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Metabolomics has emerged as a powerful discipline to study complex biological systems
from a small molecule perspective. The success of metabolomics hinges upon reliable
annotations of spectral features obtained from MS and/or NMR. In spite of tremendous
progress with regards to analytical instrumentation and computational tools, < 20% of
spectral features are confidently identified in most untargeted metabolomics experiments.
This article explores the integration of multiple analytical instruments such as UHPLC-MS/
MS-SPE-NMR and the cryo-EM method MicroED to achieve large-scale and confident
metabolite identifications in a higher-throughput manner. UHPLC-MS/MS-SPE allows for
the simultaneous automated purification of metabolites followed by offline structure
elucidation and structure validation by NMR and MicroED. Large-scale study of
complex metabolomes such as that of the model plant legume Medicago truncatula
can be achieved using an integrated UHPLC-MS/MS-SPE-NMR metabolomics platform.
Additionally, recent developments in MicroED to study structures of small organic
molecules have enabled faster, easier and precise structure determinations of
metabolites. A MicroED small molecule structure elucidation workflow (e.g., crystal
screening, sample preparation, data collection and data processing/structure
determination) has been described. Ongoing MicroED methods development and its
future scope related to structure elucidation of specialized metabolites and metabolomics
are highlighted. The incorporation of MicroED with a UHPLC-MS/MS-SPE-NMR
instrumental ensemble offers the potential to accelerate and achieve higher rates of
metabolite identification.
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INTRODUCTION

Metabolomics is the large-scale profiling of metabolites and it
has now been applied to a multitude of biological systems.
Metabolomics has seen exponential growth over the past
2 decades mostly due to continual technology advancements
in analytical instrumentation and computational tools. The
discipline continues to play a key role in understanding
metabolism, the elucidation of novel gene functions and the
discovery of biomarkers (Sumner et al., 2015; Beger et al., 2020;
Nakabayashi and Saito, 2020). In spite of the overwhelming
success of metabolomics, the large-scale confident identification
of metabolites continues to be a major challenge. In most
published metabolomics studies, typically 20% or less of the
spectral features obtained from mass spectrometry (MS) or
nuclear magnetic resonance (NMR) are confidently identified
(Blaženović et al., 2018). The primary approach to metabolite
identification includes spectral matching with data from
authentic standards hosted in mass spectral databases (e.g.,
HMDB, MassBank, NIST, METLIN etc. (Stein and Scott,
1994; Smith et al., 2005; Horai et al., 2010; Wishart et al.,
2018)) and NMR databases (e.g., BMRB, COLMAR etc.
(Ulrich et al., 2008; Bingol et al., 2015)). This approach offers
a confident and fast way to annotate compounds (Blaženović
et al., 2018). Currently, chemical structure databases such as
PubChem contain hundreds of millions of compounds but only
1-2 million of these compounds are of biological relevance and
only a fraction of these compounds are available as authentic
standards or included in the spectral databases. Hence an
overwhelming number of metabolites are not represented in
metabolomics spectral databases resulting in poor rates of
metabolite identification. Additional in silico computational
tools (e.g., MetFragCL, CFM-ID, MAGMa+, MS-FINDER etc.
(Allen et al., 2014; Ruttkies et al., 2016; Tsugawa et al., 2016;
Verdegem et al., 2016; Djoumbou-Feunang et al., 2019)) can
exploit the content of structural databases for alternative
metabolite identification capabilities (Blaženović et al., 2017;
Wolfender et al., 2019) and in silico predicted spectral databases
have been developed from the approximately 100 million
known compounds in PubChem and ChemSpider (Milman
and Zhurkovich, 2017). The use of molecular networking
(e.g., GNPS (Wang et al., 2016)) to cluster compounds based
on mass spectral fragmentation similarity followed by putative
annotation has also gained popularity in recent years.
Unfortunately, it is difficult to unambiguously identify
compounds based solely on molecular networking data.
Overall, the growth and expansion of authentic spectral
databases continue to be slow and there is an urgent need to
explore and advance other strategies to achieve higher-
throughput confident metabolite identifications. This article
discusses recent developments involving the integration of
multiple analytical platforms such as ultra-high-performance
liquid chromatography (UHPLC)-tandem mass spectrometry
(MS/MS)-solid phase extraction (SPE) and nuclear magnetic
resonance (NMR) to facilitate higher throughput empirical
metabolite identifications. We also explore the potential
scope and application of microcrystal electron diffraction

(MicroED), a cryogenic electron microscopy (cryoEM)
method, to the elucidation of small molecule structures. We
believe that the incorporation of MicroED into the UHPLC-MS/
MS-SPE workflow might lead to faster and higher-throughput
identifications of biologically important unidentified
metabolites. Development of these integrated metabolomics
platforms can especially benefit the plant and microbial
natural products community where large-scale identification
of specialized metabolites is a major challenge due to the vast
chemical diversity of known as well as truly novel compounds.

INTEGRATED ANALYTICAL INSTRUMENTS
FOR CONFIDENT METABOLITE
IDENTIFICATIONS
Most metabolomics studies over the last decade rely on either MS
or NMR with MS being the most widely used technique (Letertre
et al., 2021). MS coupled with liquid chromatography (LC) or gas
chromatography (GC) has dominated the metabolomics arena
due to its increased specificity, sensitivity and relative depth of
coverage. Currently, LC-MS offers the greatest depth of coverage
and dynamic range for metabolite analyses. Cumulatively, mass
spectral database resources are substantially larger compared to
NMR databases enabling significantly greater number of
metabolite identifications in biological samples. However,
NMR offers noninvasive, nondestructive and broad
quantification of analytes using a single internal or external
standard (Letertre et al., 2021). In addition, the historically
lower relative sensitivity of NMR compared to MS has been
somewhat mitigated with the advent of newer instruments with
higher magnetic field strengths and NMR probes with
cryogenically cooled receiver coils. For example, the Bruker
1.7 mm TCI MicroCryoProbe is 14-fold more sensitive than
the conventional 5 mm room temperature probes. The
increased sensitivity of modern cryoprobes currently enables
the detection and identification of nanomole concentrations of
metabolites (Molinski, 2010; Bhatia et al., 2019). Although both
MS and NMR have their pros and cons, it is clear that none of the
current analytical methods offers full coverage of the
metabolome. Thus, the combined use of multiple analytical
techniques and an integrated metabolomics platform are
sensible options to maximize metabolome coverage and
facilitate confident metabolite identifications based upon
multiple orthogonal datatypes.

According to the Metabolomics Standards Initiative (MSI)
guidelines, the confident identity of a metabolite is based upon a
minimum of two orthogonal parameters such as retention time,
accurate mass, MS/MS fragmentation pattern, collision cross
section, NMR chemical shifts etc. relative to an authentic
standard (Sumner et al., 2007; Schymanski et al., 2014). The
integration of multiple analytical data not only increase the
chances of identifying a metabolite, but also increases the level
of confidence in the identification, thus potentially reducing false
positives in the identification process. A compound identified by
accurate mass, MS/MS and further confirmed by NMR has a
much higher confidence level compared to a compound
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putatively or tentatively identified by accurate mass and MS/MS.
This strategy of utilizing multiple analytical data from
complimentary instruments has been successfully used to
confidently identify metabolites in several plants such as
tomato, tea and barrel medic (van der Hooft et al., 2011; van
der Hooft et al., 2012; Qiu et al., 2016).

Historically, organic chemistry journals require purity,
accurate mass/molecular formula and NMR connectivity
evidence for the identification of organic molecules. Further,
the natural products community utilizes high resolution MS
and NMR together for structure elucidation purposes. The
development of the hyphenated HPLC-UV-SPE-NMR
(Clarkson et al., 2005), HPLC-MS/MS-SPE-NMR (Exarchou
et al., 2003; van der Hooft et al., 2011) and UHPLC-MS/MS-
SPE-NMR (Sumner et al., 2015) automated purification
platforms coupled with structure elucidation/validation by
NMR accelerated the traditionally lengthy and laborious
natural product discovery process (Letertre et al., 2021). The
integration of multiple instruments greatly benefited the
metabolomics community as the platform allows automated
purification of targeted metabolites from complex biological
samples followed by confident identification using a
combination of MS/MS, 1D and 2D NMR experiments.
Simultaneous purification of multiple targeted metabolites can
be achieved by splitting the UHPLC eluent partly towards a MS
detector (5%) and partly towards a solid phase extraction (SPE)
cartridge (95%) (Bhatia et al., 2019). Repeated injections of the
sample lead to the purification and concentration of microgram
amounts of desired metabolites within the SPE cartridges that are
subsequently eluted using minimal amounts of deuterated
solvents for NMR analyses (Bhatia et al., 2019). Important
biological spectral features that remain unidentified in a
conventional MS or NMR-based metabolomics database search
can be identified by analyzing the accurate mass, MS/MS
fragmentation patterns and the NMR spectra in a
complementary fashion. Additionally, compounds identified
through database search can be validated by NMR for a more
confident identification. Less than 10 µg of SPE-purified
metabolite is reported to be sufficient to generate 1H NMR
spectrum suitable for structure validation (van der Hooft et al.,
2011). An application of the UHPLC-MS/MS-SPE-NMR
integrated platform was demonstrated in the plant
metabolomics community by studying the metabolome of the
model legume barrel medic (Medicago truncatula). Previously,
nontargeted metabolic profiling of M. truncatula aerial and root
tissues by either MS/MS or NMR had resulted in the tentative
identification of approximately 40 flavonoids and 80 triterpenoid
saponins (Huhman and Sumner, 2002; Kapusta et al., 2005a;
Kapusta et al., 2005b; Huhman et al., 2005; Farag et al., 2007;
Pollier et al., 2011; Qiu et al., 2016). UHPLC-MS/MS-SPE-NMR
confirmed the identity of 88 compounds that are publicly
available as part of the Bruker Sumner MetaboBASE® Plant
Library (https://www.bruker.com/en/products-and-solutions/
mass-spectrometry/ms-software/metabolomics-spectral-libraries.
html). The confirmed identity of these compounds was aimed
towards elucidation of several gene functions and characterization
of triterpene saponin and flavonoid biosynthetic pathways. Overall,

UHPLC-MS/MS-SPE-NMR has been proven to be a powerful,
cost-effective, and less labor-intensive platform to identify novel
metabolites in the model legume.

Absolute structure elucidation or even structure confirmation
by NMR can be a lengthy and complex process and its success is
often dependent on the NMR interpretation skills of the
researcher. Although, substantial progress has been made to
simplify compound identification by NMR, it can still be a
daunting task for non-experts. In the quest for simpler, faster
and higher-throughput confident compound identifications in
metabolomics, new technologies such as the cryo-EM method
MicroED are being explored. MicroED was recently reported to
enable precise stereochemical structure elucidation of milligram
quantities of metabolites in a few hours (Jones et al., 2018) and we
believe this technology can be pushed further to the structure
elucidation of high nanogram to low microgram levels. The
addition of MicroED into the existing UHPLC-MS/MS-SPE-
NMR platform is exciting as it can potentially pave the way
for faster and more straight forward identification of metabolites
with less interpretative skills. A schematic representation of
integrated analytical instruments (LC-MS-SPE-NMR and
MicroED) for automated purification and structure elucidation
of targeted metabolites is depicted in Figure 1.

MICROED IN SMALL MOLECULE
STRUCTURE ANALYSES

In recent years, diffraction-based EM techniques such as
MicroED have emerged as an effective tool to elucidate
structures of frozen, beam-sensitive samples. MicroED utilizes
a cryo-TEM (transmission electron microscope) to collect
diffraction data from microcrystalline samples in order to
determine their 3D structures (Nannenga and Gonen, 2019;
Nannenga, 2020). As electrons interact strongly with matter,
MicroED is highly successful for structure determination from
crystals several orders of magnitude smaller than those used for
single crystal X-ray diffraction. The MicroED method was
initially developed for the determination of high-resolution
protein structures (Shi et al., 2013; Nannenga BL. et al., 2014;
Nannenga B. L. et al., 2014), later used for to the study of peptide
structures as well (Rodriguez et al., 2015; Sawaya et al., 2016;
Gallagher-Jones et al., 2018; Warmack et al., 2019), and in recent
years, MicroED has been extended to the structural study of small
organic molecules. The use of MicroED for the high-resolution
structure determination of small molecules offers several
advantages over other methods of structural analysis. Many
structures of organic molecules and materials studied by
MicroED have been determined directly from electron
diffraction data collected from small amounts of synthesized
material, thereby circumventing the need for large amounts of
material and time-consuming recrystallization and optimization
(Gruene et al., 2018; Jones et al., 2018; Banihashemi et al., 2020;
Levine et al., 2020; Gleason et al., 2021). Additionally, MicroED is
capable of detecting and solving the structure of several
polymorphs or alternative compounds from a single sample
preparation (Jones et al., 2018). Because secondary metabolites
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are often purified in low amounts from their native sources, it can
be very difficult to grow large crystals suitable for X-ray
diffraction experiments. Therefore, the use of MicroED for the
structural studies of natural products is very attractive (Danelius
et al., 2021). Previous work has demonstrated the ability of
MicroED to determine atomic resolution structures of
specialized metabolites, including biotin, niacin, brucine, and
thiostrepton, directly from powders obtained following
purification or procurement from chemical suppliers (van
Genderen et al., 2016; Jones et al., 2018; Zhou et al., 2019).
Additionally, MicroED is likely to solve the structures from
powder mixtures on the same grid, which was demonstrated
using mixtures of biotin, carbamazepine, cinchonine, and brucine
powders (Jones et al., 2018). These initial studies indicate that
MicroED can be a powerful tool in small molecule structure
elucidation and can potentially accelerate compound
identification in the natural products and metabolomics
community.

MICROED STRUCTURE ANALYSIS
WORKFLOW

The MicroED sample preparation, data collection, and data
processing pipeline for proteins as well as small molecules has
been described previously (Shi et al., 2016; Bu and Nannenga,
2021; de la Cruz, 2021; Martynowycz and Gonen, 2021; Zee et al.,
2021). A MicroED structure elucidation workflow for natural
products and specialized targeted metabolites has been optimized
from previously published methods (Figure 2). Samples can be

initially screened for the presence of microcrystals using either an
optical lightmicroscope or a TEM.Once the presence ofmicrocrystals
in the samples are confirmed, they are deposited onto TEM grids by
adding powdered samples directly to the grid, creating a crystalline
suspension and pipetting the suspension on to the grid followed by
blotting or drying, or by solubilizing the sample in a compatible
solvent and adding this on the grid followed by drying of the solvent
and sample crystallization directly on the grid. Following the
deposition of the sample on the grid, the grids are then either
frozen in liquid ethane, liquid nitrogen, or loaded into the cryo-
TEM at room temperature and allowed to freeze within the cryo-
TEM. The grid is then searched at low magnification to identify the
presence of crystals on the grid. When a promising crystal has been
identified, the crystal is brought to the center of thefield of view, which
is important as the diffraction mode of the microscope should be
aligned such that the beam used for exposure is sampling the same
area. After the crystal has been aligned, an initial diffraction pattern is
collected to assess the diffracting power of the crystal. If the crystal
shows high-quality diffraction (e.g. high-resolution, sharp spots) then
a complete dataset is collected. To collect a MicroED dataset, the
crystal is first tilted to the maximal angle where no other crystals or
grid bars enter the path of the beam. The data collection is then
performed by continuously rotating the crystal in the electron beam as
the high speed detector records the diffraction data (Nannenga B. L.
et al., 2014). It is critical that the stage be at eucentric height so that the
crystal does not rotate out of the beam as the stage rotates during data
collection. The resulting diffraction movies containing frames of
continuous rotation diffraction patterns are converted to Super
Marty View (SMV) format to extract each frame (Hattne et al.,
2015). The frames are indexed, integrated and scaled using standard

FIGURE 1 | Schematic representation of integrated analytical workflow (UHPLC-MS-SPE-NMR and MicroED) for automated purification and structure elucidation
of targeted metabolites. The platform allows putative identification of metabolites based upon retention time, accurate mass, and MS/MS database searches. Targeted
metabolites that are unidentified or require further structural confirmation can be purified simultaneously using the UHPLC-MS-SPE system in an automated manner.
Structures of purified metabolites can then be confirmed or elucidated by NMR or MicroED.
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diffraction processing programs developed for X-ray crystallography
(e.g. XDS (Kabsch, 2010), DIALS (Clabbers et al., 2018)). Datasets,
typically consisting of data from several crystals merged together are
then phased by direct methods followed by structure refinement with
electron scattering factors, using programs commonly used for small
molecule structure determination (e.g., SHELX (Sheldrick, 2008)). The
structure of the flavonoid rutin as solved by the MicroED structure
elucidation workflow is shown in Figure 2.

INTEGRATION OF UHPLC-MS-SPE AND
MICROED

The incorporation of MicroED into the UHPLC-MS-SPE workflow
was envisioned to potentially achieve faster, higher throughput and

confident metabolite identifications based upon multiple orthogonal
data. Similar to UHLC-MS-SPE-NMR, several biologically relevant
unidentified or putatively identified metabolites can be targeted and
purified simultaneously and further analyzed by MicroED.
Preliminary experiments suggest that it is possible to generate
sufficient microcrystals of multiple purified flavonoids and
triterpenoid saponins from 20 UHPLC-MS-SPE injections of a
plant extract (10 mg lyophilized powdered sample extracted with
1 ml 80% methanol). Structure analysis by MicroED requires
substantially lesser number of UHPLC-MS-SPE injections
compared to NMR where 40–60 plant extract injections are often
required to achieve adequate purified material for structure
validation by 1D NMR and absolute structure elucidation by 2D
NMR. A previous study by Jones et al., 2018 (Jones et al., 2018)
reported a 50% success rate of obtaining high quality diffraction data
from flash column purified small molecules without additional
crystallization. Our initial experiments suggest that slow
evaporation of SPE-purified metabolite solutions in 90%
methanol at 4°C for 7–10 days has an 80% success rate of
producing well-diffracting microcrystals. Ten putatively identified
flavonoids and triterpenoid saponins were used to evaluate the
crystallization efficiency of the slow evaporation method.
Microcrsytals and the corresponding diffraction pattern of SPE-
purified 6-malonyl ononin is shown in Supplementary Figure S1.
Due to the minute amounts (nanogram-low microgram) of purified
metabolites and the resultant low crystal density in our study, crystal
screening and identification of high-quality single crystals were often
more time-consuming. Automated cryo-EM crystal screening
software can potentially accelerate this process in future. It must
be noted that the success of MicroED also depends on the quality of
microcrystals and further optimization of crystallization conditions
is crucial. In our initial studies, we have encounteredmultiple crystals
that are sometimes stacked together leading to low resolution
diffraction spots unsuitable for structure determination. Larger
and improperly shaped crystals may need to be further broken
down by vortexing, sonicating or pipetting. Other alternative and
more sophisticatedmethods for preparation of microcrystals include
the use of focused ion beam (FIB) milling under cryogenic
conditions (Nannenga and Gonen, 2019). Once suitable
microcrystals producing high quality diffraction patterns are
found, MicroED data can be acquired in minutes and
compounds can be identified in less than an hour. Presence of
minor impurities from co-eluting compounds in the crystalline
solution do not seem to interfere greatly with structure
elucidation of the targeted metabolites. However, improper
sample handling can lead to sample degradation and elucidation
of only partial structures. This was evident in case of malonylated
isoflavonoids where degradation of the highly labile malonyl group
was noticed. Overall, in its current form the authors believe that
MicroED is best utilized as an orthogonal structure elucidation tool
in combination with other orthogonal datasets for higher confident
structure determinations. MicroED is not perceived to be a totally
independent structural elucidation tool as it still faces challenges in
determining bond lengths accurately enough to resolve single from
double bonds or alcohols from ketones. As the method continues to
develop, it has the potential to be used for absolute structure
elucidation of unknown compounds with precise stereochemistry.

FIGURE 2 | MicroED small molecule structure elucidation workflow.
Following purification, samples are initially screened for the presence of
microcrystals using either a light microscope or TEM. Panel (A) illustrates
representative needle-shaped crystals in solution as observed under a
light microscope (see zoomed inset of A). Panel (B) shows a representative
single crystal as observed under a TEM. Once microcrystals are detected,
samples (powder or in solution) are applied onto cryo-TEM grids (C). The grids
can then be plunge frozen by rapidly submerging into liquid ethane (D).
Plunge-frozen grids are then analyzed in the cryo-TEM to detect the presence
of well-diffracting single crystals. Panel (E) shows the presence of a long
needle-shaped microcrystal under low magnification. MicroED data is then
collected as a movie from single crystals by continuously rotating the stage as
the crystal is exposed in the electron beam (F). Each frame from the
continuous rotation diffraction is extracted (G) for indexing, integration and
scaling by using XDSGUI (Kabsch, 2010). Phase information is then
determined by SHELXT (Sheldrick, 2008) followed by refinement using the
SHELXLE (Hübschle et al., 2011). Panel (H) shows the structure of the
flavonoid rutin as determined by MicroED (structure determined from
powdered rutin standard purchased from a chemical supplier).

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 7209555

Ghosh et al. Integrated UHPLC-MS-SPE-NMR/MicroED for Metabolite Identifications

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


For MicroED, there are several areas of active methods
development that will continue to push the technique forward.
Areas of method development relevant to small molecule
structure determination include enhanced data collection
procedures, the modeling of charge and chemical bonding
within the crystal structures (Yonekura and Maki-Yonekura,
2016; Yonekura et al., 2018), and procedures for using
electron diffraction to determine the absolute stereochemistry
of a molecule (Brázda et al., 2019). Also, sample preparation is
critically important for MicroED and represents an important
area of continued development. It is yet to be determined if a
simple slow evaporation crystallization strategy is suitable to
generate microcrystals for different classes of specialized
natural products. Our ongoing efforts are focused on
improving the UHPLC-MS-SPE-MicroED workflow for faster,
easier and confident metabolite identifications. Several
flavonoids, sapogenins and triterpenoid saponins have been
SPE-purified and currently being analyzed by MicroED.

CONCLUSION

Integrated analytical platforms such as UHPLC-MS-SPE
coupled with NMR and MicroED offer alternative and
effective approaches toward identification of metabolites that
often remain unidentified in conventional metabolomics
database search workflows. Introduction of MicroED into
the LC-MS-SPE purification and structure elucidation
pipeline is especially exciting as it opens up new avenues for
faster, easier and higher-throughput identification of
metabolites. The most attractive aspect of MicroED is its
wide accessibility as electron microscopes and detectors
needed for it are available in most modern EM cores.
However, it must be noted that wide-spread application of
MicroED in small molecule research is relatively recent and
further development of automated software packages for
crystal screening, data collection and structure determination
are still needed for routine analyses. As MicroED becomes
more targeted towards small molecule research, we expect to

see increased applications of the method in metabolomics
workflows.
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