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We propose a method based on neural networks to accurately predict hydration sites in
proteins. In our approach, high-quality data of protein structures are used to parametrize
our neural network model, which is a differentiable score function that can evaluate an
arbitrary position in 3D structures on proteins and predict the nearest water molecule that
is not present. The score function is further integrated into our water placement algorithm
to generate explicit hydration sites. In experiments on the OppA protein dataset used in
previous studies and our selection of protein structures, our method achieves the highest
model quality in terms of F1 score, compared to several previous studies.

Keywords: machine learning, protein, hydration sites, atom embedding, prediction

1 INTRODUCTION

1.1 Protein Hydration Prediction
Solvation of biomolecules is essential for their functionality, and water molecules are crucial in
various biochemical processes, such as bridging secondary structures of proteins, acting as proton
donor/acceptors in proton wires, and discriminating ligands at binding sites, all of which require
knowledge about positions and orientations of explicit water molecules (Bellissent-Funel et al., 2016).
Among these functions, water-mediated protein-ligand interactions are of great interest from the
computational side. In an analysis of 392 high-resolution protein structures, 76% of the protein-
ligand complexes had at least one bridging water molecule at the interface (Lu et al., 2007).
Accordingly, many docking programs have been developed to incorporate explicit water molecules
in the docking process and yield prediction results, such as WScore (Murphy et al., 2016) from
Schrödinger, Rosetta (Lemmon and Meiler, 2013), AutoDock4 (Forli and Olson, 2012). Better
understanding and modeling of this interaction is utilized in structure-based drug designs where
drug candidates are modified to replace water molecules in the binding pocket, primarily for entropic
gains (Bucher et al., 2018).

In the laboratory, water positions in protein structures are mainly obtained by X-ray
crystallography, and crystallographic data have shown that protein structures of a 1 Å resolution
contain 66% more resolved water molecules than a structure of 2 Å resolution(Maurer and
Oostenbrink, 2019). Despite this, over 50% of deposited structures in the Protein Data Bank
(PDB) database have a resolution larger than 2.0 Å (RCSB, 2020), which indicates plenty of
crystalline water molecules are not resolved due to the transient dynamic of water molecules and
a lack of local information in the density map. Furthermore, protein structures, either obtained by
experimental techniques such as nuclear magnetic resonance (NMR) or predicted through
computational tools such as AlphaFold (Senior et al., 2020), provide no information about water
molecules.
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There is an unmet need for a reliable predictive model for
protein hydration that can be integrated into and benefit other
modeling and experimental systems. However, how the way to
implement such a model, via exploiting a limited amount of
experimental data, is still being explored.

1.2 Related Works
Many force field based methods are proposed, given an
abundance of simulation programs that already incorporated
some established physical models, with built-in approaches for
simulations such as Molecular Dynamics (MD) and Monte Carlo
(MC) available. For the prediction of explicit hydration sites, an
extra step is needed to analyze and cluster the trajectory or
histogram of simulations performed on an equilibrated system
comprising a protein macromolecule solvated by explicit water
molecules. Examples of MD-based methods are WaterMap
(Schrodinger, 2020), which is based on the Inhomogeneous
Fluid approach to Solvation Thermodynamics (IFST)
(Lazaridis, 1998) and WATSite (Hu and Lill, 2014; Yang et al.,
2017) which integrates over a probability density function of
water molecules to estimate the entropic change. Both of these
methods claim an effective consideration of entropic terms,
which are believed to contribute substantially to the free
energy change in cases like solvation of cavities (Young et al.,
2007). The main disadvantage is the time cost, as MD simulations
sometimes struggled to escape local minima and failed to sample
the state space efficiently. One attempt to circumvent this
problem is an MC-based method called JAWS (Just Add
Water moleculeS) (Michel et al., 2009) that employs a grid-
based Metropolis Sampling of water molecules to directly
estimate the free energy. Results from JAWS are satisfactory
for isolated cavities, but are not ideal for rather exposed grids
due to convergence issues.

The reference interaction site model (RISM) (Beglov and
Roux, 1997) with the Kovalenko-Hirata (KH) closure, or the
3D-RISM (Kovalenko and Hirata, 1999), on the other hand,
calculate the 3D solvent distribution function directly via the
statistical mechanics-based integral equation of liquids, saving
simulation time. The distribution function has been used for
hydration-site analysis of biomolecules (Yoshidome et al., 2020),
and also has been utilized as an intermediate to yield explicit
hydration sites by the combining use of water-placement
algorithms such as Placevent (Sindhikara et al., 2012), which
iteratively finds maximum points of the distribution function for
atom insertion, and GAsol (Fusani et al., 2018), a genetic
algorithm that decides the occupancy of selected potential
hydration sites. The quality of 3D-RISM results depends on
the force field parameters used in its calculations, thus it
requires careful parameter choices before being put in
predictive purposes for specific systems (Roy and Kovalenko,
2021). Masters et al. (2018) studied the combination of WATsite
and 3D-RISM with GAsol and claimed a better prediction by the
joint model.

Methods that utilize empirical, ad hoc functions for energy
estimation of water molecules have been widely adopted for their
rapidity. For instance, one of the first attempts to predict
hydration sites of protein, GRID (Goodford, 1985), reported

over 30 years ago, evaluates the energy of water molecules at
certain grid points by a combination of empirical functions
(Lennard-Jones, electrostatic and hydrogen bond). Some
individual cases were analyzed in this work using contours of
energy isosurfaces as a rough depiction of minima of the energy
function in space, but no systematic assessment on the predictive
power was performed.

The WarPP (WateR Placement Procedure) (Nittinger et al.,
2018) method is built on an empirical score of water molecules
based on interaction geometries dedicated to hydrogen bond
modeling, which is then parametrized manually through large-
scale experimental data. The specially chosen score function is
continuously differentiable, thus gradient optimizable. Another
method called GalaxyWater-wKGB (Heo et al., 2021) used a
generalized Born model that also considers hydrogen bond
orientation and distance, more importantly, it also includes
the solvent accessibility between a protein atom and a water
oxygen atom. This method was tested to have a similar recovery
rate (it recovers about 80% of crystallographic waters at the cost of
producing seven to eight times the number of water molecules)
with methods like 3D-RISM while being 180 times faster.

Recently, a method named Hydramap (Li et al., 2020) was
proposed to estimate the energy in “statistical potentials”, which
quantifies pairwise interactions between water molecules and
atoms of protein by counting the occurrence of atoms of
certain types near a crystalline water molecule in experimental
data. The resulting density map of the statistical potential is then
clustered to predict explicit water sites. Although the mean-field
strategy significantly reduced the computational cost, this
method falls short of the performance of MD-based methods
in high-resolution structures, possibly because a coarse grid is
used for the placement of water molecules.

Other than using simulation-based methods, docking-based
methods like WaterDock (Ross et al., 2012) are developed.
WaterDock directly treats water molecules as ligands and uses
the ligand-docking program AutoDock Vina Trott and Olson
(2010) to predict the docking position of the water molecule. The
updated WaterDock2.0 (Sridhar et al., 2017) includes explicit
water sites summarized fromMD simulations for each functional
group, reporting a lower false positive rate. Another related work
that builds onWaterDock and Dowser (Morozenko et al., 2014) is
the Dowser++ program (Morozenko and Stuchebrukhov, 2016).
Dowser++ takes Dowser’s emphasis on the charge-dipole
interactions in energy calculation, fixes issues like crashing
water sites, and extends the scope of prediction of WaterDock
from near the binding pocket to the whole protein. Although
Dowser++ outperforms its predecessors, there is a constant
underestimation of the number of water molecules, the
reasons of which are speculated to be the limited number of
predictions allowed in WaterDock and the independent insertion
of water molecules with no water-water interaction considered.

Several attempts to introduce neural networks (NN) into this
problem have been reported by Ghanbarpour et al. (2020).
However, they were unable to produce prediction results for
explicit hydration sites. Instead, a modified U-net architecture has
been used to feed an input structure into multiple 3D
convolutional layers to generate occupancy values at grid
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points. The U-net is trained using an input data set derived from
the aforementioned WATSite Hu and Lill (2014) analysis of
thousands of MD simulations, followed by another fully
connected layer that predicts thermodynamic properties from
the occupancy values.

2 METHODOLOGY

Inspired by recent efforts (Schütt et al., 2018) in molecular
modeling that utilizes NNs as universal approximators to
describe physical interactions, our solution to the protein
hydration prediction problem is based on explicit NN
modeling of the interactions among water molecules and
protein atoms, instead of predicting intermediate occupancy
values.

Our method comprises two components: scoring and
sampling. In the scoring part, we train a neural network-based
scoring function Score(p | prot) from protein structures in the
publicly available protein data bank (Berman et al., 2000). The

scoring function evaluates the environment of an arbitrary
position p in a protein prot and then predicts the shortest
distance between p and a potential water molecule. In the
sampling part, we tackle the end-to-end hydration prediction
problem. Given a protein structure without water molecules or
only partially hydrated, our algorithm utilizes the trained scoring
function and successively places missing water molecules into the
protein structure.

2.1 Learned Scoring Function
As the primary component of our solution, the scoring function
(Score(p | prot)→R, or the scorer) probes a given protein
structure prot for potential missing water molecules, by
predicting the Euclidean distance from a position p to the
nearest water molecule that is not in the input protein
structure prot.

Figure 1 serves as an illustrative overview of the workflow of
our scorer. For a given position p, we calculate interaction
embedding for each atom within 4.0Å of p. As shown in
Figure 1A, the calculation is based on interaction terms

FIGURE 1 | Architecture of the scoring function. (A). Generate the interaction embedding for atom q in protein from all interaction terms between q and position.
(B). Evaluate the score of position based on interaction embeddings of all atoms in the receptive field of a 4.0Å radius. PolyNN is our modified version of multilayer
perceptron with three fully connected layers.
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consisting of distance terms and angle terms. These terms are
analogues to distance and angle potentials in conventional force
fields. We use a statistical reduction method to reduce all
embeddings represented by these terms into a single
interaction embedding of the atom. After the interaction
embedding of each atom is computed, we employ another
statistical reduction of these embeddings to obtain the final
score, as shown in Figure 1B.

After parametrization of the scorer, our objective is to find
positions with scores approaching zero. Apart from modeling
atom and bond iterations in the protein structure, we implement
a scorer neural network which is continuous and differentiable.
This allows us to calculate the derivative of the score over the
position and use this as the direction for gradient descent
optimization.

2.1.1 Embeddings
Atom and bond embeddings. To obtain the embedding for each
atom in the input protein, we categorize all atoms that appeared
in protein structures into discrete atom types based on their
element types, bonded neighbors, and hybridization
configurations. An embedding vector is then assigned to each
atom type as learnable parameters that will be updated during the
training process. Bond type embeddings are similarly categorized,
based on the bond types.

Interaction embedding. The interaction embedding of an
atom q encapsulates its local information (atom and bond types)
and spatial relationship to the position of interest p. Specifically, it
is computed over the following interaction terms:

• Distance term: Information includes q’s atom type
embedding, appended with q’s Euclidean distance to p.
Pairwise atom force potentials such as the van der Waals
and electrostatic potentials are modeled.

• Angle term: Computed for each atom r bonded to q. We
include atom type embeddings of q and r, concatenated with
their bond type embedding, and the angle cos(∠ (qp�→, qr�→)).
This term mainly captures the anisotropy of electron
distribution, which is critical to the formation of
hydrogen bonds.

For each interaction term, the input embeddings and other
information are concatenated and fed through a differentiable
multi-layer perceptron (section 2.1.2) to obtain an interaction
embedding. Interaction embeddings of all atoms in the receptive
field are then collected and reduced to a single embedding using
the statistical reduction algorithm (section 2.1.3). The reduced
embedding is connected to another multi-layer perceptron to
compute the final score.

2.1.2 Continuous and Differentiable Multi-Layer
Perceptron
The aggregation and reduction function used in previous sections
needs to perform vector-to-vector transformations. This is typically
implemented using a multi-layer perceptron in neural networks.
Since our trained scoring function needs to be used in the
subsequent optimization process, it is desirable to be differentiable.

We use a specifically designed layer function for this purpose.
This function is called polynomial neural network function
(PolyNN), which is a modified version of the multi-layer
perceptron. It has three fully connected layers (from input x0
to output x3):

x1 � Swish(W0x0 + b0) (2.1)

x2 � exp(W1 · log(1 + x1)) − 1 (2.2)

x3 � W2 · x2 (2.3)

Here, x1,x2 are intermediate layers, W0,W1,W2 are parameter
matrices, and b0 is a bias vector. The Swish activation function
Eq. 2.1 is described and tested by Ramachandran et al. (2017).

Besides being differentiable, the definition allows a
continuous modeling of arbitrary algebraic functions rather
than conventional multi-layer perceptrons which tends to
learn step function-based structures.

2.1.3 Statistical Reduction
The PolyNN network is a one-to-one vector function
approximator. Hence for a variable-sized set of vectors such as
the interaction embedding set to act as the input of PolyNN, a
reduction process is needed. In our work, the statistical reduction
is chosen to collect several statistical characteristics as descriptors
of the input set, including the summation, average, maximum,
and standard deviation values of sets of corresponding
components taken from each vector in the input set.

Let the inputn-dimensional vector set of sizeM be {x1, x2, . . . , xM},
and the jth element of vector xi be xij. The statistical reduction layer
first calculates the following vectors:

sum � ∑
1≤i≤M

xi (2.4)

avg � sum
M

(2.5)

max � {max
1≤i≤M

xi1, max
1≤i≤M

xi2, . . . , max
1≤i≤M

xin} (2.6)

std �
������������������
1
M

∑
1≤i≤M

(xi1 − avg1)2
√

, . . . ,

������������������
1
M

∑
1≤i≤M

(xin − avgn)2
√⎧⎨⎩ ⎫⎬⎭

(2.7)

The calculated statistical vectors are then concatenated
together and a PolyNN layer is then applied to obtain the
final output vector of reduction layer y:

y � PolyNN(sum; avg;max; std) (2.8)

2.2 Model Training
The parametrization of the scoring function is accomplished by
standard supervised training with the back-propagation
algorithm, as illustrated in Figure 2. A training instance
consists of a pair {water, prot}, where water is the water
position to be predicted, prot is the environment of the water
to be predicted, i.e., protein structure excluding the water. For
each training instance, a label is assigned to denote the distance
from the water to its nearest ground truth position. Hence, the
training objective is to let Score(water | prot) approximate label.
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We first extract static positive and negative training instances
from crystal structures in the following ways:

• Ground truth positives: Positive instances are generated
from crystal water positions. The label is 0 by definition.

• Nearby sampled negatives: For each crystal water, we
randomly move its position within 0.8 Å and form a
negative instance. The label is set accordingly.

• Random position negatives: We generate new water
molecules and place them randomly in the protein
structure. This makes sure the model does not place
excess water molecules. We use the full protein prot in
this case without removing any waters from it, and define
the label to be ∞.

Such simple extracted negative instances are insufficient for
training, because most randomly sampled negatives are trivial to
identify by the model. To improve the sampling efficiency, we
implement dynamic negative sampling procedures by generating
negative instances on-the-fly during training:

• Leave-one-out negatives: When processing a batch in the
training process, we examine each positive instance in the
batch. The current model after updating the last batch is
used to optimize the position of the ground truth water
molecule by gradient descent. The optimized position is
appended to the current batch.

• End-to-end negatives: In the final water placement stage, as
in section 2.3, we will encounter proteins with partially or
wrongly determined environmental waters. To make the
model robust in this scenario, we remove all water molecules
in a crystal structure and use the water placement algorithm
to predict all water positions from scratch. For each
predicted water molecule, we find its nearest crystal
water position and generate a training instance accordingly.

The loss function for training is defined as:

loss � ∑
i

weighti · (predicti −Norm(labeli))2 + λ|θ|2 (2.9)

where the instance index i is iterated through the whole
minibatch and |θ|2 represents L2-regularization.

The weights weighti of the training instances are designed to
prioritize training on instances having more interactions with
atoms in the protein and less exposure to the bulk solvent,
because these water molecules are more likely to be stable and
correctly determined by crystallography. The weight is
calculated as:

weighti �
�������������������������������
1 + 1.5 · amino_counti + water_counti

√
(2.10)

FIGURE 2 | Training process of the scoring function.

FIGURE 3 | Normalization function Norm(d), which converts the
Euclidean distance d to our label value within the [0, 1) range.
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where amino_count and water_count correspond to the number of
amino andwatermolecules in the instance’s environment, respectively.

From an optimization perspective, the importance of deviations
to the model decreases relatively as the absolute distance between
the position to be predicted and the ground truth become larger. In
order to implement this heuristic, we use a hand tuned normalized
function to normalize the labels by a continuous functionNorm(d)
that is steep when d is relatively small, and become almost constant
for d ∈ [0.8, + ∞) (see Figure 3).

Norm(d) � 2

1 + exp − 5d
ln 2( ) − 1⎛⎝ ⎞⎠2

(2.11)

2.3 Water Placement
By design, the property that differs our work from previous
studies that handpicked empirical functions or output discrete
values like occupancy is the differentiability of our automatically
learned function. This differentiability enables subsequent
optimization such as gradient descent to be performed. In
practice, to attenuate problems such as traps of local minima
and suboptimal conformations that arise from the sequential
addition of water molecules, algorithms for water placements
have been developed as complements to the scorer.

Our water placement algorithm comprises two parts, a
placement part and a refinement part. In the placement part,
our algorithm probes the current protein structure and finds the
location of the potentially missing water molecules; the
refinement part combines the water calculated in the previous
step with the water molecules already in the protein and
optimizes the overall position of all water molecules. Our
algorithm runs these two parts alternatively until the
placement part cannot add any new water molecule.

2.3.1 Placement
The placement process starts with encompassing the protein with
a 3D grid of bounding boxes. The dimension of each bounding
box is 0.8 Å, a value that is small enough to ensure the existence of
at most one water molecule in each box. After placing the water
molecule at the center of each box, gradient descent can be
applied to optimize the position.

One can directly calculate scores of these optimized water
molecules and keep those with scores better than a predefined
threshold. However, there are two major problems in this simple
water placement procedure:

1. Because each water is placed and optimized independently, it
is possible that the best positions calculated for adjacent grids
actually correspond to the same potential water molecule.

2. In crystal structures, there are water molecules that require
joint interactions of the protein and other water molecules to
stabilize. Such water molecules cannot be probed until all
other water molecules that participate in the stabilization are
revealed in the input protein structure.

To address these issues, our algorithm uses an iterative
placement strategy. In each iteration, we re-optimize water

molecules in each box and recalculate their scores,
accommodating water molecules added in previous iterations.
We then add the water molecule with the best score to the
predicted structure. The iteration ends when the best water
score is worse than a predefined threshold.

2.3.2 Refinement
The placement step places and optimizes water molecules
individually. Therefore it is desirable to optimize all the added
water molecules simultaneously. This is easily doable via gradient
descent as our scorer is differentiable.

However, solely relying on gradient descent may lead to water
molecules trapped in local minima, similar to the behavior seen in
force field simulations. To alleviate this problem, we develop a
local resampling strategy. Each time a number of adjacent water
molecules are selected, and the water molecules in this region are
resampled. The resampling procedure first removes water
molecules from the prediction results and then tries to add
back a subset of these water molecules. The subset with the
best score is kept and iteration continues. When the algorithm
cannot discover any subset that can be improved, the
optimization process ends.

3 EXPERIMENT RESULTS AND
DISCUSSIONS

3.1 Evaluation Metric
We evaluate and compare our method with our methods using
the using the typical precision and recall metric:

precision � true positive count
number of predictedwaters

(3.1)

recall � true positive count
number of crystal waters

(3.2)

F1 � 2 × precision * recall
precision + recall

(3.3)

To count true positives using 3D coordinates of our prediction
and crystal water, we set three different cutoffs of the Euclidean
distance in our analysis: 0.5 Å, 1.0 Å and 1.5 Å. For each crystal
water, at most one predicted water located within the cutoff range
is counted as a true positive prediction.

3.2 Performance Case Study
In this section, we use the 14 Oligopeptide-binding protein
structures (OppA) bound to different KXK tripeptides in the
AcquaAlta paper (Rossato et al., 2011) to evaluate the
performance of our water placement algorithms. We compare
our model with some previous methods: Dowser++, wKGB,
HydraMap, GAsol, and WATsite.

We first compare the performances of predicting water
positions in ligand binding pockets. In this benchmark, we
only consider waters within 4.0Å of both the protein and the
binding ligand. The statistical results are shown in Table 1, with
the median running times of every method. Our model has large
leads on the F1 measure with a moderate running time. It can be
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seen that other empirical function-based methods, especially
wKGB, tend to predict an excessive number of water
molecules. Under the 1.5 Å cutoff, wKGB can recall all crystal
waters, yet with a much lower precision, compromising the
model’s predictive power, which is reflected by its F1 score.
This surplus of predicted water molecules suggests the
algorithm is oversampling the water molecules and the
outputs some clean-up, such as clustering or use of specific
water placement algorithms. Among the others, WATsite
shows a large lead in terms of performance, which showcases
the power of itsMD simulation. However, its running time suffers

greatly because of the computational heavy MD process. Our
neural network model achieves even better performance than
WATsite, while maintaining speed comparable to other fast
methods.

We also test the harder task of predicting all water molecules
within the protein structure. Only the methods capable of
predicting non-binding-site waters are compared. The results
are shown in Table 2. Again, our method outperforms
prior works.

To better understand the prediction results, we analyze several
structural scenarios in the OppA protein dataset. Water

TABLE 1 |Results of predicting binding-site waters on the 14-structure OppA dataset (For wKGB, the default output and its output with different score threholds (6,8,10) are
all included.

Model Recall Precision F1 score Median running time(s)

0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å

Ours 0.581 0.847 0.935 0.386 0.654 0.789 0.460 0.732 0.850 380.3
Dowser++ 0.434 0.723 0.854 0.267 0.494 0.633 0.329 0.582 0.720 1625.4
HydraMap 0.179 0.644 0.836 0.069 0.266 0.397 0.099 0.376 0.536 7.9
wKGB_all 0.520 0.905 1.000 0.122 0.228 0.285 0.196 0.364 0.441 265.2
wKGB_6 0.520 0.905 1.000 0.141 0.268 0.335 0.221 0.412 0.499 265.2
wKGB_8 0.520 0.905 0.995 0.151 0.290 0.358 0.233 0.437 0.524 265.2
wKGB_10 0.520 0.899 0.989 0.162 0.308 0.380 0.246 0.457 0.546 265.2
GAsol 0.149 0.465 0.708 0.085 0.307 0.522 0.108 0.367 0.597 1149
WATsite 0.448 0.747 0.843 0.326 0.645 0.816 0.375 0.686 0.823 ∼ 15000

Best result(s) in each column is(are) in bold font

TABLE 2 | Results of predicting all waters in the 14-structure OppA dataset.

Model Recall Precision F1 score Median running time(s)

0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å

Ours 0.340 0.550 0.675 0.218 0.354 0.437 0.264 0.428 0.527 380.3
Dowser++ 0.134 0.261 0.359 0.208 0.403 0.558 0.162 0.315 0.434 1625.4
wKGB_all 0.278 0.738 0.964 0.037 0.098 0.134 0.065 0.173 0.235 265.2
wKGB_6 0.253 0.638 0.837 0.081 0.205 0.281 0.122 0.309 0.419 265.2
wKGB_8 0.227 0.557 0.732 0.109 0.270 0.369 0.147 0.362 0.489 265.2
wKGB_10 0.203 0.479 0.622 0.145 0.343 0.461 0.168 0.398 0.527 265.2

Best result(s) in each column is(are) in bold font

FIGURE 4 | Examples of predicted water molecules of our model in the OppA protein dataset (PDB code: 1B3F), compared to wKGB, Hydramap, and Dowser++
(Red: Ground truth; Yellow: Our prediction; Blue: Dowser++; Purple: wKGB; Brown: Hydramap; Grey: WATsite; White: GAsol.) Prediction results from Hydramap,
WATsite, GAsol are binding-site only.
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molecules interacting with several polar atoms in the protein
structure are relatively easy for most models, such as water
molecules in Figures 4A,B with ideal distances to several
polar atoms for the formation of hydrogen bonds. Those
easy cases are usually buried, single water molecules in a
hydrophilic environment inside the protein, and will be
reproduced correctly as long as the model has accurate
knowledge of hydrogen bonds such as length and angle
distribution.

For cases with a mixed environment in terms of
hydrophilicity, correct prediction of the mere existence of
water molecules can be challenging for many models. For

instance, other models predicted the existence of multiple
water molecules in Figures 5A,B, while there is zero and one
ground truth water within the environment, respectively. Our
model, in both cases, outputs the correct number of water
molecules, with the position precisely spotted. Water
molecules predicted by other models in these two cases seem
to be output by the model merely due to their proximity to polar
atoms, which suggests the greater difficulty in such environments
might arise from the complexity of interactions that necessitate
holistic modeling of entropy-enthalpy trade-offs. For example,
the addition of a water molecule to a mixed environment may
benefit the stability by forming hydrogen bonds with other water

FIGURE 5 | Examples of better prediction made by our model in the OppA protein dataset. PDB ID: (A). 1B3F; (B). 1B5I.

FIGURE 6 | Examples of successfully reproduced water-water interactions in our prediction results, in the OppA protein dataset. PDB ID: (A), (B) 1B3F; (C) 1B4Z.
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molecules or polar atoms yet sacrifice entropic penalties by being
too close to hydrophobic moieties.

To reproduce water-water networks in proteins is more
complicated, requiring not only an accurate energy model
but also an advanced water placement algorithm. The water

molecule reproduced by our model only (at the center of
Figure 6A) is an interesting starting example as it bounds to
three other “trivial” water molecules that are predicted by all
three models, with a rather safe distance with hydrophobic
atoms insight. This water molecule, being mostly stabilized

TABLE 3 | Results of predicting all waters by our model and Dowser++, on 413 selected protein structures (The results of Dowser++ are averaged over 380 successfully
processed structures).

Model Recall Precision F1 score

0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å

Our_full 0.307 0.512 0.640 0.229 0.384 0.486 0.256 0.427 0.537
Dowser++ 0.076 0.155 0.215 0.188 0.390 0.544 0.104 0.214 0.297

Best result(s) in each column is(are) in bold font

TABLE 4 |Results of predicting binding-site waters by our model, Dowser++ and HydraMap, on 100 selected protein structures (The results of Dowser++ are averaged over
91 successfully processed structures).

Model Recall Precision F1 score

0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å 0.5Å 1.0Å 1.5Å

Our 0.389 0.621 0.755 0.240 0.390 0.490 0.283 0.455 0.559
Dowser++ 0.151 0.294 0.369 0.144 0.313 0.457 0.133 0.275 0.368
HydraMap 0.043 0.314 0.753 0.014 0.083 0.185 0.018 0.122 0.277

Best result(s) in each column is(are) in bold font

FIGURE 7 | Recall rates of water molecules, categorized by different categorizations of the water molecules (A). The Real Space Correlation Coefficient. (B).
Number of polar atoms of the protein nearby. (C). Number of water molecules nearby. O: our model, D: Dowser++.
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by water-water interactions, may be hard to predict if the
algorithm cannot iteratively update the environment and uses
only the input protein structure for predictions. Two more
successful predictions of water networks are given in Figures
6B,C. In both cases, while other models can predict part of the
network, which are mainly ones that directly interact with the
protein, our model bridges the gap and reproduces the water
network precisely.

3.3 Large Dataset Benchmark
In this section, we test the algorithms on a large structure dataset
comprising 413 high resolutions X-ray structures randomly
selected from the RCSB PDB database. Due to time and usage
constraints, we only compare our method with Dowser++ and
HydraMap. The results are shown in Table 3. Our method shows
similar performance as it did in the small dataset, while Dowser++
suffers greatly. This is possibly due to the manually parameterized
docking algorithm it is based on, while our neural network-based
method is better generalized on a large variety of structures.

To test the performance on binding-site waters, we remove
protein structures without a proper binding ligand from the
previous dataset and obtain 100 protein structures. The results
are shown in Table 4. In this scenario, Dowser++ performed
better compared to the previous task, but our method still holds a
clear edge.

To further analyze the performance characteristics of the
algorithms in terms of different types of water molecules, we
categorize water molecules in the benchmark dataset into
subsets and compare the recall rate on these sets. Figure 7
shows the comparison chart. In Figure 7A, we categorize the
water molecules by their real-space correlation coefficient
(RSCC, a common measure used in crystallography to
measure the similarity between the model and the
experimental density map) of the oxygen atom, and test the
recall rate on different RSCC value ranges. The figure shows
that water molecules with lower RSCC tend to be harder to
predict, which agrees with the fact that RSCC can measure the
certainty of the existence of an atom at its location in the
model. Lower RSCC corresponds to higher uncertainty of the
atom’s position, and may even indicate an incorrectly resolved
water molecule at this position, which should not be predicted
by a reliable model. In Figure 7B, we find the number of nearby
polar atoms of each water molecule and calculated the recall
rate for water molecules grouped by the number of polar atom
neighbors. The results indicate that without explicit prior domain
knowledge, the model successfully learns that polar atoms are
highly related to the distribution of water molecules, hence
having a very high success rate when the number of polar
atoms surrounding a water molecule is high. Figure 7C shows
the differences in performance when water molecules are
categorized by the number of contacting waters, which can be
seen as a measure of the solvent exposure ratio of a certain location.

4 CONCLUSION

Due to the importance of water molecules in protein modeling,
many methods for predicting water molecule positions are
developed over the years. One major drawback of previous
works is the reliance on domain knowledge and explicit
parameterization. In this paper, we discuss a novel water
placement algorithm using deep learning. We show that
without any manual parameterization, the performance of
our model surpassed peers by a large margin. Such progress
of hydration site prediction is expected to serve other
applications as well, such as ligand docking and protein
crystal structure refinement.
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