to the pSD group, three significant pathways
displayed good discriminant capabilities in the pPR group
with larger AUC values of 0.9129 for glycine, serine, and
threonine metabolism, 0.8638 for valine, leucine, and
isoleucine biosynthesis, and 0.8460 for alanine, aspartate,
and glutamate metabolism (Figure 6). More significantly, the

AUC values of N,N-dimethylglycine, valine, isoleucine, and
creatine were higher than the threshold (0.7813, 0.7366,
0.7254, and 0.7009) in these pathways. These results showed
that N,N-dimethylglycine, valine, isoleucine, and creatine could
be used as potential biomarkers to distinguish between the pPR
group and the pSD group.

Meanwhile, six significant pathways also showed good
discriminant capabilities when the pCR group was compared
with the pSD group (Figure 7), of which three of the same
significant metabolic pathways showed excellent distinguishing
ability (AUC values � 1) and the other three significant metabolic
pathways also had a good distinguishing ability with a larger AUC
value of 0.8047 for glutamine and glutamate metabolism, 0.8906
for arginine biosynthesis, and 0.9297 for histidine metabolism.
The metabolites involved in these significant metabolic pathways
also had a good ability to distinguish between pCR and pSD
groups. The AUC values of N,N-dimethylglycine and pyruvate
were higher than the threshold (0.9687 and 0.7734) in the
metabolic pathway of glycine, serine, and threonine
metabolism (Figure 7A). Valine and 3-methyl-2-oxovaleric
acid had an excellent distinguishing ability with larger AUC

FIGURE 3 |OPLS-DA score plots and corresponding permutation tests of the relative concentration of metabolites’ data from three groups of TNBC patients: (A,
D) pSD patients vs. pPR patients; (B, E) pSD patients vs. pCR patients; (C, F) pPR patients vs. pCR patients. In the RPT plots, the green square is R2 (cum), denoting the
explained variance of the model. The blue diamond is Q2 (cum), standing for the predictive ability of the model.
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values (0.9844 and 0.8281, Figure 7B). In the metabolic pathway of
alanine, aspartate, and glutamate metabolism, the metabolites of
alanine, glutamic acid, pyruvate, citric acid, and asparagine hadAUC
values that exceed the threshold (0.9609, 0.7734, 0.7734, 0.7734, and
0.8438, Figure 7C). The same, the metabolite of glutamic acid
showed the same discriminative ability in the metabolic pathway
of glutamine and glutamate metabolism (Figure 7D). Similarly,
ornithine had good discriminative ability in the metabolic pathway
of arginine biosynthesis with 0.7856 AUC value (Figure 7E), and
π-methylhistidine had good discriminative ability in the metabolic
pathway of histidine metabolism with 0.8516 AUC value
(Figure 7F). According to this multi-ROC curve analysis, the
metabolites of N,N-dimethylglycine, pyruvate, valine, 3-methyl-2-
oxovaleric acid, citric acid, asparagine, ornithine, and
π-methylhistidine could be used as potential biomarkers to
distinguish between the pCR group and the pSD group.

On comparison between the pCR group and pPR group
patients, these three significant pathways also had a good
discriminative ability with larger AUC values (Figure 8). In

the metabolic pathway of glycine, serine, and threonine
metabolism, the AUC values of N,N-dimethylglycine and
pyruvate were higher than the threshold (0.8795 and 0.7366,
Figure 8A). In the metabolic pathway of valine, leucine, and
isoleucine biosynthesis, valine was the metabolite that mainly
contributed to the discriminative ability with a larger AUC value
(0.7902, Figure 8B). In the metabolic pathway of alanine,
aspartate, and glutamate metabolism, only alanine and
pyruvate contributed to the discriminative ability of this
metabolic pathway (0.8928 and 0.7366, Figure 8C). According
to this multi-ROC curve analysis, N,N-dimethylglycine, pyruvate,
valine, and alanine could be used as potential biomarkers to
distinguish between the pCR group and the pPR group.

According to the AUC values from the multi-ROC curves by
differential metabolites, the AUC values of the pairwise
comparison of N,N-dimethylglycine and valine were greater
than 0.7. These two metabolites (N,N-dimethylglycine and
valine) could be utilized as most potential biomarkers to
distinguish among these three groups.

FIGURE 4 | Enhanced volcano plots showing significantly different metabolites: (A) pSD patients vs. pPR patients; (B) pPR patients vs. pCR patients; (C) pSD
patients vs. pCR patients. The volcano plot shows log2 (fold change) on the x-axis and -log10 (p value) on the y-axis. Each point represents a metabolite. Circles’ size and
color are determined based on the variable importance in projection (VIP) and absolute correlation coefficient values (|r|), respectively. For each comparison, the larger the
VIP value, the larger the size of the circle, and the warmer color corresponds to higher |r|; the gradient blue means |r| is less than 0.297; the gradual bright yellow
means |r| is greater than 0.297 and is less than 0.384; the gradient red means |r| is greater than 0.384.
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DISCUSSION

In this experimental study, we used the NMR-based
metabolomics technology to predict the different sensitivities
of NAC for TNBC patients. Our study found that the
metabolic phenotype could classify the sensitivity of NAC,
although each group of TNBC patients has different clinical
and histopathological parameters. Some studies used
transcriptomics to study the chemotherapy sensitivity of
TNBC. Ozge Saatci et al. found lysyl-oxidase (LOX) to be a
key inducer of chemoresistance in TNBC by whole-transcriptome
sequencing (RNA-seq) (Saatci et al., 2020). In the same way, some
research studies used metabolomics technology to analyze the
predictive aspects of NAC of cancer (Wei et al., 2013; Hou et al.,
2014; Yang et al., 2018). Meanwhile, our research was more
focused on the differences in the overall metabolic pathways to
distinguish the three groups of TNBC patients.

In our study, the resulting prediction models (OPLS-DA
models) have high sensitivity and specificity. Through pairwise
comparisons (pSD vs. pCR; pSD vs. pPR; pPR vs. pSD) by
using the AUC values in multi-ROC curve analysis, three
significant metabolic pathways of glycine, serine, and
threonine metabolism, valine, leucine, and isoleucine
biosynthesis, and alanine, aspartate, and glutamate
metabolism could distinguish three groups in pairs. The
metabolic pathway of glycine, serine, and threonine
metabolism is linked to human BC invasion by comparing
metabolic profiling of BC cells with different metastatic
potentials (Kim S. et al., 2016). N,N-Dimethylglycine is
involved in glycine, serine, and threonine metabolism, and
also the methylation product of glycine. Biochemical
methylation reaction mediates the transfer of methyl groups
and regulates life activities. Ming Zhang et al. found the seven
differentially methylated sites (DMSs) that were highly

FIGURE 5 | Significantly disturbed metabolic pathways calculated in the comparison of three groups of TNBC patients: (A) pSD patients vs. pPR patients; (B) pSD
patients vs. pCR patients; (C) pPR patients vs. pCR patients.
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correlated with cell cycle as potential specific diagnostic
biomarkers for BC patients (Zhang et al., 2020). Branched-
chain amino acid metabolism was reprogrammed during
tumorigenesis in many types of human cancers (Holecek
2018; Peng et al., 2020; Sivanand and Vander Heiden,
2020), including glioblastoma (Zhang et al., 2021), non-
small-cell lung cancer (NSCLC) (Mayers et al., 2016), BC
(Zhang, 2017), and ovarian cancer (Wang et al., 2015). In
our work, we found the patients with different responses to
NAC (pSD, pPR, and pCR) had different reprogramming
metabolic pathways of valine, leucine, and isoleucine
biosynthesis. Alanine, aspartate, and glutamate metabolism

was reported to function as an alternative carbon source that
fuels tumor metabolism (Sousa et al., 2016).

On the contrary, the other three metabolic pathways only
could be used to distinguish between the pCR group and the
pSD group. Glutamine and glutamate metabolism was
perturbed in many types of cancers (Mates et al., 2019).
Glutamine and glutamate metabolism has indispensable
functions to provide amino acids, lipids, nucleotides,
hexosamines, and polyamines, but also to render metabolic
energy (ATP) (Mates et al., 2020). Meanwhile, glutamine and
glutamate metabolism could regulate glutathione (GSH), the
most important intracellular antioxidant molecule (Mates

FIGURE 6 | Multi-ROC curves assessing discriminant capabilities of the significantly disturbed metabolic pathways in the pPR patients compared with the pSD
patients. The AUC values shown in brackets are used to evaluate the performances of various biomarker models: (A) glycine, serine, and threonine metabolism; (B)
valine, leucine, and isoleucine biosynthesis; (C) alanine, aspartate, and glutamate metabolism.

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 70805210

He et al. Metabolic Phenotype in NC of TNBC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 7 | Multi-ROC curves assessing discriminant capabilities of the significantly disturbed metabolic pathways in the pCR patients compared with the pSD
patients. The AUC values shown in brackets are used to evaluate the performances of various biomarker models: (A) glycine, serine, and threonine metabolism; (B)
valine, leucine, and isoleucine biosynthesis; (C) alanine, aspartate, and glutamate metabolism; (D) glutamine and glutamate metabolism; (E) arginine biosynthesis; (F)
histidine metabolism.
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et al., 2018). Cancer cells frequently increase oxidative damage
in response to changes in glutamine and glutamate metabolism
(Mates et al., 2020). In our study, the significant metabolic
pathway of glutamine and glutamate metabolism could
distinguish different metabolic phenotypes between the pCR
group and the pPR group. This result indicates that the
oxidative stress state of the BC patients’ microenvironment
is different. Arginine biosynthesis was linked to the metabolic
regulation of nitric oxide synthesis in cancer (Keshet and Erez,
2018). Paniz Jasbi et al. also found the arginine/proline
metabolism was disturbed in the BC patients by using the

targeted plasma metabolomics (Jasbi et al., 2019). Von Mach-
Szczypiński et al. found histidine metabolism was abnormal in
tissues of primary ductal BC (von Mach-Szczypinski et al.,
2009a; von Mach-Szczypinski et al., 2009b). Similarly,
histidine metabolism was abnormal in the serum of primary
ductal BC (Sieja et al., 2005). Our research results also verify
this result.

Since the chemotherapy response prediction for cancer
remains challenging around the world, this promising
metabolomics approach might open a new view for patients
to select the promising treatment or even a truly “personalized

FIGURE 8 | Multi-ROC curves assessing discriminant capabilities of the significantly disturbed metabolic pathways in the pCR patients compared with the pPR
patients. The AUC values shown in brackets are used to evaluate the performances of various biomarker models: (A) glycine, serine, and threonine metabolism; (B)
valine, leucine, and isoleucine biosynthesis; (C) alanine, aspartate, and glutamate metabolism.
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treatment” in clinical practice. Compared with other studies
on single or multiple molecules as potential biomarkers, our
research was more focused on the overall differences in
metabolic pathways or metabolic phenotypes as potential
biomarkers.

Our study analyzed differences in the metabolic phenotypes
of TNBC patients with different sensitivity to neoadjuvant
chemotherapy by using NMR-based metabolomics and then
constructed a prediction model based on the metabolic
phenotype. Three significant metabolic pathways of glycine,
serine, and threonine metabolism, valine, leucine, and
isoleucine biosynthesis, and alanine, aspartate, and
glutamate metabolism could distinguish groups of patients
with no, partial, or complete response. Additional three
significant metabolic pathways of glutamine and glutamate
metabolism, arginine biosynthesis, and histidine metabolism
could distinguish groups of patients with no or complete
response. Although this study only involved a small number
of patient cohorts, the results have shown that these several
metabolic pathways have good distinguishing ability for
different patients with no, partial, or complete response. Of
course, we need more clinical cohort samples for verifying
these results. This method could be used as a preoperative
choice for efficacy evaluation for patients with BC neoadjuvant
chemotherapy.

LIMITATION

This study has the limitation that we lack of verification of
other data of transcriptomics, proteomics, etc. Furthermore,
given our relatively small sample size, our observation still
remains to be verified in a large cohort. Thus, follow-up studies
involving long-term studies of a large cohort of TNBC patients
receiving NAC are required.
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