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Protein-protein docking is a useful tool for modeling the structures of protein complexes
that have yet to be experimentally determined. Understanding the structures of protein
complexes is a key component for formulating hypotheses in biophysics regarding the
functional mechanisms of complexes. Protein-protein docking is an established technique
for cases where the structures of the subunits have been determined. While the number of
known structures deposited in the Protein Data Bank is increasing, there are still many
caseswhere the structures of individual proteins that userswant to dock are not determined
yet. Here, we have integrated the AttentiveDist method for protein structure prediction into
our LZerD webserver for protein-protein docking, which enables users to simply submit
protein sequences and obtain full-complex atomic models, without having to supply any
structure themselves. We have further extended the LZerD docking interface with a
symmetrical homodimer mode. The LZerD server is available at https://lzerd.kiharalab.org/.
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INTRODUCTION

Protein-protein interactions are key components of many biological processes, and the three-
dimensional (3D) structures of the protein-protein complexes thus formed are a crucial resource
for reasoning about their molecular functions. Ideally, structures of these complexes would be
determined experimentally, through techniques such as X-ray crystallography or cryo-electron
microscopy. However, it is possible to instead use computational methods to construct atomic
structure models of protein complexes (Aderinwale et al., 2020). This class of methods is called
protein-protein docking, and suitably constructed models from docking can be used to reason about
how molecular functions are carried out in the living cell, even in the absence of an experimentally
determined complex structure (Sanyal et al., 2021). Many protein-protein docking methods exist, such
as LZerD (Venkatraman et al., 2009), Multi-LZerD (Esquivel-Rodríguez et al., 2012), ZDOCK
(Mintseris et al., 2007), HADDOCK (Dominguez et al., 2003), ClusPro (Kozakov et al., 2017),
RosettaDock (Lyskov and Gray, 2008), HEX (Ritchie and Venkatraman, 2010), SwarmDock
(Torchala et al., 2013), ATTRACT (de Vries and Zacharias, 2013), and SymmDock (Schneidman-
Duhovny et al., 2005). Previously, we released a web-based tool which allows free, easy, installation-free
access to LZerD (Christoffer et al., 2021). Users can perform pairwise andmultiple chain docking in the
LZerD server. Users can also provide additional information in the form of distances of interacting or
non-interacting residues to guide docking. The LZerD suite of methods has been ranked at or near the
top of all server groups in recent rounds of CAPRI (Lensink et al., 2018; Lensink et al., 2019; Lensink
et al., 2020), the blind communitywide assessment of protein docking methods.
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Biologists seeking to model a complex computationally may
already have structures of individual subunits determined by
experiment. However, where no such structures are available, a
structure model can be constructed. Single-chain protein
structure prediction methods have recently matured, and can
often generate models in the absence of clear global template
structures (Kryshtafovych et al., 2019). Such methods include our
AttentiveDist (Jain et al., 2021), trRosetta (Yang et al., 2020),
RaptorX (Xu andWang, 2019), and QUARK (Zheng et al., 2019).
Relative to the top existing servers participating in CASP13
(Kryshtafovych et al., 2019), AttentiveDist showed competitive
performance when evaluated on the CASP13 (Kryshtafovych
et al., 2019) dataset (Jain et al., 2021).

The underlying methods implemented in the LZerD webserver,
LZerD (Christoffer et al., 2021), Multi-LZerD (Esquivel-Rodríguez
et al., 2012), and AttentiveDist (Jain et al., 2021), and the ranksum
model scoring function (Peterson et al., 2017a; Peterson et al.,
2018a; Christoffer et al., 2020) have been rigorously examined in
their original papers. In this article, we present the current version
of the LZerD webserver, with new functionality of de novo
prediction of subunit structures by AttentiveDist and applying
symmetry constraints for homodimer modeling. We provide step-
by-step instruction with examples of modeling in three different
scenarios.

MATERIALS

To perform protein docking, it is best if users have experimentally
determined 3D structures. In case the structure is not available,
structures can be modelled from the amino acid sequences of the
proteins in question. In practice, it is recommended that as much
information about the protein structures and their interactions as
possible be gathered in advance. For example, there should be
evidence that the proteins in question do in fact form a complex,
e.g., from a biochemical assay or a biophysical experiment. It is even
more desirable that information be known about specific residue
interactions or non-interactions. As discussed in later sections, such
information can even be provided directly to the server.

METHODS

AttentiveDist Protein Structure Prediction
For structure modeling of individual proteins, the LZerD server
uses AttentiveDist (Jain et al., 2021). If users have 3D structures of
individual proteins to dock, they can skip the AttentiveDist step.
Here, we give a brief overview the algorithm of AttentiveDist.

In the first stage of AttentiveDist, four multiple sequence
alignments (MSAs) with E-value cutoffs of 0.001, 0.1, 1, and
10 are generated using the DeepMSA (Zhang et al., 2020) method,
which uses HH-suite (Steinegger et al., 2019) and HMMER
(Johnson et al., 2010) to generate MSAs from the UniClust30
(Mirdita et al., 2017), UniRef90 (Suzek et al., 2015), andMetaclust
(Steinegger and Soding, 2018) protein sequence databases. A
trained neural network is then fed the amino acid types, the
PSI-BLAST (Altschul et al., 1997) position-specific scoring

matrix, the HMM profile, the secondary structure and solvent-
accessible surface area predicted by SPOT-1D (Hanson et al.,
2019), rough contacts predicted by CCMPRED (Seemayer et al.,
2014), mutual information, and a statistical pairwise potential.
The output of this neural network is a prediction of the
distribution of residue-residue distances.

Once generated, the predicted distance distribution is converted
into full-atom structure models by L-BFGS minimization of
predicted short-, medium-, and long-range distance restraints in
sequence using PyRosetta (Chaudhury et al., 2010). This
minimization results in a pool of models which are then scored
by a ranksum method (Christoffer et al., 2020; Peterson et al.,
2017a; Peterson et al., 2018a) which aggregates the rankings of the
pool by the knowledge-based scoring functions GOAP (Zhou and
Skolnick, 2011), DFIRE (Zhou and Zhou, 2002), and ITScorePro
(Huang and Zou, 2014), and additionally Rosetta’s REF2015 score
(Park et al., 2016), into a single ranking. This ranked pool of
models is the end output of AttentiveDist.

Heuristically, a model output by AttentiveDist with a ranksum
score ≤ 20 can be considered particularly confident, and a
ranksum gap between models of ≥ 2R can be considered
significant, where R is the ranksum score of the top-ranked
model. A ranksum of 20 is the score given when a model is
ranked fifth by all component scores and guarantees that at least
one component score has ranked the model within the top 5.

Although AttentiveDist was shown to have competitive
performance at the time of the development (Jain et al., 2021),
there are more recent methods that showed promising
performance. Users are also encouraged to try such servers,
perhaps those which performed well in recent CASP
(Kryshtafovych et al., 2019). Single chain models built by an
outside method can be uploaded to the LZerD server.

Using the AttentiveDist Web Interface
The AttentiveDist web interface (https://lzerd.kiharalab.org/
upload/upload_sequence) allows users to submit up to six
separate protein sequences for structure prediction at a time.
Jobs are limited to six proteins because six is the maximum
number of proteins the LZerD server can dock using Multi-
LZerD. To submit a sequence, users can simply paste their
sequence in FASTA format into the large text box, as shown in
Figure 1A. Due to resource constraints, users are limited to
1,000 amino acids per sequence. To submit additional
sequences, simply click the “+” button to create a new
submission field. Finally, clicking Submit will submit the job.
Users can further configure email notification settings, but this is
not necessary.

After the prediction job has been submitted and has finished
running, users are presented with a results summary page, shown
in Figure 1B. This page contains rows of 3D visualizers showing
the top five models for each submitted sequence. Below each row
of visualizers is a table containing the scoring and ranking data for
the output model set. Models can be downloaded in bulk as
compressed archives or individually by clicking the appropriately
labeled buttons.

From the five models presented for each chain, users need to
choose one to perform docking by checking “Forward to
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docking”. After choosing a model to dock, click either “Dock
Using Pairwise LZerD” or “Dock UsingMulti-LZerD” to send the
models to the docking step. Then, the structure model will be sent
to the subsequent step, the protein docking by LZerD. The panel
only shows up to the top five models, but up to 20 models can be
downloaded locally. If users want, they can examine models
within top 20 locally, by using a structure viewer, such as
PyMOL (The PyMOL Molecular Graphics System, 2019).
Then upload the selected model directly in the input page of
the LZerD server.

LZerD Protein-Protein Docking
The main protein docking engine of the webserver is LZerD for
pairwise docking and Multi-LZerD for multiple subunit docking
of up to six subunits. Here we briefly explain the algorithms of
LZerD and Multi-LZerD.

LZerD takes two structures provided by users (conventionally
referred to as receptor and ligand in descending order of size) as
input and samples of all possible interaction interface regions and
interaction angles exhaustively. If a putative complex structure
contains excessive steric violations at the interface, has too small an

FIGURE 1 | AttentiveDist panels. (A) The input page of AttentiveDist where users can input amino acid sequences of subunits to model. By clicking the “+” button,
additional sequence submission field will appear. The maximum number of sequences users can submit is six. (B) the result panel of AttentiveDist. For each submitted
sequence, top five scoring models are visualized. Scores of the five models are shown in a table below the visualization panel. The models are ranked by the ranksum
score.
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interaction area, or has low shape complementarity at the interface
region, that model is rejected. In LZerD, a protein structure is
represented by a molecular surface, which is segmented into
overlapping local surface regions. Each local surface region is
represented both by a mathematical moment-based shape
descriptor called a 3D Zernike descriptor (3DZD) (Kihara et al.,
2011). 3DZDs are rotation-invariant, which allows fast, alignment-
free computation of shape complementarity, and also allows a soft
representation of surface that is robust to a certain degree of
conformational change induced by the interaction. This advantage
extends to tolerance of small modeling inaccuracies. The
conformational space is searched by the geometric hashing
algorithm. If constraints of residue-residue distances, interface
residues, or symmetry tolerance have been provided, models
violating the constraints are rejected.

LZerD generates tens of thousands of docking models. After
clustering (by default at an RMSD cutoff of 4.0 Å), which
generally culls the model pool to a few thousand to a few tens
of thousands, the complex models are then scored by a ranksum
method (Peterson et al., 2017a; Peterson et al., 2018a; Christoffer

et al., 2020) which aggregates the rankings of the pool by the
knowledge-based scoring functions GOAP (Zhou and Skolnick,
2011), DFIRE (Zhou and Zhou, 2002), and ITScorePro (Huang
and Zou, 2014). These three scoring functions essentially check if
atom interactions in a model have distances and angles that agree
with those observed in experimentally determined protein
structures overall. If a model is consistently ranked as the top
by all the component scores, then the ranksum of the model will
be low, e.g. 3 if a model is ranked 1 by all component scores.
Ranksum has been shown to perform very well in docking model
ranking in CAPRI protein docking assessments (Lensink et al.,
2019; Lensink et al., 2020).

Multi-LZerD takes three to six protein structures and builds
them into a complex. It first runs pairwise LZerD for each pair of
subunits to generate a pool of pairwise docking models. Then, it
subsequently selects pairwise models and assembles into full
subunit models. Combinations of pairwise models are
iteratively optimized by a genetic algorithm. In Multi-LZerD,
models are selected with a molecular mechanics force field with
terms reweighted specifically for protein docking.

FIGURE 2 | Submitting and interpreting protein docking job. (A) the job submission page. The figure represents a situation that a structure model of Protein 1 is
transferred from AttentiveDist and the structure for Protein 2 will be fetched from PDB. The check box for performing C2 Symmetry docking is highlighted by rectangle in
yellow. (B) docking results page. On the top of the panel, a distribution of centroids of the docked poses of the ligand structures are indicated with spheres. By clicking a
sphere, the docked structure of the pose will be presented.
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Homodimer Docking (C2 Symmetry)
Symmetrical protein complexes are often observed in nature (Levy
et al., 2006). Cyclic symmetry of general order n isusually referred
to as Cn symmetry. The LZerD server supports docking with C2

symmetry, i.e., homodimers, in the current version of the server
because homodimers are quite common. A measure of the C2

symmetricalness of a model can be constructed by transforming
the atomic coordinates of the subunit by applying the rigid body
transformation from docking twice and calculating the root-mean-
square deviation (RMSD) to the original coordinates. If the model
is perfectly symmetrical, this RMSD will be 0 Å. For the C2

symmetry constraint functionality provided in this webserver,
this RMSD is cut off at 5.0 Å, and models exceeding it in
symmetry mode are discarded.

Using the Docking Web Interface
Figure 2 shows the interface for submitting individual protein
structures for docking. Once users have forwarded subunit
structures from the AttentiveDist web interface, the structures
appear in the input panel as shown in Figure 2A. Alternatively,
users can upload structures from their local disk or fetch them
directly from the Protein Data Bank (PDB) (Berman et al., 2000)
via the upload widget. It is also possible tomodel one of the subunit
structures by AttentiveDist and dock it with a structure from PDB.
Clicking the Submit button will start the docking computation.

This will run LZerD with the recommended default settings
and without constraints. If users prefer, they can directly change
parameters: the clustering RMSD cutoff, which controls the
redundancy of the output model pool, as well as the surface
reduction cutoff, which in part controls how finely the
conformational space is sampled. If users are modeling a
symmetrical homodimer, they can select the checkbox to
model with a C2 symmetry constraint, which excludes parts of
the conformational space greater than 5 Å RMSD from perfect
symmetry. Users can further optionally supply an email for
receiving job notifications, whether to receive a notification
when a job begins running, a job title, and a job comment
describing what the job is modeling.

Below, in the advanced options section, users can specify
distance constraints for specific residue-residue interactions or
residue-subunit interactions. Distances used for these constraints
should ideally come from experiment, but can also come from
computational predictions (La et al., 2013, La and Kihara, 2012). All
distance constraints specify an allowed range for the closest heavy
(non-hydrogen) atoms between two selections of atoms. For
residue-residue constraints, the selections are the atoms
belonging to the two specified residues. For receptor binding site
constraints, the selections are the specified receptor residue and the
entire ligand subunit. For ligand binding site constraints, the
selections are the specified ligand residue and the entire receptor
subunit. If a particular pair of residues should be in contact, a user
could for example specify a distance range of 0–5 Å, or perhaps
0–8 Å or even broader depending on what available data from
experiment might indicate. To specify that two residues should not
interact, a user could for example specify an exclusionary minimum
distance such as 15 Å. The same logic can be applied to receptor
binding site and ligand binding site constraints. To control the

number of constraints that must be satisfied, users can set the min/
max fraction fields, which directly specify what proportion of the
distance constraints should be satisfied. A toggle is available for
users to switch from specifying the proportion to specifying the
actual numbers of constraints that are allowed to be satisfied.

The submission process is essentially the same for Multi-
LZerD. Only the difference is, naturally, to specify three or more
(up to six) subunit structures to assemble. To switch to Multi-
LZerD, click the large gray button of “Switch to Multi-LZerD
docking for more than 2 proteins”.

After the docking job has been submitted and has finished
running, the user is presented with a results summary page
(Figure 2B). This page contains a 3D visualizer showing the
distribution of ligand centroids of the top-scoring docked models,
with a user selectable top-k threshold. Below the visualizer is a
table containing the scoring and ranking data for the output
model set. As default, models are ranked by the ranksum score.
Users can choose another score to sort the models by clicking an
arrow of the preferred score. Users can click on a model to display
its 3D structure. Models belonging to particular centroids can be
displayed by clicking on those centroids. Docked models can be
downloaded in bulk as compressed archives or individually by
clicking the appropriately labeled buttons.

For more information about the job submission steps and
interpretation of results page, users are encouraged to refer to the
instructions on the LZerD web server. From the top bar, the
information is available from the “About” pull-down menu.

RESULTS

We discuss three case studies of docking modeling in different
scenarios. The first case is the regular pairwise protein docking. The
second case is homodimer docking, while the last case is docking
with structure models built through the AttentiveDist pipeline.

Case Study: Regular LZerD Docking of
Human IL23-IL23R
The first case study provides an example of basic pairwise protein
docking modeling. During CAPRI Round 39, a complex of a human
cytokine heterodimer IL23with a human IL23Rmonomerwas given
for prediction as target T122. CAPRI is a blind experiment where the
structure of the complex to be modeled is not known to the
predictors until well after all predictions have been submitted. In
this example we show a similar result to the LZerD server group’s
modeling performance on this target (Christoffer et al., 2020). As the
LZerD server group did during CAPRI, here we used an unbound
structure from X-ray crystallography provided by the organizers for
IL23, which has a root-mean-square deviation (RMSD) of 1.7 Å to
the native T122 structure. For the ligand, we used a model of IL23R
generated by template-based modeling with MODELLER (Webb
and Sali, 2021) which has been truncated to the actual interacting
domain, which has an RMSD of 3.2 Å to the native T122 structure.
As suggested by the low RMSD, the template-based modeling was
reasonably successful at predicting the structure of IL23R. For the
docking, we set no constraints. In Figure 3, we show the results of
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this LZerD job. The top-10 model shown is acceptable under the
CAPRI evaluation criteria, with a ligand RMSD (L-RMSD) of 7.8 Å
and a fraction of native contacts (fnat) of 0.28 relative to the native
structure PDB 5MZV shown in Figure 3D. Although this result is
good, the richness of the result set can be increased by adding
constraints, as discussed in the corresponding case study section in a
previous paper (Christoffer et al., 2021). As seen by the centroid
distribution in Figure 3B, the ligand models are not concentrated at
the native interaction site.

Case Study: LZerD Docking of Bacterial
Aminoglycoside 29-N-Acetyltransferase
Homodimer With C2 Symmetry Constraint
This is an example of modeling a homodimer complex with the
newly implemented homodimer constraint. The complex used is
aminoglycoside 2′-N-acetyltransferase (AAC (2′)) from M.
tuberculosis, which appears to directly relate to the drug resistance
of the organism (Vetting et al., 2002). This example was used in a
work by Ritchie and Grudnin on symmetrical protein docking
(Ritchie and Grudinin, 2016). To create the LZerD job, we used
the PDB ID input method to specify that 1M4G should be fetched
from the PDB. Then, we used the Protein 1 Chains field to specify
that only chain A should be considered. Finally, we selected the
checkbox to switch to symmetrical docking (Figure 4A) and clicked
Submit. In the referenced work (Ritchie and Grudinin, 2016), a
docked model was considered a hit if it had an RMSDwithin 10 Å of

the native structure. According to their paper (Ritchie and Grudinin,
2016), M-ZDOCK and SymmDock found no hits within the top 10,
while SAM’s top-1 model was a hit with RMSD 1.82 Å. LZerD in C2

symmetry mode’s top-1 model, shown in Figure 4B, was a hit, with
an even lower RMSD of 0.94 Å. By the CAPRI criteria, this model is
of high quality, with an fnat of 0.88, an I-RMSD of 0.95 Å, and an
L-RMSD of 1.9 Å. Figure 4C shows the native structure. In
Figure 4D, we examined the symmetry of our model. Our model
(blue) has an RMSD of 2.2 Å to the correct pose (cyan) that is located
at the perfect symmetrical position.

Case Study: LZerD Docking of Designed
colEdes3:Imdes3 With Site-Directed
Mutagenesis Data
In this last example, we started from the sequence of individual
proteins to model their tertiary structures by AttentiveDist, which
were then docked to obtain complex models. In CAPRI round 43, a
redesigned version of the E. coli colicin-E2:DNase-Im2 complex was
presented as the target T133. The structure of this complex has since
been released, and is available as an entry in PDB, 6ERE. The
designed sequences of the first assembly, i.e. chains B and C, can
be taken from the PDB entry page (https://www.rcsb.org/structure/
6ERE). We modeled this complex from the sequence information
without using any template structures. We clicked Upload Protein
Sequences to bring up the AttentiveDist submission form and pasted
the colEdes3 sequence. Then, we clicked the green plus button to add

FIGURE 3 | Input and results for unconstrained docking of IL23-IL23R. (A) the input for unconstrained LZerD. The model of IL23 was uploaded as the receptor on the
left, while the model of IL23R was uploaded as the ligand on the right. The chain ID selection fields are blank since we want to use all the chains. This docking run was done
without constraints, so the entire constraints section is empty. (B) the results of unconstrained docking. IL23 is shown in red, while IL23R is shown in blue. The cartoon
structure shown is the top-10model, which has an fnat of 0.28, an I-RMSD of 4.4 Å, and an L-RMSD of 7.8 Å, which is of acceptable CAPRI quality. The distribution of
the top 50 ligand centroids is indicated by the orange spheres. (C) The table ofmodel scoring information for this docking run. The ranksum score,which is used to finally rank
themodels, is on the right. (D) the native structure of this complex, PDB 5MZV. The non-interacting domains of IL23R and a nanobody bound to IL23 are included in the view.
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another sequence input field and pasted the Imdes3 sequence there.
The filled submission form is shown in Figure 5A. Figure 5B shows
the result of the single-chain modeling. From this panel, we selected
the first model for each subunit as shown in Figure 5B, and then
clicked Dock Using Pairwise LZerD to forward both models to the
LZerD submission page. The top-1 models for colEdes3 and Imdes3
have RMSDs of 2.5 Å and 2.0 Å to the native structure, respectively,
and can be seen superimposed in Figure 5C.

From the site-directed mutagenesis experiments, we knew that
Tyr55 of DNase-Im2 is a hotspot residue (Netzer et al., 2018).
Further, this residue is conserved by the designed sequence of
Imdes3 (Wojdyla et al., 2012). The same is true for Phe86 of
colicin-E2, a key specificity site. Thus, to focus the docking, we
integrated this information into our docking job. To accomplish

this, we clicked Add Residue-Residue Constraints and create a
constraint between receptor residue “A 86” indicating chain A
residue sequence number 86, and ligand residue “A 55”, with
minimum distance 0 Å and maximum distance 5 Å (Figure 5D).
This configuration tells the LZerD server that Phe86 of colEdes3
and Tyr55 of Imdes3 should be in direct contact with each other.
We left the Min/Max Fraction fields blank since we were only
specifying one single constraint.

On the results page, shown in Figure 5E, the distribution of ligand
centroids about Phe86 of colEdes3 is clearly visible. The top-10model
pool contains two acceptable models: model 5 is acceptable with an
fnat of 0.32, an I-RMSD of 3.9 Å, and an L-RMSD of 10.7 Å; model 8
is acceptable with an fnat of 0.40, an I-RMSD of 3.8 Å, and an
L-RMSD of 11.6 Å. In this example, the residue constraints were

FIGURE 4 | Input and results for C2 symmetrical docking of bacterial AAC (2′). (A) The input for symmetrical LZerD. The subunit was uploaded by specifying the
PDB ID 1M4G in the input field to fetch the structure from the PDB. A single chain is extracted from this structure by specifying “A” in the chain ID selection field. (B) The
results of C2 symmetrical docking. The receptor and ligand are shown in red and blue respectively in the top-1 model conformation and are of course structurally
identical. This model has an fnat of 0.88, an I-RMSD of 0.95 Å, and an L-RMSD of 1.9 Å. The distribution of the top 50 ligand centroids is indicated by the orange
spheres. All output models satisfy the 5.0 Å symmetricalness criterion. (C) the native structure of this complex, both chains of PDB 1M4G. Note that some N-terminal
residues of chain B (cyan) are not resolved relative to chain A (green). In fact, considering all common atoms between the two native chains, they differ by 0.8 ÅRMSD. (D)
Visualization of the symmetricalness criterion’s satisfaction in the top-1 model viewed along the C2 symmetry axis. The subunits are shown here in Cα trace
representation. Green: the receptor; cyan: the correct ligand conformation; blue: the top-1 ligand conformation; red: the deviations of the ligand from the correct
conformation. This model satisfies the symmetricalness criterion with an RMSD of 2.2 Å.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 7249477

Christoffer et al. LZerD Protein Docking From Sequences

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


effective in guiding the docking. To compare, in Figure 5F, we show
docking results when the constraints were not provided. As shown,
without the constraints the ligand was attracted at an incorrect place,
which made a larger interface between the two proteins.

This example demonstrates several qualities of the pipeline
components and qualities of the pipeline as a whole. As shown

quantitatively by the metrics and visually in Figure 5C,
AttentiveDist was capable of accurately modeling the structures of
individual protein chains. As shown by the unconstrained result, the
correct interface was sampled in docking with no template or extra
interaction information, although amodel of acceptable CAPRI quality
was not ranked at the top. As shown quantitatively by the metrics and

FIGURE 5 | De novo subunit modeling and LZerD docking of colEdes3:Imdes3. (A) The input for de novo modeling of the subunits with AttentiveDist. The
sequences were pasted into the input fields, but users can alternatively upload FASTA files. (B) The results of de novo structure prediction. Both subunits are available
from this page, and colEdes3 is currently selected for display. Users can download models individually or in bulk and can forward models to LZerD by selecting the
checkboxes and clicking the LZerD or Multi-LZerD button. The scoring table appears below the 3D models. (C) The top-1 AttentiveDist models superimposed to
the native structure (green and cyan; PDB ID: 6ERE). The top-1 models for colEdes3 (red) and Imdes3 (blue) have RMSDs of 2.5 Å and 2.0 Å. (D) The constraint used for
LZerD docking. Here, Phe68 of colEdes3 was constrained to be in contact with Tyr55 of Imdes3 by specifying a distance cutoff of 5.0 Å. (E) Results of constrained
LZerD. Model 5 is shown, and is of acceptable quality with an of 0.32, an I-RMSD of 3.9 Å, and an L-RMSD of 10.7 Å. As indicated by the centroid distribution, the
docking search has been focused around the binding site by the constraint. (F) Results of unconstrained LZerD. Model 13 is shown, but is not of acceptable quality, with
an fnatof 0.36, an I-RMSD of 4.2 Å, and an L-RMSD of 13.1 Å. This I-RMSD barely missed the CAPRI threshold for acceptable quality. Without any constraint, the docking
for this input does not produce acceptable models in the top 10. As indicated by the centroid distribution, the docked models are largely preferring a different site.
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visually in Figure 5E, the barest of residue-residue interaction
information was sufficient to overcome this and produce acceptable
models among the top ranks.

DISCUSSION

With the upgraded LZerD web interface, biologists can
conveniently construct protein complex models that they can
use to reason about the interactions in their system. Information
about the system can be integrated in the form of geometric
distance and symmetry constraints. Now, even without known or
template-modeled subunit structures, users can generate de novo
predictions of subunit structures and dock them with the click of
a button. Future development of the LZerD web platform is
expected to include modeling complexes with intrinsically
disordered proteins using IDP-LZerD (Peterson et al., 2017b),
as well as modeling the assembly order of multimeric complexes
using Path-LZerD (Peterson et al., 2018b).
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