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Introduction: Biological aging is associated with changes in the metabolic pathways.
Leukocyte telomere length (LTL) is a predictive marker of biological aging; however, the
underlying metabolic pathways remain largely unknown. The aim of this study was to
investigate the metabolic alterations and identify the metabolic predictors of LTL in elite
male soccer players.

Methods: Levels of 837 blood metabolites and LTL were measured in 126 young elite
male soccer players who tested negative for doping abuse at anti-doping laboratory in
Italy. Multivariate analysis using orthogonal partial least squares (OPLS), univariate linear
models and enrichment analyses were conducted to identify metabolites and metabolic
pathways associated with LTL. Generalized linear model followed by receiver operating
characteristic (ROC) analysis were conducted to identify top metabolites predictive of LTL.

Results: Sixty-seven metabolites and seven metabolic pathways showed significant
associations with LTL. Among enriched pathways, lysophospholipids, benzoate
metabolites, and glycine/serine/threonine metabolites were elevated with longer LTL.
Conversely, monoacylglycerols, sphingolipid metabolites, long chain fatty acids and
polyunsaturated fatty acids were enriched with shorter telomeres. ROC analysis
revealed eight metabolites that best predict LTL, including glutamine,
N-acetylglutamine, xanthine, beta-sitosterol, N2-acetyllysine, stearoyl-arachidonoyl-
glycerol (18:0/20:4), N-acetylserine and 3-7-dimethylurate with AUC of 0.75
(0.64–0.87, p < 0.0001).

Conclusion: This study characterized the metabolic activity in relation to telomere length
in elite soccer players. Investigating the functional relevance of these associations could
provide a better understanding of exercise physiology and pathophysiology of elite
athletes.
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INTRODUCTION

Telomeres are repetitive non-coding DNA sequences located at
the end of chromosomes, which protect against DNA damage and
preserve genome integrity as they shorten during cell division
(Blackburn and Gall, 1978; Blackburn et al., 2006). When the
mean telomere length reaches a critical value, replicative
senescence and cell death occurs. Therefore, telomere length is
regarded as a marker of biological aging (Blackburn, 2001;
Campisi and d’Adda di Fagagna, 2007; Abdallah et al., 2009).
Short leukocyte telomere length (LTL) has been associated with
age (Lindsey et al., 1991; Slagboom et al., 1994; Abdallah et al.,
2009; Broer et al., 2013) as well as multiple age-related diseases
such as diabetes (Jeanclos et al., 1998; Fitzpatrick et al., 2007;
Zhao et al., 2013), cardiovascular disease (Brouilette et al., 2003;
Brouilette et al., 2007; Fitzpatrick et al., 2007; Maubaret et al.,
2010; Haycock et al., 2014; Rehkopf et al., 2016) and dementia
(Martin-Ruiz et al., 2006; Honig et al., 2012). Short LTL was also
linked to increased risk of mortality (Cawthon et al., 2003;
Bakaysa et al., 2007; Kimura et al., 2008; Ehrlenbach et al.,
2009; Fitzpatrick et al., 2011; Deelen et al., 2014; Rode et al.,
2015; Marioni et al., 2018), although such association was not
supported by other studies (Martin-Ruiz et al., 2005; Bischoff
et al., 2006; Harris et al., 2006; Njajou et al., 2009; Houben et al.,
2011; Strandberg et al., 2011). Despite the large number of studies
establishing the link between LTL and wellbeing, the molecular
pathways underlying these associations are still largely unknown.

Various alterations of metabolic pathways constitute key features
of longevity (Gonzalez-Covarrubias et al., 2013; Montoliu et al., 2014;
Cheng et al., 2015). Metabolic changes were also linked with age-
related diseases, such as type-2 diabetes, atherosclerosis, cancer, and
Alzheimer’s disease (Matsumoto et al., 2007; Suhre et al., 2010; Oresic
et al., 2011; Cao et al., 2012; Wang-Sattler et al., 2012; Yu et al., 2012;
Floegel et al., 2013; Liu et al., 2017; Al-Khelaifi et al., 2018; Al-Khelaifi
et al., 2019; Al-Sulaiti et al., 2019; Ilhame et al., 2020; Mohamed et al.,
2020). However, a limited number of studies investigated metabolic
pathways associated with LTL (Menni et al., 2013; Zhao et al., 2014;
Zierer et al., 2016). One study investigated the metabolic biomarkers
of aging in six thousand individuals from TwinsUK registry and
identified of 22 metabolites that strongly correlated with age and
related traits, but not with LTL (Menni et al., 2013). Another study of
423 American Indians identified 19 metabolites associated with LTL
(Zhao et al., 2014). A more recent study tested the association
between 280 blood metabolites and LTL in 3,511 females from
TwinsUK and replicated results in the KORA cohort. The results
confirmed the association of 1-stearoylglycerophosphoinositol and 1-
palmitoylglycerophosphoinositol with LTL, suggesting involvement
of fatty acid metabolism and particularly membrane composition in
biological aging. The study also reported the association of gamma-
glutamyltyrosine and gamma-glutamylphenylalanine with LTL,
suggesting the involvement of the glutathione cycle and markers
of increased oxidative stress (Zierer et al., 2016).

Exercise training was shown to reduce the rate of telomere
shortening during the aging process (Shammas, 2011; Balan et al.,
2018). Studies have suggested that regular exercise training is
associated with longer telomeres (Arsenis et al., 2017); however,
the metabolic signature of telomere length in long-term

exercising elite endurance athletes (such as soccer players) has
not been described. In the current study, an untargeted
metabolomics approach was used to investigate the association
between LTL and 837 serum metabolites in 126 young male elite
soccer players and the metabolic pathways associated with LTL.

METHODS

Cohort
126 young elite male soccer players who participated in national
or international sports events and tested negative for doping
substances at anti-doping laboratories in Italy were included in
this study. Metabolomics study utilized spare serum samples
collected for human growth hormone anti-doping tests.
Briefly, samples were delivered to the anti-doing laboratory
within 36 h under cooling conditions. Once received, samples
were immediately centrifuged to separate the serum and then
stored at −20°C until analysis. Due to the strict anonymization
process undertaken by anti-doping laboratories and as per study’s
ethics, only information related to the type of sport and athlete’s
gender were available to researchers. All other information were
not available, including age, ethnicity, or the time of recruitment
(pre or post exercise). This study was performed in line with the
World Medical Association Declaration of Helsinki–Ethical
Principles for medical research involving human subjects. All
protocols were approved by the Institutional Research Board of
Qatar University (QU-IRB 1277-E/20). All participants
consented for the use of their samples for research.

Metabolomics
Metabolic profiling of participants’ serum samples was conducted
using established protocols at Metabolon’s established protocols
using a Waters ACQUITY ultra-performance liquid
chromatography (UPLC) and a Thermo Scientific Q-Exactive
high resolution/accurate mass spectrometer interfaced with a
heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer operated at 35,000 mass resolution. The detailed
description of the liquid chromatography-mass spectrometry
(LC-MS) methodology was previously reported (Evans et al.,
2014). Briefly, 100 μL of sample was used for each analysis.
Small molecules were extracted in an 80% methanol solution
containing recovery standards. The resulting extract was divided
into five fractions: two for analysis by two separate reverse phase
(RP)/UPLC-MS/MS methods with positive ion mode
electrospray ionization (ESI), one for analysis by RP/UPLC-
MS/MS with negative ion mode ESI, one for analysis by
hydrophilic interaction chromatography (HILIC)/UPLC-MS/
MS with negative ion mode ESI, and one sample was reserved
for backup. On average, 1,009 features per sample (ranges from
906 to 1,038) are measured above the detection limits (Kong and
Hernandez-Ferrer, 2020). Raw data were extracted, peak-
identified and quality control processed using Metabolon’s
hardware and software (DeHaven et al., 2012). Compounds
were identified by comparison to library entries of purified
standards or recurrent unknown entities with more than 3,300
commercially available purified standard compounds. Library
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matches for each compound were checked for each sample and
corrected if necessary (Evans et al., 2014). Further details of raw
data extraction and types of quality control samples and the
parameters used to assure data collection quality were previously
described (Montrose et al., 2012).

Measurement of Telomere Length
DNA was extracted from whole blood using DNeasy Blood and
Tissue kit according to manufacturer’s instructions (Qiagen,
Germany). Nanodrop was used to assess the concentration/
quality of DNA. The average LTL in extracted DNA samples
were assessed using Absolute Human Telomere Length
Quantification qPCR Assay Kit according to manufacturer’s
instructions (ScienCell, United States). The kit includes
telomere primer set that amplifies telomere sequences, a single
copy reference region for data normalization and a reference
genomic DNA sample with known telomere length as a reference
for calculating the telomere length of target samples.

Statistical Analysis
Metabolomics data were log-transformed to ensure normality of
distribution. Batch correction was performed by Metabolon by
rescaling the median of each metabolite to 1. LTL was log
transformed to alleviate the original skewing of the
distribution. Principal component analysis (PCA) was
performed as an exploratory approach for finding out the
main factors contributing to the observed variation in the
data. Orthogonal partial least square (OPLS) was performed to
identify components that best differentiate LTL whilst dissecting
orthogonal components that do not differentiate LTL. Both PCA
and OPLS were run using SIMCA 16 with the default metabolite-
wise metabolite missingness threshold of 50%. Linear models for
association analysis were run using the R statistical package
(version 2.14, www.r-project.org/) to identify metabolites
associated with LTL. The model also corrected for hemolysis
levels (determined visually by Metabolon) and PCs from PCA
analysis. Function enrichment analysis was performed using the
one tailed Wilcoxon sum of the ranks test. The LTL variable was
then categorized into low (below mean) and high (above mean)
levels. A logistic regression (or Generalised linear model based on
the Binomial family) was then used together with a step-wise
procedure to determine a subset of metabolites (of those with the
nominal p value ≤ 0.05 from the linear model) that best predicts
the categorized LTL (Y variable). Using SPSS statistical package
(version 27), the receiver operating characteristic (ROC) analysis
was used to assess the discriminatory capacity of the identified
subset of metabolites. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were utilized in order to gain further insight
into the biochemistry of identified metabolites.

RESULTS

Multivariate Analysis of Metabolomics Data
of Elite Soccer Players
Non-targeted metabolomics was applied to determine the
metabolic signatures of 126 elite male soccer players. An OPLS

analysis revealed one class-discriminatory component
accounting for 69% of the variation in the LTL data
(Figure 1A). The corresponding loading score, shown in
Figure 1B, suggests enrichment of lysophosolipids, benzoate
metabolites and glycine/serine/threonine metabolites with
longer LTL, whereas monoacylglycerols, long change fatty
acids, polyunsaturated fatty acids and sphingolipids were
enriched with shorter LTL.

Univariate Association and Function
Enrichment Analyses
A linear model was used to assess the significance of metabolite-
associations with the LTL after correcting for hemolysis levels,
PC1 and PC2. Sixty-seven metabolites associated with LTL (p <
0.05) were identified and their associated pathways listed
(Table 1). Enrichment analysis confirmed an over-
representation of lysophosolipids, benzoate metabolites and
glycine/serine/threonine metabolites with longer LTL, and
monoacylglycerols, long change fatty acids, polyunsaturated
fatty acids and sphingolipids with shorter LTL (Figure 2).
Scatter plots of metabolites representing these pathways, which
either decreased (Figure 3A) or increased (Figure 3B) with LTL,
are shown in Figure 3.

Predictive Metabolites of LTL
A Generalized Linear Model featuring the mean-dichotomized
LTL as the y-variable and top metabolites from the linear model
as explanatory variables revealed a set of eight best predictive
metabolites, including glutamine, N-acetylglutamine, xanthine,
beta-sitosterol, N2-acetyllysine, stearoyl-arachidonoyl-glycerol
(18:0/20:4), N-acetylserine and 3-7-dimethylurate. The area
under curve (AUC) value from the ROC curve analysis was
0.75 (0.64–0.87, p < 0.0001) (Figure 4).

DISCUSSION

Studies performed in human cell lines and various model organisms,
including non-human primates, have revealed several longevity
regulatory pathways involved in genome stability, energy
metabolism and self-recognition (Riera et al., 2016; Campisi et al.,
2019). Together, these pathways promote somatic maintenance via
normal stem cell function and activation of autophagy, defense
mechanisms against infectious agents, and survival pathways, while
attenuating pro-inflammatory mediators, deregulated cell growth
and senescence (Riera et al., 2016; Campisi et al., 2019). Previous
studies have shown that exercise-mediated telomere preservation is
associated with activation of specific metabolic pathways that could
play a major role in disease prevention through exercise (Denham
et al., 2016). However, several questions remain unanswered about
how these longevity regulatory pathways are interconnected, or even
hierarchical, to determine the telomere attrition through time and
how they are related to regular practice of sport. In this study, the
metabolic predictors of LTL were determined in 126 young elite
male soccer players. Several metabolites and metabolic pathways
were increased or decreased with LTL. Among these, top predictors
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of LTL were determined, providing a better understanding of
exercise physiology and pathophysiology of elite athletes.

Changes in Various Lipids Are Associated
With LTL
Whereas levels of lysophospholipids were elevated with longer
LTL, other lipid species, including monoacylglycerols, long chain
fatty acids, polyunsaturated fatty acid (n3 and n6) and
sphingolipids, were reduced. Previous studies have shown that
blood lysophosphatidylcholine levels tend to decrease with age
(Johnson and Stolzing, 2019). Our data are in agreement with
these findings as lower levels of lysophatidylcholines were
associated with shorter LTL in elite soccer players. The blood
profile of other phospholipids and sphingolipids was also shown
to change with age, suggesting that blood lipids provide a rich
source of biomarkers of human aging and potently regulators of
aging and lifespan. Plasma lipidomics of 11 mammalian species
ranging in longevity from 3.5 to 120 years has identified a
predictive metabolic signature of the mammal’s lifespan,
including long-chain free fatty acids, lipid peroxidation index,
and lipid peroxidation-derived content, which were inversely

correlated with longevity (Jové et al., 2013). These data
confirm our findings as elevated levels of long chain fatty
acids, polyunsaturated fatty acid (n3 and n6) and
sphingolipids were associated with shorter telomeres. Further
evidence linking lipid metabolism to aging came from animals
with extreme longevity. The very long-lived (over 500 years)
quahog clam Arctica islandica was shown to have an exceptional
resistance to lipid peroxidation in mitochondrial membranes
(Munro and Blier, 2012). The lens membranes of the bowhead
whale that can live longer than 200 years are highly enriched with
phospholipids, providing resistance to the age-related cataracts
disease (Borchman et al., 2017). Hence, our emerging data
confirm the important role of lipids in longevity and suggest
the ability of lipid-based interventions to modulate longevity in
model organisms (Huang et al., 2014).

Changes in Benzoate and Glycine
Metabolism Are Associated With
Longer LTL
Our data showed elevation in betaine (dimethylglycine precursor),
dimethylglycine (sarcosine precursor), sarcosine (glycine

FIGURE 1 | OPLS model of metabolites associated with LTL in elite male soccer players. (A) Score plot showing the class-discriminatory component 1 (x-axis)
versus orthogonal component (y-axis) for LTL. (B) The corresponding loading plots showing top associatedmetabolites differentiating short from long LTL. Sub-pathway
categories enriched in significant metabolites from regression analysis are shown in color.
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TABLE 1 | Metabolites associated with TL after correcting for PCs and hemolysis.

Metabolite Sub-pathway Super-pathway Estimate SE Nominal p
value

Quinolinate Nicotinate and Nicotinamide Metabolism Cofactors and
Vitamins

−0.22 0.07 0.002

N-Palmitoyl-Sphingadienine (D18:2-16:0) Sphingolipid Metabolism Lipid −0.09 0.03 0.003
Hexadecadienoate (16:2n6) Polyunsaturated Fatty Acid (n3 and n6) Lipid −0.19 0.07 0.005
10-Nonadecenoate (19:1n9) Long Chain Fatty Acid Lipid −0.15 0.05 0.006
4-Hydroxycinnamate-Sulfate Tyrosine Metabolism Amino Acid −0.32 0.09 0.006
1-linoleoyl-GPA (18:2) Lysophospholipid Lipid 0.12 0.04 0.006
Stearoyl sphingomyelin (d18:1/18:0) Sphingolipid Metabolism Lipid −0.06 0.02 0.008
3-methoxycatechol sulfate 2 Benzoate Metabolism Xenobiotics 0.25 0.09 0.009
10-heptadecenoate (17:1n7) Long Chain Fatty Acid Lipid −0.15 0.06 0.01
1-linolenoylglycerol (18:3) Monoacylglycerol Lipid −0.14 0.05 0.011
N-Acetylserine Glycine, Serine and Threonine Metabolism Amino Acid 0.06 0.02 0.011
Gentisate Tyrosine Metabolism Amino Acid 0.39 0.14 0.012
Hippurate Benzoate Metabolism Xenobiotics 0.25 0.1 0.012
1-linoleoyl-GPG (18:2) Lysophospholipid Lipid 0.11 0.04 0.013
Sedoheptulose Pentose Metabolism Carbohydrate 0.15 0.06 0.014
Ceramide (d18:1/14:0, d16:1/16:0) Ceramides Lipid −0.15 0.06 0.015
Glycodeoxycholate Secondary Bile Acid Metabolism Lipid 0.24 0.1 0.016
Sebacate (C10-DC) Fatty Acid, Dicarboxylate Lipid 0.18 0.07 0.017
Sarcosine Glycine, Serine and Threonine Metabolism Amino Acid 0.1 0.04 0.017
dihomolinoleate (20:2n6) Polyunsaturated Fatty Acid (n3 and n6) Lipid −0.11 0.05 0.017
Xanthine Purine Metabolism, (Hypo)Xanthine/Inosine

containing
Nucleotide 0.08 0.03 0.017

Dimethylglycine Glycine, Serine and Threonine Metabolism Amino Acid 0.07 0.03 0.017
1-arachidonoyl-GPC (20:4) Lysophospholipid Lipid −0.06 0.02 0.017
1-palmitoylglycerol (16:0) Lysophospholipid Lipid 0.12 0.05 0.017
Glycocholate Primary Bile Acid Metabolism Lipid 0.25 0.1 0.018
1-stearoyl-GPC (18:0) Lysophospholipid Lipid −0.04 0.02 0.018
1-linoleoyl-GPi (18:1) Lysophospholipid Lipid 0.16 0.07 0.019
1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) Phosphatidylcholine (PC) Lipid −0.04 0.02 0.02
1-stearoyl-GPS (18:0) Lysophospholipid Lipid 0.17 0.07 0.02
Gamma-Glutamylglutamine Gamma-glutamyl Amino Acid Peptide −0.14 0.06 0.021
15-Methylpalmitate Fatty Acid, Branched Lipid −0.11 0.05 0.022
Beta-Hydroxyisovalerate Leucine, Isoleucine and Valine Metabolism Amino Acid 0.12 0.05 0.023
Docosapentaenoate (DPA; 22:5n3) Polyunsaturated Fatty Acid (n3 and n6) Lipid −0.12 0.05 0.024
N-Acetyl-3-Methylhistidine Histidine Metabolism Amino Acid 0.31 0.13 0.024
Sphingomyelin (d18:1/20:0, d16:1/22:0) Sphingolipid Metabolism Lipid −0.04 0.02 0.025
Palmitoleate (16:1n7) Long Chain Fatty Acid Lipid −0.17 0.07 0.026
Sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/
24:1)

Sphingolipid Metabolism Lipid −0.03 0.01 0.026

1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) Phosphatidylinositol (PI) Lipid −0.05 0.02 0.029
margarate (17:0) Long Chain Fatty Acid Lipid −0.1 0.04 0.029
X5alpha-Androstan-3alpha-17beta-Diol-Disulfate Androgenic Steroids Lipid 0.25 0.11 0.03
1-Oleoyl-Gpg (18:1) Lysophospholipid Lipid 0.13 0.06 0.031
1-Palmitoyl-Gpg (16:0) Lysophospholipid Lipid 0.09 0.04 0.032
4-Acetaminophen-Sulfate Drug Xenobiotics 1.77 0.55 0.032
1-Dihomo-Linolenylglycerol (20:3) Monoacylglycerol Lipid −0.14 0.07 0.033
1-Arachidonylglycerol (20:4) Monoacylglycerol Lipid −0.12 0.05 0.034
3-phenylpropionate (hydrocinnamate) Benzoate Metabolism Xenobiotics 0.19 0.09 0.036
Glycerate Glycolysis, Gluconeogenesis, and Pyruvate

Metabolism
Carbohydrate 0.05 0.02 0.036

Glutamine Glutamate Metabolism Amino Acid −0.06 0.03 0.036
Lactosyl-N-Behenoyl-Sphingosine (D18:1/22:0) Sphingolipid Metabolism Lipid 0.1 0.05 0.036
1-Palmitoyl-Gpi (16:0) Lysophospholipid Lipid 0.13 0.06 0.038
1-2-Dilinoleoyl-Gpc (18:2-18:2) Phosphatidylcholine (PC) Lipid 0.06 0.03 0.039
1-Palmitoleoylglycerol (16:1) Monoacylglycerol Lipid −0.1 0.05 0.04
Glycochenodeoxycholate glucuronide (1) Primary Bile Acid Metabolism Lipid 0.2 0.1 0.041
3-(3-hydroxyphenyl)propionate Benzoate Metabolism Xenobiotics 0.23 0.11 0.041
N-Acetylglutamate Glutamate Metabolism Amino Acid 0.11 0.05 0.041
sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/
24:2)

Sphingolipid Metabolism Lipid −0.05 0.02 0.042

X3-Hydroxyhippurate Benzoate Metabolism Xenobiotics 0.26 0.12 0.042
Sphingomyelin (D18:2-23:1) Sphingolipid Metabolism Lipid −0.05 0.02 0.043

(Continued on following page)
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precursor), hippurate (glycine product) and 3-hydroxyhippurate
(hippurate product), suggesting increased hippurate synthesis from
glycine in athletes with longer LTL (Pallister et al., 2017; Tahir et al.,
2019). Hippurate is a glycine conjugate of benzoate and is related to
the gut microbiome and correlated to kidney function. Previous

studies have identified higher hippurate levels in younger subjects
(Lees et al., 2013; Adav and Wang, 2021), suggesting that elevated
hippurate synthesis could be a biomarker of slower aging. The
functional relevance of these metabolic changes requires further
investigation.

TABLE 1 | (Continued) Metabolites associated with TL after correcting for PCs and hemolysis.

Metabolite Sub-pathway Super-pathway Estimate SE Nominal p
value

Arachidonate (20:4n6) Polyunsaturated Fatty Acid (n3 and n6) Lipid −0.05 0.03 0.043
4-Acetylphenol-Sulfate Drug Xenobiotics 0.24 0.11 0.043
Cotinine-N-Oxide Tobacco Metabolite Xenobiotics −0.25 0.11 0.046
Sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/
23:0)

Sphingolipid Metabolism Lipid −0.05 0.03 0.046

Hypoxanthine Purine Metabolism, (Hypo)Xanthine/Inosine
containing

Nucleotide 0.08 0.04 0.048

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/
20:4)

Plasmalogen Lipid −0.08 0.04 0.048

dihomolinolenate (20:3n3 or 3n6) Polyunsaturated Fatty Acid (n3 and n6) Lipid −0.07 0.04 0.048
Stearate (18:0) Long Chain Fatty Acid Lipid −0.05 0.03 0.05
Betaine Glycine, Serine and Threonine Metabolism Amino Acid 0.04 0.02 0.05

FIGURE 2 | Enrichment analysis of sub-pathways based on regression nominal p value. Wilcoxon sum of the ranks test was used to assess the probability of the
observed ranks of sub-pathway metabolites when ordered by nominal p values from the linear model analysis. Colors indicate the super-pathways of enriched sub-
pathways.
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Metabolic Predictors of LTL
Our data has also identified a metabolic classifier based on eight
metabolites that can predict LTL in our cohort. Selected metabolites

included four amino acids (glutamine, N-acetylglutamine,
N-acetylserine, N2.acetyllysine), two lipids (stearoyl-arachidonoyl-
glycerol (18:0/20:4), beta-sitosterol) and one nucleotide (xanthine). In
thismodel, reduced glutamine levels were associatedwith longer LTL.
Previous studies have identified that older subjects have higher
glutamine compared to younger subjects (Kaiser et al., 2005),
confirming our observation. The classifier also identified that
elevated xanthine was associated with increased LTL, confirming a
multi-omics study that showed xanthine as a pro-survival metabolite
with aberrant mitochondrial function (Gioran et al., 2019). Similarly,
our model also suggested that elevated beta-sitosterol is increased
with longer LTL. Previous reports have shown that beta-sitosterol
provides immunomodulatory, anti-microbial, anti-cancer, anti-
inflammatory, lipid-lowering, hepato-protective, protective effect
against respiratory diseases, wound-healing, anti-oxidant and anti-
diabetic activities (Babu and Jayaraman, 2020). The association of the
other metabolites included in the metabolic classifier of LTL was not
reported before, therefore requires further confirmation in other
cohorts.

Study Limitations
In this pilot study, the relatively small number of participants and
the variation in sample collection, transportation and storage
could have affected the results. Additionally, the limited available
information of athletes’ anthropometric, physiological, and
nutritional data during sampling as well as the resting time
since their last exercise has hindered attempts to consider
other important potential confounders such as body mass
index and diet in our analysis. Furthermore, the use of young

FIGURE 3 | Scatter plots of representatives of enriched pathways that were reduced (A) or increased (B) with LTL.

FIGURE 4 | ROC curve analysis indicating the discriminatory power of a
subset of metabolites differentiating short and long LTL (below/above mean
respectively).
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elite athletes without inclusion of non-athlete controls has limited
the usefulness of the data, although the current study used a
“within-subjects” design to test the effect of long-term soccer
practice on LTL and metabolic profile without a control group.

Despite all these limitations, our novel data has revealed
significant, although differences were only nominally
significant, and pronounced alterations in metabolites with
LTL in elite male soccer players. However, replication of data
in other cohorts with controlled experimental design, including
having non-elite athlete controls, is warranted to validate the
emerging metabolites set as potential predictive biomarkers of
exercise-associated reduced telomere attrition.

CONCLUSION

Our novel data suggest that elite soccer players exhibit a unique
metabolic signature associated with LTL, including specific
metabolites that can best predict LTL. The functional
relevance of the emerging data is to highlight the importance
of lipids, glutamine, xanthine, beta-sitosterol, among other
metabolites, on longevity in response to chronic exercise,
potentially through triggering a pro-survival,
immunomodulatory and anti-oxidant effect. Confirming the
predictive power of these metabolites and their functional
relevance in different cohorts could help in understanding the
aging process and the metabolic pathways underlying exercise-
associated reduced telomere attrition.
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