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Background: Cancer-associated fibroblasts (CAFs) are the most prominent cellular
components in gastric cancer (GC) stroma that contribute to GC progression,
treatment resistance, and immunosuppression. This study aimed at exploring stromal
CAF-related factors and developing a CAF-related classifier for predicting prognosis and
therapeutic effects in GC.

Methods: We downloaded mRNA expression and clinical information of 431 GC samples
from Gene Expression Omnibus (GEO) and 330 GC samples from The Cancer Genome
Atlas (TCGA) databases. CAF infiltrations were quantified by the estimate the proportion of
immune and cancer cells (EPIC) method, and stromal scores were calculated via the
Estimation of STromal and Immune cells in MAlignant Tumors using Expression data
(ESTIMATE) algorithm. Stromal CAF-related genes were identified by weighted gene co-
expression network analysis (WGCNA). A CAF risk signature was then developed using the
univariate and least absolute shrinkage and selection operator method (LASSO) Cox
regression model. We applied the Spearman test to determine the correlation among CAF
risk score, CAF markers, and CAF infiltrations (estimated via EPIC, xCell,
microenvironment cell populations-counter (MCP-counter), and Tumor Immune
Dysfunction and Exclusion (TIDE) algorithms). The TIDE algorithm was further used to
assess immunotherapy response. Gene set enrichment analysis (GSEA) was applied to
clarify the molecular mechanisms.

Results: The 4-gene (COL8A1, SPOCK1, AEBP1, and TIMP2) prognostic CAF model
was constructed. GC patients were classified into high— and low—-CAF-risk groups in
accordance with their median CAF risk score, and patients in the high—CAF-risk group had
significant worse prognosis. Spearman correlation analyses revealed the CAF risk score
was strongly and positively correlated with stromal and CAF infiltrations, and the four
model genes also exhibited positive correlations with CAF markers. Furthermore, TIDE
analysis revealed high—CAF-risk patients were less likely to respond to immunotherapy.
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CAF model in GC

GSEA revealed that epithelial-mesenchymal transition (EMT), TGF-B signaling, hypoxia,
and angiogenesis gene sets were significantly enriched in high—-CAF-risk group patients.

Conclusion: The present four-gene prognostic CAF signature was not only reliable for
predicting prognosis but also competent to estimate clinical immunotherapy response for
GC patients, which might provide significant clinical implications for guiding tailored anti-
CAF therapy in combination with immunotherapy for GC patients.

Keywords: gastric cancer, cancer-associated fibroblasts, weighted gene co-expression network analysis,

biomarker, prognosis, immunotherapy

INTRODUCTION

Gastric cancer (GC) ranks fifth among the most common cancers
and is the fourth leading cause of cancer-related mortality
worldwide (Sung et al., 2021). Leaving aside improvements in
gastroscopic screening and various treatment strategies,
recurrence and metastasis remain the main causes of GC
death, and the current therapeutic efficacy on recurrent and
metastatic GC is still unsatisfactory (Lee et al, 2016; Thrift
and El-Serag, 2020). GC tissues are composed of neoplastic
cancer cells as well as the immune and stromal milieu where
tumor cells are located, which is termed as tumor
microenvironment (TME). Accumulating evidence indicated
tumor stromal components in TME are critical for tumor
growth and metastasis, immunosuppression, and drug
resistance (Hanahan and Coussens, 2012; Quail and Joyce,
2013), which have embraced a spacious field of investigation.

As the most prominent cell type of tumor stroma, cancer-
associated fibroblasts (CAFs) are crucial sources of growth factors
and cytokines that promote tumor progression and migration
(Kojima et al, 2010; Tommelein et al, 2015), stimulate
epithelial-mesenchymal transition (EMT) (Wu et al, 2017;
Fiori et al., 2019), and induce chemoresistance (Lotti et al.,
2013; Li et al.,, 2016) and immunosuppression (Kraman et al.,
2010; Monteran and Erez, 2019). CAFs are also capable of
depositing and reorganizing the extracellular matrix (ECM),
which serves as a thick physical barrier that supports tumor
cell invasion and restrains the infiltrations of antitumor
leukocytes, leading to tumor progression, immune evasion,
and therapy resistance (Ma et al, 2016; Lakins et al., 2018;
Kaur et al.,, 2019; Gamradt et al., 2021). Thus, targeting CAF-
mediated immunosuppressive stromal microenvironment in
combination with immunotherapy could promisingly
ameliorate the response to immune checkpoint inhibitors. For
instance, exhaustion of fibroblast activation protein
(FAP)-positive CAFs in murine models led to increased CD8"
T cell infiltrations and decreased macrophages proportions
(Duperret et al., 2018), and therapeutic effects of anti-CTLA4
and anti-PD-1 were consequently enhanced (Feig et al.,, 2013).
Unfortunately, FAP-based drugs against CAFs failed to pass
Phase II trials owing to the unsatisfactory clinical response in
metastatic colorectal cancer patients (Hotheinz et al., 2003; Narra
et al., 2007), and such a CAF inhibitory strategy is currently
lacking in GC treatment. In this regard, it is imperative to explore
stromal CAF-related factors in GC.

Weighted gene co-expression network analysis (WGCNA) is a
systematic bioinformatics algorithm that is competent to incorporate
highly and coordinately expressed genes into several gene modules
and investigate the module’s relationships with the phenotype of
interest (Langfelder and Horvath, 2008). WGCNA has been
successfully applied for identifying CAF markers (Liu et al,
2021a; Liu et al, 2021b). So far, CAF and stromal infiltrations
have not been subjected to WGCNA analysis in GC. In this study,
for the first time, WGCNA was employed simultaneously on two
transcriptome datasets collected from publicly available Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA) databases. We detected hub modules that were most
correlated with stromal CAF infiltrations. Then, by applying
univariate and Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression analyses, we identified COL8A1, SPOCKI1,
AEBP1, and TIMP2 as prognostic CAF markers and constructed the
four-gene CAF signature capable of predicting prognosis and
therapeutic responses in GC. Our results hint that the CAF
model might be a novel anti-CAF therapeutic approach in GC.

MATERIALS AND METHODS

Data Acquisition and Preprocessing

The fragments per kilobase of transcript per million mapped
reads (FPKM) format RNA-seq data and corresponding
prognostic data (follow-up time more than 30 days) of 330
TCGA stomach adenocarcinoma (TCGA-STAD) samples were
downloaded through UCSC Xena browser (GDC hub) (https://
gdc.xenahubs.net) (Goldman et al., 2020). The normalized FPKM
values were converted to transcripts per million (TPM) and
log2(TPM+1) transformed (Wagner et al, 2012). We also
obtained normalized expression data and clinical information
of 431 GC samples in GSE84437 from the GEO database (Yoon
et al., 2020). The highest value was reserved if one gene matched
multiple probes.

CAF Infiltration Estimation and Stromal
Score Calculation

CAF abundances were separately estimated via four methods:
cell-type  deconvolution  (constrained  least  square
optimization)-based Estimate the Proportion of Immune and
Cancer cells (EPIC) algorithm (Racle et al., 2017), gene signature
enrichment-based xCell algorithm (Aran et al., 2017), marker
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genes expressions-based microenvironment cell populations-
counter (MCP-counter) (Becht et al, 2016), and Tumor
Immune Dysfunction and Exclusion (TIDE) algorithms (Jiang
et al, 2018). The first three methods were achieved via a
deconvolute() function of immunedeconv R package (version
2.0.3) (Sturm et al, 2020), and the TIDE method was
implemented through http://tide.dfci.harvard.edu/. In addition,
the Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) algorithm
was applied to calculate the stromal score via estimate R package
(version 1.0.13), which indicates the stromal infiltrating levels of
each tumor sample (Yoshihara et al., 2013).

CAF and Stromal Co-expression Network

Constructions

Co-expression networks and hub genes that targeted CAF
infiltrations as well as stromal scores were constructed and
detected via WGCNA R package (version 1.68) (Langfelder and
Horvath, 2008). Genes with the top 5,000 of median absolute
deviation (MAD) were first chosen as the input genes for
network constructions in both TCGA-STAD and GSE84437
cohorts. Then, the Pearson’s correlation similarity matrix between
any gene pairs was calculated (sy, where ij represents pair-wise genes)
and increased to soft-thresholding power [ (sijﬁ) based on the scale-
free topology network criterion. Subsequently, the adjacency matrix
was clustered using topological overlap measure (TOM) and
dissimilarity (1-TOM) between genes, and we conducted a
dynamic tree cut algorithm on the dendrogram for gene module
identifications with minimum gene numbers as 30 in each module.
Each module expression’s first principal component was
summarized as module eigengenes (MEs), the Pearson’s
correlations between MEs and EPIC-quantified CAF infiltrations
as well as the stromal score were evaluated, and the most correlated
module was picked for further analysis. Then, we measured gene
significance (GS) for the traits and module membership (MM
indicates the correlation between ME and gene expression) of
individual genes in the identified hub module, and hub genes
were filtered out under the strict criteria of GS > 0.4 and MM >
0.8. Finally, the overlapping hub genes between TCGA-STAD and
GSE84437 cohorts constituted the final hub genes.

Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes

(KEGG) Analyses

GO and KEGG pathway enrichment analyses were performed on the
final hub genes to identify the biological functions (including biological
processes (BPs), molecular functions (MFs), and cellular components
(CCs)) and pathways through clusterProfiler R package (version
3.14.3) (Yu et al,, 2012). p < 0.05 was considered statistically enriched.

Prognostic Model Construction and

Validation
The GSE84437 cohort was selected for CAF risk model
construction owing to its larger sample size, while 330 cases

CAF model in GC

from TCGA-STAD were assigned to the validation cohort. The
univariate Cox regression model was performed to identify
prognostic stromal CAF hub genes on overall survival (OS);
genes with p < 0.05 were subsequently put into LASSO Cox
regression analysis with 1,000 iterations for gene reduction via
glmnet R package (Simon et al., 2011). Then, the CAF risk model
was constructed as follows: CAF risk score = Z (B; * Exp;), where
B; refers to the LASSO coefficient of ith gene, and Exp; represents
the ith gene’s expression value. GC patients were classified into
high- and low-CAF-risk groups based on their median CAF risk
scores, and the OS difference between two groups was estimated
via Kaplan-Meier curves and the log-rank test. Similarly, the CAF
risk model was validated in the TCGA-STAD cohort.

CAF Markers Collections and Correlation
Analysis

CAF specific and nonspecific markers were collected from
published literature (Gascard and Tlsty, 2016; Han et al,
2020). To ensure the reliability of our CAF model markers in
GC, we analyzed the Spearman’s correlations between the CAF
risk score and stromal score as well as multi-estimated CAF
infiltrations (EPIC, xCell, MCP-counter, and TIDE). Correlations
between CAF model genes and published CAF markers were also
analyzed on both TCGA-STAD and GSE84437 cohorts.

Chemotherapy and Immunotherapy

Response Predictions

Based on the largest publicly attainable pharmacogenomics
database, Genomics of Drug Sensitivity in Cancer (GDSC)
(https://www.cancerrxgene.org/) (Yang et al, 2013), half-
maximal inhibitory concentration (IC50) values of common
drugs (bleomycin, lapatinib, paclitaxel, camptothecin, cisplatin,
docetaxel, methotrexate, and sunitinib) in each GC sample were
estimated based on the transcriptome data by ridge regression
with ten-fold cross-validation in pRRophetic R package (version
0.5) (Geeleher et al., 2014a; Geeleher et al., 2014b). Subsequently,
the TIDE (http://tide.dfci.harvard.edu/) online algorithm was
adopted for immune checkpoint blockade therapy response
predictions (Jiang et al., 2018). Differences in response rates
between high- and low-CAF-risk groups were examined by
the chi-squared test, and the predictive efficacy of the CAF
risk signature was evaluated by ROC curves and area under
the curve (AUC) values.

Somatic Alteration Data Collection and

Analyses

The somatic mutation data of the TCGA-STAD cohort were
downloaded via the GDCquery_Maf() function (pipelines =
“mutect2” (Cibulskis et al., 2013)) of TCGAbiolinks R package
(Colaprico et al, 2016). The top 20 highest mutational
frequencies in both low- and high-CAF-risk groups were
recognized and visualized via maftools R package (Mayakonda
et al,, 2018). Tumor mutation burden (TMB) has been proposed
as an immunotherapy efficacy predictor (Yarchoan et al., 2017),
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and the TMB value of each STAD sample was then calculated via
the tmb() function of maftools package, and Spearman’s
correlation between TMB and CAF risk scores were analyzed.

Enrichment Analyses

Gene set enrichment analysis (GSEA) was performed to explore
the enriched hallmark and KEGG pathway gene sets between
high- and low-CAF-risk groups in GSE84437 via enrichplot and
clusterProfiler R packages. The “c2. cp.kegg.v7.4. symbols” and
“h.all.v7.4. symbols” gene sets were derived from the Molecular
Signatures Database (MSigDB) (Liberzon et al, 2015).
Furthermore, ssGSEA was applied to calculate the enrichment
scores of EMT, TGF-B, and angiogenesis hallmark gene sets
(Hanzelmann et al, 2013). Spearman’s correlations analysis
was performed to assess the correlation between the CAF risk
score and gene set enrichment scores.

Validation via Cancer Cell Line
Encyclopedia (CCLE) and Human Protein

Atlas (HPA) Databases

For cellular level validation, the mRNA expressions of the identified
markers in 38 fibroblasts and 39 GC cell lines were downloaded
from the CCLE database (https://portals.broadinstitute.org/ccle)
(Ghandi et al,, 2019), and we examined their expression patterns
in fibroblasts and CRC cell lines via heat map and Wilcoxon tests. In
addition, with respect to protein level investigation,
immunohistochemical (IHC) staining images of these markers in
GC tissues were downloaded from the HPA online database (https://
www.proteinatlas.org/) (Uhlén et al., 2015), and the target protein
localization could be directly observed.

Statistical Analysis

All statistical analyses were performed using R software (version
3.6.3; https://www.r-project.org/). The median CAF risk score
was the cutoff value for each cohort in dividing GC patients into
high- and low-CAF-risk subgroups. The Wilcoxon test was
applied for pairwise comparisons. The Kaplan-Meier curve
with the log-rank test was adopted for overall survival

comparisons via survival and survminer R packages. p < 0.05
was regarded as statistically significant.

RESULTS

Higher CAF Infiltrations and Stromal Scores

Indicate Worse OS in GC Patients

The flowchart of this research is displayed in Figure 1. CAF
infiltrations were multiply predicted by EPIC, xCell, MCP-counter,
and TIDE methods, and the stromal score was calculated by the
estimate algorithm. Their prognostic values on OS were evaluated via
log-rank tests; Kaplan-Meier curves indicated that higher CAF
infiltrations and stromal scores were notably correlated with poorer
OS of GC patients in both GSE84437 (Figure 2A) and TCGA-STAD
(Figure 2B) cohorts, which highlighted the importance of further
exploration of CAF and stromal-related genes for GC. Herein, the
EPIC-estimated CAF abundances and stromal scores were
summarized as phenotype data for the subsequent analysis, and
the other three estimated CAF infiltrations data were utilized for
the identified CAF model external validations.

Co-Expression Network of CAF and Stromal

Scores

WGCNA analysis was performed in both GSE84437 and TCGA-
STAD. To construct a scale-free topology network, the soft
threshold power (B) of 8 in GSE84437 (scale-free R* = 097)
(Figure 3A) and 6 in TCGA-STAD (scale-free R* = 087)
(Figure 3B) was estimated. For GSE84437, the hierarchical
clustering tree revealed that 11 co-expression models were
clustered (Figure 3C), and the black module had the strongest
positive correlation with the CAF proportion (Cor = 0.91, P = 6e-
161) and stromal score (Cor = 0.84, P = 3e-116) (Figure 3E). For
TCGA-STAD, the dynamic hybrid cutting clustered 9 co-
expression models (Figure 3D), with the brown module having
the strongest positive correlation with the CAF proportion (Cor =
0.88, P = 4e-108) and stromal score (Cor = 0.88, P = 3e-104)
(Figure 3F). Hence, the two modules were focused for in-depth
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FIGURE 2 | (A-B). Kaplan-Meier analyses showing gastric cancer patients with higher CAF infiltrations as well as stromal scores had worse overall survival in
GSE84437 (A) and TCGA-STAD (B).

investigations. A total of 356 and 302 genes were incorporated in the
black and brown modules, respectively. In the black module, the
scatter plots illustrated the strong correlations between MM and GS
for CAF (Cor = 0.94, p = 2.1e-167) and stromal scores (Cor = 0.85,
p = 14e-100) (Figure 3G); in the brown module, the strong
correlations were also observed between MM and GS for CAF
(Cor = 0.93, P = 2e-132) and stromal scores (Cor = 0.95, p = 1.1e-
153) (Figure 3H). Then, by taking MM > 0.8 and GS > 0.4 as the
threshold criteria, a total of 48 genes in the black model of
GSE84437 and 101 genes in the brown module of TCGA-STAD
were, respectively, screened out as hub genes which are highly
correlated with CAF and stromal scores.

Functional Analyses of Hub Genes

As shown in Figure 4A, by the intersection of two hub gene sets,
37 common genes were detected and visualized via a Venn
diagram. Subsequently, we performed GO and KEGG analyses
on these 37 genes. Extracellular matrix organization and
extracellular structure organization were the major enriched
BP terms; the collagen-containing extracellular matrix and
extracellular matrix structural constituents were the major
enriched CC and MF terms, respectively. Protein digestion
and absorption, focal adhesion, and the PI3K-Akt signaling
pathway were the main enriched KEGG pathways.

Construction of the Stromal CAF-Based

Prognostic Risk Model

Four hundred and thirty-one GC samples from GSE84437 were
used as the training cohort owing to the larger sample size, and
330 TCGA-STAD samples were used as the validation group. By
performing univariate Cox regression analysis of the 37 common
hub genes, 33 OS-related genes with p < 0.05 were screened out and
subjected to the following LASSO Cox regression analysis (Figures
4D,E). Four genes were finally identified for the CAF risk model

construction: CAF risk score = expression of COL8A1 * 0.1 +
expression of SPOCK1 * 0.007 + expression of AEBP1 * 0.021 +
expression of TIMP2 * 0.064 (Figure 4F). GC patients in each
cohort were divided into high- and low-CAF-risk groups with the
median risk score as the cutoff value. Kaplan-Meier curves revealed
that GC patients in the high—~CAF-risk group experienced worse OS
than those in the low—CAF-risk group in both GSE84437 (HR =
1.768, 95%CI: 1.339-2.335, log-rank p < 0.001) (Figure 4G) and
TCGA-STAD (HR = 1.522, 95%CIL: 1.086-2.134, log-rank p =
0.015) (Figure 4H). These results indicated CAF and stromal-
related signature genes were crucial prognostic markers in GC.

CAF Signature Genes Were Highly
Correlated With CAF Infiltrations and CAF

Markers

To further verify the robustness of the CAF model as an indicator in
predicting CAF infiltrations, we performed Spearman’s correlation
analyses between the CAF risk score and stromal score as well as
CAF abundances predicted by EPIC and other three methods: xCell,
MCP-counter, and TIDE. Consistently, we observed the CAF risk
score was strongly and positively correlated with multi-estimated
CAF infiltrations and the stromal score in both GSE84437
(Figure 5A) and TCGA-STAD (Figure 5B) cohorts. Moreover,
we observed the CAF risk score and the expression levels of the four
genes were highly and positively correlated with a bunch of the
collected CAF markers in both GSE84437 (Figures 5C,E) and
TCGA-STAD (Figures 5D,F) cohorts.

Sensitivity of Chemotherapy and

Immunotherapy Between CAF-Risk Groups
Adjuvant chemotherapy following radical surgery has been the
standard approach regarding GC. IC50 values of several drugs
mentioned in the methods section were estimated based on the
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GDSC database. Wilcoxon analyses identified significant
differences in IC50 values between GC patients in high- and
low-CAF-risk groups, with high—-CAF-risk GC patients revealing
increased sensitivity to camptothecin, cisplatin, docetaxel,
methotrexate, and sunitinib, while the low-CAF score
subgroup was estimated to be more sensitive to bleomycin,

lapatinib, and paclitaxel in both GSE84437 (Figure 6A) and
TCGA-STAD (Figure 6B) cohorts.

Immunotherapy using immune checkpoint inhibitors has
brought hope to GC patients. We applied the TIDE method to
assess whether the CAF risk score could serve as an
immunotherapy predictor for GC patients. For GSE84437, the
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CAF score in the non-responder subgroup (n = 264) was
significantly higher than that in the responder cohort (n
167) (Wilcoxon test, p < 2.2e-16; Figure 6C); higher
sensitivity to immunotherapy was observed for GC patients in
the low—CAF-risk group (132/216) than that in the high-CAF-
risk group (35/215) (Chi-square test, p < 2.2e-16; Figure 6D). For
TCGA-STAD, the CAF score was also significantly higher in the
non-responder subgroup (n = 214) than that in the responder
cohort (n = 116) (Wilcoxon test, p < 2.2e-16; Figure 6F); GC
patients in the low—CAF-risk group were much more sensitive to
immunotherapy (87/165) than those in high-CAF risk group (29/
165) (chi-square test, p < 2.2e-16; Figure 6G). Furthermore, the
AUC values of 0.8 (95%CIL: 0.758-0.841) in GSE84437
(Figure 6E) and 0.785 (95%CI: 0.735-0.835) in TCGA-STAD
(Figure 6H) indicated the excellent performance of our CAF
model for immunotherapy response predictions.

Correlation Between CAF-Related

Signature and Somatic Variation
The top 20 genes with highest mutational frequencies in the
low- (Figure 7A) and high- (Figure 7B) CAF-risk subgroups

were, respectively, recognized and displayed as waterfall plots.
Intriguingly, several frequent mutational genes were shared in
both low- and high-CAF-risk groups, including TTN, TP53,
MUC16, LRP1B, SYNEI, CSMD3, ARID1A, PCLO, FLG,
CSMDI1, FAT4, ZFHX4, DNAH5, HMCNI, and SPTAL. In
addition, mutations of LAMAI, RYR1, OBSCN, KMT2D, and
PIK3CA genes were more common in the low-CAF-risk group,
while mutations of DMD, AHNAK2, PCDH15, RYR2, and
CDHI1 Dbelonged specifically to the top 20 frequent
mutational genes in the high-CAF-risk group. Subsequently,
we observed that the TMB values were significantly higher in the
low-CAF-score subgroup (Wilcoxon test, p 0.0011,
Figure 7C), and Spearman’s correlation analysis revealed that
the CAF-risk score was significantly and negatively correlated
with the TMB value (Cor = -0.29, p = 1.2e-07, Figure 7D).
Furthermore, Spearman correlation analyses also confirmed
that the TMB values were negatively correlated with stromal
CAF infiltrations as well as CAF-activating factors like TGF-f
(Quante et al, 2011) and PDGF (Pietras et al, 2008)
(Figure 7E), suggesting that higher TMB might be also able
to intense tumor-killing effects via modulating a stromal
fibroblast-weak local microenvironment.
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GSEA of the Four-Gene CAF Signature

To further elucidate the functional enrichment of the CAF
signature, GSEA was performed on the GSE84437 dataset
between high- and low-CAF-risk groups. As displayed in
Figure 8A, the major enriched KEGG signaling pathways were
calcium signaling pathway, ECM receptor interaction, chemokine
signaling, and transforming growth factor beta (TGF-p) signaling
pathways. Additionally, genes in the high-CAF-risk group were
mainly enriched in angiogenesis, epithelial-mesenchymal
transition (EMT), inflammatory response, and TGEF-B
signaling hallmarker gene sets (Figure 8B). Extensively,
ssGSEA results also showed the CAF risk score was positively
correlated with EMT, TGF-B, and angiogenesis enrichment
scores in both GSE84437 (Figure 8C) and TCGA-STAD
(Figure 8D).

Multidimensional Validation of Key Genes in

CCLE and HPA Databases

Based on the CCLE database, we verified that the mRNA
expressions of the four hub genes (COL8A1, SPOCK1, AEBP]I,
and TIMP2) were higher in fibroblast cell lines than those in
GCcell lines (Wilcoxon test, all p < 0.001; Figures 9A,B). In
addition, to determine the protein expression characteristics of
these CAF signature genes, we analyzed the IHC images from the
HPA database. The data demonstrated that these proteins were
deeply stained in GC stroma (Figure 9C). These verifications
implied that these four genes might be CAF-specific markers.

DISCUSSION

Gastric cancers, especially poorly and undifferentiated gastric
cancers, often exhibit massive fibrosis with abundant infiltration
of CAFs, which shield TME from antitumor lymphocyte
infiltrations and contribute to GC progression, treatment
resistance, and immunosuppression (Abe et al., 2017; Ham
et al,, 2019). Consistently, we observed that higher CAF and
stromal scores were associated with worse OS after initial
treatment in GC. Therefore, investigation of novel molecular
targets in GC is pivotal for the development of stromal CAF-
targeting therapies. This is the first research based on WGCNA
and multiple computational algorithms to mine the mutual CAF
and stromal co-expressed networks in 2 GC cohorts: GSE84437
and TCGA-STAD. By applying univariate Cox and LASSO
regression algorithms, a four-gene (COL8A1l, SPOCKI,
AEBPI, and TIMP2) prognostic CAF model was constructed
and validated. By taking the median CAF risk score as the cutoff
value, we observed high-CAF-risk GC patients were more
sensitive to camptothecin, cisplatin, docetaxel, methotrexate,
and sunitinib. In addition, based on the TIDE online
algorithm, we observed the lower CAF risk score was highly
correlated with improved immunotherapeutic effects in GC
patients, and higher TMB levels were observed in low-CAF-
risk group STAD patients, which indicated that the CAF model
could potentially serve as an immunotherapeutic stratification
biomarker for GC. However, interactions between TMB and CAF

CAF model in GC

infiltrations have not been well studied to date. Our study first
revealed that the TMB levels were also negatively associated with
CAF activators as well as infiltrations in GC patients. It is widely
acknowledged that cancer cells with a high level of mutations are
easier to be recognized by the immune system, which can then
strengthen the immune response and lead to improved
immunotherapeutic efficacy (Miao et al., 2018). Based on our
analyses, we propose another mechanism that higher TMB might
also be able to intense tumor-killing effects via modulating a
stromal fibroblast-weak local microenvironment. However, more
experiments are needed to clarify the crosstalk between CAFs
and TMB.

GSEA revealed that EMT, TGF-p signaling, hypoxia, and
angiogenesis gene sets were highly and significantly enriched
in the high-CAF-risk group; ssGSEA results also showed that the
CAF risk score was positively correlated with EMT, TGF-f, and
angiogenesis-enrichment scores in both two cohorts. Polarized
epithelial cells gain invasive capacities through the EMT process
(Huang et al., 2015), and TGF-p signaling has been reported to be
responsible for the CAF activation (Yeung et al., 2013; Zheng
etal,, 2016; Ishimoto et al., 2017). Interactively, CAFs are capable
of synergistically initiating and enhancing EMT (Bhowmick et al.,
2004; Lee et al., 2006; Thiery and Sleeman, 2006; Ham et al.,
2019); CAFs could also regulate and maintain the stemness of
gastric cancer cells via TGFP signaling (Hasegawa et al., 2014).
Pathological angiogenesis has been widely described as a crucial
process enabling the expansion of cancerous tissues, as well as the
invasion and metastasis of GC cells (Chen et al., 2004; Hoff and
Machado, 2012; Forma et al, 2021). CAFs contributed
dominantly to the uncontrolled angiogenesis by inducing a
hypoxia TME (Kugeratski et al., 2019) and producing pro-
angiogenic factors like galectin-1 (Tang et al, 2016), vascular
endothelial growth factor (VEGF) (De Francesco et al., 2013), and
hepatocyte growth factor (HGF) (Ding et al., 2018).

To guarantee the model’s robustness and avoid over-fitting, we
adopted four bioinformatics methods to quantify CAF
infiltrations in GC: the EPIC method for model construction
and xCell, MCP-counter, and TIDE methods for correlation
verifications, and we found that our model was strongly
correlated with CAF infiltrations as well as CAF markers.
Meanwhile, according to the CCLE database, we further
confirmed that the expressions of four identified genes were
significantly higher in fibroblast cell lines, and IHC images
from the HPA database also revealed higher staining of these
proteins in stromal parts of GC. These results implied these genes
as CAF-specific markers for GC, and our model was capable of
accurately assessing CAF infiltration levels.

With respect to the four identified markers in the model,
elevated expression of COL8A1 has been found in CAFs and was
significantly associated with a high risk of death in head and
neck squamous cell carcinoma (Lai et al.,, 2019). Zhang et al.
identified COL8A1 as the prognostic hub gene highly correlated
with Wnt2, which is elevated selectively in CAFs, and high co-
expression of COL8A1 and Wnt2 was an independent adverse
prognostic factor for colon cancer patients (Katoh, 2001; Zhang
et al., 2020). At an epithelial cellular level, Zhou et al. reported
that the knockdown of COL8A1 significantly suppressed the
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proliferation and promoted the apoptosis of GC cells (Zhou
etal., 2020). As for SPOCK]1, studies have proved SPOCK1 as an
EMT-related marker that closely correlated with
tumorigenesis and invasiveness in gastric cancer (Yan et al,
2017; Chen et al., 2018), prostate cancer (Wang et al., 2016),
pancreatic cancer (Li et al., 2020), gallbladder cancer (Shu et al.,
2015), and lung cancer (Miao et al., 2013). We observed that
high—CAF-risk group GC patients were less sensitive to several
drugs like lapatinib, and this result fits well with the finding that
SPOCKI-regulated EMT derived the acquiring of lapatinib
resistance in HER2-positive GC (Kim et al., 2014). Veenstra
et al. identified that SPOCK1 expressed restrictively in tumor
stroma, and the stromal SPOCK1 would promote pancreatic
ductal adenocarcinoma invasion by mediating extracellular
matrix remodeling (Veenstra et al, 2017). Sasaki et al.
identified AEBP1 as a novel CAF- and EMT-related protein
responsible for tumor invasiveness and metastasis in basal cell
carcinoma, squamous cell carcinoma, and malignant melanoma
(Sasaki et al., 2018). AEBP1 has also been reported as a pivotal
proinflammatory mediator (Majdalawieh et al., 2006;
Majdalawieh et al., 2007; Majdalawieh and Ro, 2010), and
the overexpression of stromal AEBP1 would induce
mammary tumorigenesis via paracrine proinflammatory
signaling (Holloway et al., 2012). In addition, AEBPI1 is
upregulated in vascular endothelial cells and promotes tumor
angiogenesis in colorectal cancer by inducing angiogenesis-
related genes like AQP1 (Yorozu et al, 2020). AEBP1 has
also been demonstrated as an adverse prognostic marker in
GC that facilitates invasion and migration, metastasis, and EMT
of GC cells via activating NF-«B signaling (Liu et al., 2018).
TIMP2 was previously found as a matrix metalloproteinase
(MMP) inhibitor (Basu et al., 2012) that restrained cell
proliferation and metastasis in GC (Johansson et al., 2010)
and breast cancer (Mendes et al., 2007). However, literature
on its functions in cancer is inconsistent. TIMP2 was correlated
with higher pN and pM stages as well as unfavorable prognosis
in GC (Alakus et al., 2010; Wang et al., 2018). Besides, TIMP2
expressed by CAFs was independently related to lower relapse-
free and overall survival in breast cancer (Eir¢ et al., 2015; Cid
et al., 2018). Nonetheless, not much of their functions are
known CAFs of GC, which necessitates further
experiments of the four CAF marker’s mechanisms that
underline the invasiveness and metastasis, drug resistance,
and immunosuppression of GC.

Some limitations should be noted in our research. First, this
was a retrospective bioinformatic analysis based on two public
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