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Integrating single cell omics and single cell imaging allows for a more effective
characterisation of the underlying mechanisms that drive a phenotype at the tissue
level, creating a comprehensive profile at the cellular level. Although the use of imaging
data is well established in biomedical research, its primary application has been to observe
phenotypes at the tissue or organ level, often using medical imaging techniques such as
MRI, CT, and PET. These imaging technologies complement omics-based data in
biomedical research because they are helpful for identifying associations between
genotype and phenotype, along with functional changes occurring at the tissue level.
Single cell imaging can act as an intermediary between these levels. Meanwhile new
technologies continue to arrive that can be used to interrogate the genome of single cells
and its related omics datasets. As these two areas, single cell imaging and single cell
omics, each advance independently with the development of novel techniques, the
opportunity to integrate these data types becomes more and more attractive. This
review outlines some of the technologies and methods currently available for
generating, processing, and analysing single-cell omics- and imaging data, and how
they could be integrated to further our understanding of complex biological phenomena
like ageing.We include an emphasis onmachine learning algorithms because of their ability
to identify complex patterns in large multidimensional data.
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INTRODUCTION

Advances in high-throughput techniques have made it possible to collect largescale data from
different types of regulatory information that controls a single cell. As a result, modelling approaches
that combine multiple layers of cellular information deliver more informative insights than their
single mode counterparts (Zhu et al., 2020). This review provides a comprehensive overview of the
advanced technologies used for single cell imaging and omics sequencing, and the opportunities that
exist to integrate these two types of data. We describe key advances in technologies and outline the
major steps that are important for working with these two data types. Case studies are presented to
illustrate some examples of integrating imaging and omics-level data.We emphasise the utility of this
type of integration by focusing on studies that feature heterogeneous phenotypes in human health
like ageing.

The substantial uptake of single cell-based technologies has been attractive in biomedical research
because it is a known fact that human phenotypes are heterogeneous. Single cell omics methods like
RNA-sequencing (scRNA-seq) have helped resolve this heterogeneity by providing a clearer
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resolution of data so that pathways and master regulators can be
identified with cell type-level specificity (Efremova and
Teichmann, 2020). Single cell imaging methods like
fluorescence microscopy have made it possible to acquire
cellular features like morphology or cell area at such a high-
throughput level that quantitative analyses can be done on
populations of cells to investigate this heterogeneity (Marklein
et al., 2018). Integrating these two types of technologies offers
even more substantial benefits for inferring a more
comprehensive model of cellular regulation. However, data
integration brings additional challenges and single cell imaging
and omics-level data have their own computational issues which
is a focus of this review.

One of the major barriers to adopting high-throughput single-
cell imaging lies with its computational requirements. For
example, image processing, analysis and storage of the massive
amount of data that is acquired during a simple imaging
experiment are not trivial (Swedlow et al., 2021). For a typical
research lab, this will usually require additional resources. These
issues are compounded when integrating datasets collected from
imaging and omics assays, which can drive the dimensions of the
dataset into the hundreds of thousands, even whilst the number of
biological samples remains small (Mirza et al., 2019). However,
solutions are increasingly becoming more available and accessible
through high-performance computing options on cloud
platforms, along with high quality, open-source image
processing and analysis software, and more efficient pipelines.

With the appropriate experimental assay and imaging
technology, high-throughput cellular imaging can collect an
impressive range of quantitative metrics that describe a single
cell (Bray et al., 2016a). From quantifying basic morphological,
intensity and textural features, to identifying the structure,
number, and spatial distribution of sub-cellular elements such
as organelles, proteins, and RNA sequences. Unlike omics
technologies, in imaging many of these cellular features can
even be measured in the same cell multiple times, giving
insight into the spatiotemporal dynamics of single cells
without having to destroy the cell (Nozaki et al., 2017). Single-
cell imaging can also be used to explore the cause and effect
relationship between specific genetic, chemical, and
environmental perturbations and a variety of cellular
phenotypes (Mattiazzi Usaj et al., 2016). Consequently,
microscopy remains the most informative tool for capturing
associations and interactions between multiple molecular and
cellular elements at high resolution.

Although the use of imaging data is well established in
biomedical research, it has primarily been applied to observing
phenotypes at the tissue or organ level, often using medical
imaging techniques such as MRI, CT and PET (Shen et al.,
2017). Such imaging has been complementary to omics-based
data in biomedical research, where the goal is to identify
associations between genotype and phenotype, along with
functional changes at the tissue level (Antonelli et al., 2019).
Now that omics and imaging techniques are becoming more
accessible, it is feasible that single-cell imaging can act as an
intermediary between these levels of information. As a result,
integrating single-cell omics and single-cell imaging allows for a

more effective and comprehensive characterisation of the
underlying mechanisms of a cellular phenotype.

All living organisms experience ageing, a phenomenon that is
broadly defined as a gradual decline in physiological integrity,
and consequently function, over the lifetime of an organism
(López-Otín et al., 2013a). For humans, ageing can manifest
through different symptoms, affecting a variety of organs and
tissue types in a heterogeneous manner. Despite decades of
research into practical and effective ageing interventions,
advanced age remains the primary risk factor for many serious
and chronic morbidities, including metabolic, cardiovascular,
neoplastic, and neurodegenerative disorders (Niccoli and
Partridge, 2012). From one individual to another, these age-
associated pathologies vary in their severity and onset.
Similarly, ageing within an individual is highly heterogeneous,
with different tissues, cells and even cellular components that age
according to different trajectories and rates.

Ageing is defined by a set of traits, termed the hallmarks of
ageing (López-Otín et al., 2013b), which represent the key
molecular and cellular components that are affected as
organisms age. Once the level of damage within a cell reaches
a certain threshold, it can initiate a cellular stress response known
as senescence (Bhatia-Dey et al., 2016). Senescent cells secrete a
variety of cytokines, chemokines, proteases, and other molecules
that drive chronic inflammation in the tissue environment,
leading to dysfunction and degradation that manifests as age-
associated disease (Childs et al., 2015). Single-cell omics
technologies have begun to provide insights into the
mechanisms underlying senescence, sources of heterogeneity
and the biological ageing process (Uyar et al., 2020). However,
a complete picture cannot be formed without the addition of
another technology: high-throughput cellular microscopy.

This review outlines the key methods currently available for
the processing and analysis of single-cell omics and imaging data.
We discuss how these data types can be used to further our
understanding of biological processes, with a focus on
applications in ageing. An emphasis has been included on
machine learning algorithms, which can exceed human
abilities in their capacity to identify extremely complex, subtle,
and even sub-visual patterns in large multidimensional data. A
range of post-hoc analysis methods can then be applied to extract
meaningful biological information from these algorithms. We
also explore how the integration of single-cell omics and single-
cell imaging data using specific machine learning methods can
exploit the distinct strengths of each technology to form a
comprehensive understanding of ageing at the single-cell level.

AN OVERVIEW OF SINGLE-CELL OMICS
TECHNOLOGIES

Historically, the sequencing methods that were used to capture
genome-wide information required starting material that
exceeded the amounts obtainable from a single cell. As a
result, genomics and all of its related -omics technologies,
have grown up in an era where information about the activity
of genes and pathways has been obtained frommixtures of cells or

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 7681062

Watson et al. Integrating Single-Cell Omics and Imaging

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


what is commonly referred to now as “bulk” samples.
Measurements obtained from bulk samples result in the loss of
cell-specific information because information from individual
cells were averaged together to give a single, final data point.
The transition from bulk to single cell-based approaches has had
a major impact on genomics because it means that differences
between cells can now be resolved rather than ignored as before.
What used to be considered heterogeneity in data can now be
clarified and sourced to differences in cell type or cell state
because omics data can be captured for individual cells. The
recent advances that have made single cell sequencing possible
include improvements in single cell isolation, genome
amplification, and barcoding which collectively have provided
a platform to source information from different cellular and
molecular levels without having to pool starting material. The
current goal for genomics and its related technologies is to
convert this information into actionable inferences that help
describe the underlying biological mechanisms of different
cells and tissue types.

Single cell-level omics data has also forced us to consider new
implications, constraints and issues for the statistics that must be
addressed for the analysis of this data. Because some of these
statistical considerations are distinct from their counterparts for
bulk data, it is necessary to adapt or invent new quantitative
approaches that are appropriate for single cell data. For example,
the most popular statistical approach for identifying differentially
expressed genes for RNA-sequencing data is typically through an
exact test for counts that have been fitted to a negative binomial
distribution. Single cell RNA-sequencing data is more complex,
with increased zeros and sometimes a multimodal distribution,
and differential expression is typically assessed using a Wilcoxon
signed-rank test (WSRT). The different statistic is necessary
because of the increased heterogeneity in single cell data than
in bulk data where the latter can be modelled more reliably with
an approach that is based on parametric assumptions.

There are many other tasks in single cell data where the
differences in the statistical approaches vary substantially from
their bulk data counterparts. One prominent example is the data
pre-processing and quality control pipelines where for single cell
RNA-sequencing data, identifying low quality cells or detection of
doublets are necessary for improving downstream data quality.
Another example is clustering single cell RNA-sequencing data
into groups of cells with similar expression profiles where the end
goal is to identify cell types. This specific task has no direct
parallel in bulk data because it is only at the level of single cells
that information on cell types can be quantified.

Single-Cell Genomics
Single-cell genomics commonly refers to the capture of the DNA
sequence of all genes in the genome of a single cell. In addition to
identifying the genotype of a single cell’s genes, this information
enables the detection of rare and unique genomic alterations like
single nucleotide polymorphisms (SNPs) and copy number
variation (CNV). Understanding what genetic or genomic
changes that occur in individual cells is instrumental to early
detection of a disease such as in the case of an early-stage embryo
with a genetic condition or identifying the spectrum of clonal

variation present in a tumour. For most genetic analysis studies,
having access to an adequate quantity of high quality DNA is
critical. There are various methods for amplifying the genome in
preparation for single-cell whole genome sequencing (scWGS),
for different applications including single SNP and CNV analysis.
For example, multiple displacement amplification (MDA)
method (Dean et al., 2002), can be carried out directly from
biological samples and provides amplified DNA fragments that
are uniformly represented across the genome. This method
leverages the φ29 DNA polymerase and random exonuclease-
resistant primers in a simple isothermal reaction to amplify DNA
strands with >10 kb in length. Similarly, MALBAC (Multiple
Annealing and Looping Based Amplification Cycles) (Zong et al.,
2012) provides amplified DNA through a series of temperature
cycles, starting with melting genomic DNA into a single strand,
random annealing of MALBAC primers to the DNA fragment,
followed by extension to a semi- and then a full-amplicon.
MALBAC claims to have a lower amplification bias as
compared to methods with nonlinear amplification techniques
like MDA and PCR-based methods. PicoPLEX (Rubicon
Genomics PicoPLEX Kit) is a commercially-available whole
genome amplification technology that performs DNA
amplification of a single cell in a three-step single-tube
reaction. Similar to the MALBAC method, the DNA template
is denatured and pre-amplified using a quasi-random priming
approach, creating a library of hairpin molecules that can be
directly amplified into bulk quantities of DNA for further analysis
(Table 1).

Single-cell genomics coupled with other single cell
technologies can be used to construct information about the
genome in a functional capacity and infer what molecular
mechanisms underlie biological phenomena like cancer and
development. For example, single-cell genomics has been
extensively used in cancer to identify carcinogenic driver
mutations, understand intratumor heterogeneity and its
consequence on the transcriptome (Lim et al., 2020). In
developmental biology, single-cell genome sequencing has
been instrumental for reconstructing cellular ancestries in the
form of a lineage tree (Hu et al., 2018a).

Numerous studies have used multi-omics sequencing to make
the link between regulation of the genome with other omics at a
single cell level (Lee et al., 2020). For example, Dey et al. (2015)
used simultaneous sequencing of genomic DNA andmRNA from
a single cell to investigate the correlation of CNVs to variability of
the transcriptome in individual cells. They found that variations
in CNV could potentially drive the gene expression variability
observed in single cells.

Single-Cell Epigenomics
The epigenome is defined as the set of all changes occurring in a
genome that does not involve alterations in DNA. Studying the
epigenome therefore involves many different types of data
depending on the specific epigenetic modification. For
instance, a common type of epigenetic modification is DNA
methylation where the addition of a methyl group to cytosine
is a regulatory mechanism for controlling gene expression.
Adaptations to bulk-level assays for capturing genome-wide
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DNAmethylation events have resulted in the availability of single
cell-level approaches to sequencing single cell DNA methylomes
(Table 1).

Single-cell epigenomics sequencing provides insights into how
the epigenome affects the transcriptome in a cell. There are

several single-cell epigenomics sequencing technologies that
provide information on DNA modifications, DNA accessibility
and chromosome conformation. For example, ATAC-seq (Assay
of Transposase Accessible Chromatin sequencing) is an assay
designed for detecting chromatin accessibility. In this method

TABLE 1 | Single cell multi-omics technologies.

Single cell whole genome sequencing (scWGS)

Multiple displacement amplification (MDA) Dean et al. (2002)
Multiple Annealing and Looping Based Amplification Cycles (MALBAC) Zong et al. (2012)
Rubicon Genomics PicoPLEX Kit (Rubicon/Takara)

Single cell chromatin accessibility
scDNase-seq (single-cell DNase sequencing) Jin et al. (2015)
sci-ATAC-seq (single-cell combinatorial indexing assay for Transposase-accessible chromatin with sequencing) Cusanovich et al. (2015)
scATAC-seq (single-cell assay for transposase-accessible chromatin using sequencing) Buenrostro et al. (2015b)
NOMe-seq (nucleosome occupancy and methylation sequencing) Kelly et al. (2012)
scMNase-seq (single-cell micrococcal nuclease sequencing) Lai et al. (2018)

Single-cell epigenomics
scRRBS (single-cell reduced representative bisulfite sequencing) Guo et al. (2013)
scWGBS (single-cell whole-genome bisulfate sequencing) Farlik et al. (2015)
snmC-seq (single-nucleus methylcytosine sequencing) Luo et al. (2017)
sci-MET (single-cell combinatorial indexing for methylation) Mulqueen et al. (2018)

Single-cell transcriptomic
Drop-seq Macosko et al. (2015)
Smart-seq/2 (switching mechanism at 5′ end of the RNA transcript) Goetz and Trimarchi, (2012); Picelli et al. (2014)
CEL-seq (Cell expression by linear amplification and sequencing) Hashimshony et al. (2012)
MARS-seq Jaitin et al. (2014)
STRT-seq Islam et al. (2011)
Quqartz-seq Sasagawa et al. (2013)
SPLIT-seq Rosenberg et al. (2018)

Single-cell proteomics
MagRC (magnetic ranking cytometry) Poudineh et al. (2017)
microengraving and droplet microfluidics Haidas et al. (2019)
PLA (proximity ligation assay) and PEA (proximity extension assay) Söderberg et al. (2006), Darmanis et al. (2016)
CyTOF (cytometry by time of flight) Bandura et al. (2009)
SCBCs (Single-cell barcode chips) Labib and Kelley, (2020)
SCoPE-MS (Single Cell ProtEomics by Mass Spectrometry) Budnik et al. (2018); He et al. (2020)

Single-cell metabolomics
ESI-MS (electrospray ionization mass spectrometry) Huang et al., (2020); Li et al. (2020)
MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) Shanta et al., (2020)

SIMS (secondary ion mass spectrometry) Leo et al., (2019)

Transcriptome with genome
DR-seq (gDNA-mRNA sequencing) Dey et al. (2015)
G&T-seq (genome and transcriptome sequencing) Macaulay et al. (2015)
SIDR (simultaneous isolation of genomic DNA and total RNA) Han et al. (2018)
TARGET-seq Rodriguez-Meira et al. (2019)
scTrio-seq (single-cell triple omics sequencing Hou et al. (2016)

Transcriptome with epigenome
sci-CAR (single-cell combinatorial indexing chromatin accessibility and mRNA) Cao et al. (2018)
SNARE-seq (single-nucleus chromatin accessibility and mRNA expression sequencing) Chen S. et al. (2019)
scNMT-seq (single-cell methylation and transcription sequencing) Clark et al. (2018)
scM&T-seq (single-cell methylome and transcriptome sequencing ) Angermueller et al. (2016a)
scTrio-seq Hou et al. (2016)

Transcriptome with proteome
PEA/STA (proximity extension assay/specific RNA target amplification) Genshaft et al. (2016)
PLAYR (proximity ligation assay for RNA) Frei et al. (2016)
CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) Stoeckius et al. (2017)
REAP-seq (RNA expression and protein sequencing assay) Peterson et al. (2017)
RAID (single-cell RNA and immunodetection) Gerlach et al. (2019)
ECCITE-seq (CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing) Mimitou et al. (2019)
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hyperactive Tn5 transposases, loaded with sequencing adaptors,
are probed in regions of open chromatin (i.e. nucleosome-free
regions) and are used to generate sequencing libraries that can be
amplified and sequenced (Buenrostro et al., 2015a). To capture
cis-regulatory elements in individual cells, conventional ATAC-
seq techniques have been implemented on droplet-based
platforms for massively parallel sequencing and mapping
transposase-accessible chromatin in tens of thousands of single
cells (Yan et al., 2020). Other techniques include bisulfite
sequencing that measures DNA methylation, Hi-C sequencing
for measuring chromatin accessibility and chromosome
conformation, and chromatin immune-precipitation that
measures histone modifications and protein-DNA interaction
(Lee et al., 2020).

Single-Cell Transcriptomics
The transcriptome is the set of all RNA transcripts, including
coding (messenger RNA) and non-coding (such as microRNA
and long non-coding RNA) which deliver information about
protein-coding genes or RNA regulatory tasks, respectively.
Single-cell transcriptomic technologies capture the gene
expression levels of the transcriptome from thousands of
single cells simultaneously (Hériché et al., 2019). The
development of high-throughput protocols for single cell
isolation and cell-specific barcoding technologies has enabled
the generation of these datasets that allow cell-to-cell
heterogeneity to be studied in a cellular population. Single-cell
transcriptomic technologies have led to a host of new discoveries,
including the detection of rare and new cell subtypes, the capture
of cellular heterogeneity within a tissue, the identification of
cellular states, and creating maps of developmental trajectories
of specific cell types through pseudo temporal modelling and
trajectory inference (Table 1).

Single cell methods differ in the strategies they adopt for
individual protocol steps such as single cell isolation, library
contraction and sequencing design as they are developed for
different purposes. For example, Quartz-seq, MARS-seq and
CEL-seq are UMI-based methods that measure transcripts at
3’ end whereas Smart-seq and Smart-seq2 measure the full-length
transcript (Ziegenhain et al., 2017; Lee et al., 2020). CEL-seq and
Smart-seq use Fluidigm C1 (Wang and Navin, 2015) single cell
isolation method while MARS-seq and Smart-seq2 use a FACS
technique (Wang and Navin, 2015; Ziegenhain et al., 2017)
(Table 1). Several largescale projects have been initiated to
catalogue the comprehensive set of cell types in the human
body (e.g. the Human Cell Atlas project) and to identify the
spectrum of cell states at different stages of life (He et al., 2020;
Lee et al., 2020).

Single-Cell Proteomics
Single-cell proteomics is one of the more recent areas of growth
and new technologies to understand proteins at the single level
and at scale are beginning to emerge. This is because unlike DNA
and mRNA, proteins cannot be amplified. Nevertheless, there are
several technologies that are mainly based on the applications of
fluorescence-activated cell sorting (FACS), Western blotting,
metal-tagged antibodies followed by mass cytometry to sort,

qualify phenotypes and high-multiplexing protein analysis
(He et al., 2020). These methods are able to capture and
analyse cell surface, cytoplasmic and secreted proteins (Labib
and Kelley, 2020). For example, magnetic ranking cytometry
(MagRC) (Poudineh et al., 2017) detects cell-surface proteins,
while microengraving and droplet microfluidics (Haidas et al.,
2019) detect the secreted protein. For cytoplasmic protein
detection, methods include single-cell western blotting,
proximity ligation assay (PLA) (Söderberg et al., 2006),
proximity extension assay (PEA). Methods such as flow
cytometry and single-cell barcode chips (SCBCs) are used for
the analysis of proteins at all three cellular locations (Labib and
Kelley, 2020). Although methods for single cell proteomics are
mainly based on a limited number of proteins, the recently
developed Single Cell ProtEomics by Mass Spectrometry
(SCoPE-MS) technique is able to detect more than 1000
proteins in a single cell (He et al., 2020; Budnik et al., 2018).
It is worth highlighting that although innovations in mass
spectrometry (MS) have improved the scope and scale of
these technologies, as in the case of cytometry by time of
flight (CyTOF (Bandura et al., 2009)), these methods are still
not comparable to omics-level throughput.

Single-Cell Metabolomics
The aim of single-cell metabolite profiling is to study the effect of
small molecules and metabolites in an epigenetic and
transcriptomic profile in a single cell. Metabolites are arguably
the end product of the basic central dogma process performed in
the cell, providing a more immediate and holistic insight about
the cellular phenotype. Metabolomics inform about the exact
downstream effect and ultimate fates of the analytes, an
information that other omics technologies fail to generate
(Minakshi et al., 2019).

Screening single-cell metabolite profiles is challenging because
these biomolecules have relatively short lifespans, are structurally
diverse and chemically unstable in vitro (Minakshi et al., 2019;
Zhu et al., 2021). However, refinements in the current single cell
isolation techniques, mass spectrometry (MS) and high-
throughput microfluidic-based methods have led to the
detection of a limited number of metabolites present in the
cell (Comi et al., 2017; Zhang and Vertes, 2018; Duncan et al.,
2019; He et al., 2020). These methods include electrospray
ionization mass spectrometry (ESI-MS) (Huang et al., 2020; Li
et al., 2020), matrix-assisted laser desorption/ionization mass
spectrometry (MALDI-MS) (Shanta et al., 2020)and secondary
ion mass spectrometry (SIMS) (Leo et al., 2019). Coupled with
separation-based methods, MS is the most sensitive method for
detecting a wide range of metabolites in a single cell. After the
single cell is lysed, the complete cellular metabolome is separated
by chromatography or electrophoresis on an automated platform
such as a microfluidic device. The separated metabolites are then
delivered to a MS platform for metabolite identification,
quantitation, or downstream analysis (Minakshi et al., 2019).
For a comprehensive review on single cell isolation strategies,
sample preparation methods and single-cell metabolomics
technologies refer to (Minakshi et al., 2019; Feng et al., 2020;
Dueñas et al., 2021; Zhu et al., 2021).
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INTEGRATIVE MULTI-OMICS
SEQUENCING TECHNOLOGIES

Transcriptome With Genome
An important advantage of detecting multiple molecules from a
single cell is that genotype-phenotype correlations can be
accurately identified. These paired approaches can be used to
link variation in genotype with their corresponding variation in
transcriptional responses, and this information can be expanded
to further applications like constructing lineage trees that map
this variation. Detecting genomic mutations can also be
performed with greater accuracy because they can be verified
with corresponding mutations occurring in the RNA. Several
methods have been developed for the simultaneous extraction
and sequencing of the genome and transcriptome of a single cell
(Table 1). These technologies differ in terms of how they capture
cytoplasmic mRNA and nuclear DNA (genomic DNA). For
example, scTrio-seq requires the cytoplasm and nucleus to be
physically separated by centrifugation whereas G&T-seq
separates poly-A-tailed mRNAs from gDNA using oligo-dT-
coated magnetic beads. Next, the mRNA and gDNA will be
independently amplified and sequenced using single-cell
mono-omics sequencing technologies such as PicoPLEX (for
gDNA) and Smart-seq2 (for mRNA). For further details, the
characteristics of these technologies are summarised in (Hu et al.,
2018b) and (Lee et al., 2020).

Transcriptome With Epigenome
Changes in DNA methylation and chromatin accessibility are
directly linked to the regulation of gene expression. Advances in
single-cell epigenomics and transcriptomics have now made it
feasible to study how DNAmethylation and histone modification
vary with changes in transcription in a single cell (Clark et al.,
2016). scM&T-seq (single-cell methylome and transcriptome
sequencing) (Angermueller et al., 2016a) was the first method
to be reported for combined DNAmethylome and transcriptome
analysis. Since then, other methods that combine the
transcriptome with the epigenome have been developed,
including scTrio-seq (Hou et al., 2016) which allows for the
simultaneous profiling of DNA, methylome, genome and
transcriptome within a single cell. A variety of methods exist
where they differ in terms of the approaches that they adopt for
isolating DNA and RNA and the subsequent mono-omics
sequencing technology employed (Hu et al., 2018b; Lo and
Zhou, 2018; Lee et al., 2020) (Table 1).

Transcriptome With Proteome
Methods that measure the transcriptome and proteome of a
single-cell (Table 1) are designed for capturing proteins at
different cellular locations and throughputs. For example,
CITE-seq and REASP-seq can quantify cell-surface proteins
with more than 80 antibodies and detect more than 20,000
genes in a single workflow (Hu et al., 2018b). RAID-seq on
the other hand detects intracellular or phosphorylated proteins
together with mRNA expression. ECCITE-seq is an extension of
the CITE-seq method which provides a range of multi-modal

information including transcriptome, protein, clonotype, and
CRISPR perturbation data at the single cell level (Mimitou
et al., 2019; Lee et al., 2020). While the scale of single cell
proteomics approaches is increasing with more modern
innovations, it is important to recognize that the expectations
for the throughput of these single-cell proteomics and integrated
transcriptomic-proteomic approaches are not the same as for
single-cell transcriptomic or epigenomic methods. At this stage,
being able to capture single-cell level data for proteins is still only
for smaller numbers of molecules at a time.

METHODS FOR MULTI-OMICS DATA
ANALYSIS

All single-cell omics data are usually subjected to a variety of pre-
processing steps that include alignment back to a reference,
filtering to remove noise, and evaluation of quality control
steps to assess overall reliability of the data. Subsequently, the
data is subjected to a normalisation step which aims to reduce the
amount of technical variation and thus increase the signal-to-
noise ratio in the data. Other considerations for pre-processing of
single cell data include detecting datapoints that may correspond
tomore than one cell, referred to as a doublet, and removing them
from further analysis. Batch effects may induce patterns in the
data that distract from studying genuine biological effects. The
removal of these batch effects through different correction
methods is therefore an important pre-processing step for this
data type. Different statistical methods have been developed to
address these pre-processing goals that are specific for their
respective data type.

The applications of methods for sc-RNA data analysis have
begun to evolve into a predictable workflow. These analysis steps
include cell type identification from a heterogeneous cell
population, regulatory-network based inference to identify
regulatory relationship among marker genes, and cellular
trajectory inference to study the temporal dynamics of the
transcriptome during development or where cells may adopt
one state along a continuum as they transition between states
(Hwang et al., 2018; Lee et al., 2020).

Cell type identification from scRNA-seq data ismainly based on
clustering methods (e.g. k-means, hierarchical, and graph-based)
that operate off data that has been subjected to a dimensionality
reduction (DR) technique. Principal component analysis (PCA) is
a well-established unsupervised linear DR method. Other
commonly used approaches are non-linear DR methods
including t-distributed stochastic neighbour embedding (t-SNE)
(van der Maaten and Hinton, 2008), locally linear embedding
(LLE) (Roweis and Saul, 2000; Tenenbaum et al., 2000) and deep
count autoencoder (DCA) (Eraslan et al., 2019). Among the
frequently used packages for clustering and cell type annotation
are Seurat (Stuart et al., 2019), SNN-cliq (Xu and Su, 2015), Garnett
(Pliner et al., 2019) and SingleR (Aran et al., 2019). For an extensive
review on cell type annotation and clustering methods refer to
(Abdelaal et al., 2019; Wu and Zhang, 2020).

Cell trajectory inference involves ordering cells based on their
transcription profile to identify continuous cell states and branch
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points that represent key fate decisions along the trajectory. There
is a plethora of trajectory inference packages with each relying on
a different method and trajectory type (Saelens et al., 2019). For
example, Monocle (Qiu et al., 2017) and SlingShot use a tree-
based method (Street et al., 2018), PAGA (Wolf et al., 2019) uses a
graph-based method, Wishbone (Setty et al., 2016) uses a
bifurcation method whereas GPfates (Lönnberg et al., 2017) is
based on a multifurcation method.

Gene regulatory networks are important models for
understanding the gene-gene and other types of interactions
that control the transition from one cell type to another
(Pratapa et al., 2020). Among the commonly used network-
based inference methods that have been developed specifically
for scRNA-seq data, some of the popular ones include the SCNS
toolkit (Moignard et al., 2015), SCODE (Matsumoto et al., 2017)
and SCENIC (Aibar et al., 2017).

Methods for single cell genomics and epigenomics analysis
allow for the identification of genetic aberrations and epigenetic
changes occurring at the single cell level (Gawad et al., 2016; Lee
et al., 2020). Methods for identifying CNVs from scWGS data
include Ginkgo (Garvin et al., 2015), baseqCNV (Fu et al., 2019),
SCNV (Wang et al., 2018), SCCNV (Zhang et al., 2019), and
SCOPE (Wang et al., 2019a). Moreover, several methods have
been developed for the effective identification of SNVs from
single cell whole genome sequencing data such as SCcaller
(Dong et al., 2017), baseqSNV (Fu et al., 2019), MonoVar
(Zafar et al., 2016), and SCAN-SNV (Luquette et al., 2019).
Methods for identifying open chromatin sites and peak
identification include chromVAR (Schep et al., 2017) and
SCALE (Xiong et al., 2019), respectively. For an extensive
review on these and other methods on multi-omics data
analysis, we refer readers to (Hu et al., 2018b; Hwang et al.,
2018; Chen H. et al., 2019; Saelens et al., 2019; Lee et al., 2020;
Pratapa et al., 2020; Wu and Zhang, 2020).

SINGLE-CELL IMAGING

The growing need to visualise cellular elements at a molecular
scale has driven rapid developments in all facets of microscopy
imaging (Galler et al., 2014). Advances in single cell imaging have
now gone beyond just visualising cells. Instead, identification and
quantification of cellular and sub-cellular elements are routine. A
variety of technologies have been developed or adapted to capture
spatial, temporal, and morphological information at the single-
cell sub-cellular level. For example, the spatial distribution of
hundreds to thousands of unlabelled molecular species can be
visualised at sub-cellular resolution with Imaging Mass
Spectrometry (Buchberger et al., 2018). Cryo-electron
microscopy has undergone a “resolution revolution,” where it
is now capable of single-particle imaging at resolutions quickly
approaching the sub-nanometre scale (Danev et al., 2019). Several
imaging modes of atomic force microscopy have been developed
to offer nanometre resolution imaging of structures in live cells,
whilst simultaneously characterising mechanical, kinetic,
thermodynamic and electrostatic properties (Dufrêne et al.,
2017). Despite the rapid expansion of such sophisticated

instruments and technologies, optical microscopy has
remained one of the foremost approaches in single-cell
imaging, and as such will be the focus of this review.

Optical Microscopy
Optical microscopy has played a foundational role in the
discovery and characterisation of biological structures,
molecules, and processes since the 17th century. This type of
technology remains popular due its simplicity, flexibility, and
non-invasive nature (Masters, 2008). Although the core concept
of utilising a light source and one or a series of lenses to generate
magnified images remains, advances in optical and mechanical
components have transformed the quality and functionality of
optical microscopes considerably. Most notably, the automation
of the sample preparation and image acquisition processes such
as liquid handling, focusing, sample positioning and illumination
and detection multiplexing, have transformed optical
microscopes into sophisticated systems that are capable of
imaging thousands to hundreds of thousands of samples at a
single-cell resolution in a matter of hours (Lock and Strömblad,
2010; Mattiazzi Usaj et al., 2016; Mikami et al., 2018). These
developments have also led to the incorporation of optical
microscopes into other high-throughput single-cell
technologies, as with imaging flow cytometers, enabling the
collection of additional information on morphological, spatial,
and textural features (Stavrakis et al., 2019). The quantity and
diversity of cellular structures and biomolecules that can be
specifically and sensitively identified within a single cell has
also advanced significantly (Ozawa et al., 2013). These
developments have enabled the systematic and quantitative
investigation of single-cell biology with imaging data at similar
scale and accessibility previously only seen in sequencing
technologies, but with significant spatial and temporal
information (Wollman and Stuurman, 2007).

These high-throughput microscopy systems and sophisticated
labelling technologies can also be paired with large-scale
systematic perturbations to provide insights into the influence
of genetic or environmental factors on various cellular attributes
(Boutros et al., 2015; Pegoraro and Misteli, 2017). Screening of
comprehensive small molecule libraries is a common strategy for
rapidly identifying and validating compounds in drug discovery
and development (Bray et al., 2017; Boyd et al., 2020).
Alternatively, chemical-genetic screens use libraries of
characterised compounds, where the resulting phenotype
(forward screening) or biological target (reverse screening) are
known in advance (Choi et al., 2014). These screens facilitate the
discovery of specific genes, proteins or pathways involved in
cellular phenotypes of interest (Pegoraro and Misteli, 2017).
Similarly, genetic screens utilise gene perturbation technologies
such as RNAi (Schmidt et al., 2013) and CRISPR/Cas9 (Rauscher
et al., 2017) to enable knockout, knockdown, or overexpression
studies to target tens of thousands of genes at a time (Schuster
et al., 2019).

Fluorescence Microscopy
In imaging, an investigation into complex aspects of cellular
biology often starts with labelling for specific identification.
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Depending on the study, a variety of biological attributes can be
labelled, including certain cellular structures, organelles,
macromolecules or even processes of interest. Fluorescence
microscopy is an approach that offers excellent labelling
specificity through the use of molecules called fluorophores,
which have the capacity to absorb light of a specific
wavelength and subsequently re-emit it at a longer wavelength.
Paired with the properties of the fluorescence microscopes, high
detection sensitivity can be achieved with minimal cell
perturbation (Shashkova and Leake, 2017). There is also an
increasing variety of fluorescence microscopy techniques
available to suit a diverse range of applications where each
come with their own trade-offs (Jensen, 2012; Combs and
Shroff, 2017).

For example, confocal fluorescence (CFM) and light-sheet
fluorescence (LSFM) microscopy are two techniques capable of
producing high-resolution imaging of focal planes deep within
samples, known as optical sectioning. This enables the
reconstruction of three-dimensional cellular or subcellular
structures in specimens, providing valuable spatial information
(Long et al., 2012). Optical sectioning in CFM is achieved through
the use of point-like illumination and detection pinholes that
reject out-of-focus light. Whilst being highly cost-effective and
accessible, CFM image-acquisition is slow, and produces
moderate photo-bleaching and toxicity, as light must pass
through the sample to reach the plane of interest (Jonkman
and Brown, 2015). In comparison, LSFM performs high-speed
optical sectioning by projecting a thin light sheet onto the sample
from the side. This restricts illumination to the focal plane of
interest, reducing photo-bleaching and toxicity significantly
(Zagato et al., 2018). As a result, LSFM can perform high-
resolution 3D imaging in live samples for long periods of
time. Hof, Moreth (Hof et al., 2021) recently used LSFM to
perform live imaging of the dynamic processes of organoid
morphogenesis at the single-cell scale for up to 7 days.
However, implementation of LSFM is substantially more
challenging than CFM, including extensive and non-standard
sample preparation (Zagato et al., 2018).

Super-resolution fluorescence microscopy (SRM), or
nanoscopy are techniques that have the capacity to surpass
the diffraction limit of optical resolution of approximately
200 nm are also available (Schermelleh et al., 2019). Several
SRM techniques have the capacity to generate 2D and 3D
images at a resolution of <50nm, with some reaching as high
as <10 nm. Most SRM methods can also be successfully
applied to live-cell imaging, with some approaches
demonstrating a temporal resolution of only milliseconds
(Balzarotti et al., 2017). SRM has already enabled the
observation and quantification of in situ protein
aggregation associated with various neuro-degenerative
diseases, protein mobility within mitochondrial sub-
compartments, and even the discovery of entirely new
subcellular structures (Balzarotti et al., 2017). Several
comprehensive reviews of SRM in cellular biology are
available for further information (Sahl et al., 2017;
Vangindertael et al., 2018; Schermelleh et al., 2019;
Jacquemet et al., 2020).

Advanced Fluorescence Microscopy
Techniques
The modification of fluorescence microscopy approaches has also
created advanced techniques for the precise quantification of
complex cellular dynamics in real time and at the nano-scale (De
Los Santos et al., 2015). Data generated with these methods reveal
insights into intra-cellular processes that are difficult to achieve
with standard approaches. These techniques are highly tuned to
specific applications through exploitation of specific fluorescence
properties. For example, Fluorescence recovery after
photobleaching (FRAP), Fluorescence Loss In Photobleaching
(FLIP) and Fluorescence Localisation after Photobleaching
(FLAP) all rely on the photobleaching of fluorophores that
occurs due to the reactions between the fluorophore and the
surrounding molecules during excitation (Ishikawa-Ankerhold
et al., 2012). These techniques are commonly used to investigate
molecular motility and diffusion, and explore the connections
and molecular exchange happening between cellular
compartments (Drummen, 2012).

Förster Resonance Energy Transfer (FRET) techniques are
based on the distance-dependent transfer of excitation energy
between a donor and an acceptor fluorophore, and can be adapted
for an extensive variety of applications, including the motility,
localisation, interactions and structural relationships of several
molecular species (Algar et al., 2019). The application of this
technique can facilitate the characterisation of complex processes
such as signalling pathways or protein-folding dynamics (Krainer
et al., 2019). Fluorescence Lifetime Imaging Microscopy (FLIM)
capitalises on the exponential decay in fluorescence emission after
excitation, which is influenced by minute changes in the
microenvironment such as pH, temperature or ion
concentration (Datta et al., 2020). Many of these techniques
provide complementary information, and as such are
frequently applied in combination to yield comprehensive and
rich imaging datasets of complex biological phenomena.

Labelling Strategies
Fluorophores commonly take the form of fluorescent proteins
(Chudakov et al., 2010), synthetic organic molecules (Terai
and Nagano, 2013), and fluorescent nanoparticles (Pratiwi
et al., 2019), with assorted physiochemical properties to
complement different labelling and microscopy techniques
(Nienhaus and Nienhaus, 2017). An ongoing challenge of
fluorescence microscopy is the limited capacity for in situ
label multiplexing due to the broad excitation and emission
spectra of many fluorophores, which results in bleed-through
of signal between channels during imaging. As a result, only a
small number of molecular targets can be imaged
simultaneously in the same cell. To overcome this, the
synthesis of new fluorescent labels with properties to
extend the opportunities for effective multiplexing, such as
increasingly narrow emission bands (Martino et al., 2019;
Pandey and Bodas, 2020) or advanced optical encoding (Lin
et al., 2018; Zhai et al., 2020) is a major area of focus, with
fluorescent nanoparticles showing particular promise (Lee
et al., 2018).
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For both fixed and live cell imaging, preferential labelling can
be employed to zoom in on certain cellular locations or types of
molecules such as basic proteins, lipids, or nucleic acids. For
example, the nucleus of live cells is commonly visualised using
Hoechst 33342, a membrane-permeable dye which preferentially
binds to AT-rich regions of double-stranded DNA (Chazotte,
2011). Fluorescent labelling of cellular components including
membranes, organelles, cytoplasm, cytoskeleton, lysosomes,
lipid droplets is similarly possible. Assays based on applying a
combination of such stains, such as Cell Painting (Bray et al.,
2016b), are popular for the generation of rich morphological
profiles of single-cells at scale. Also available are fluorophores that
report on particular chemical properties of the cellular
environment, such as metal ions (Domaille et al., 2008), pH
(Han and Burgess, 2010) or temperature (Okabe et al., 2018),
often within specific compartments (Mizukami, 2017).
Alternatively, when a certain molecule is of interest,
fluorophores may be fused to a biomolecule, such as a protein,
peptide, or nucleic acid, which acts as a specific probe for the
target molecules. Common examples of this approach include
immunofluorescence, Fluorescence In Situ Hybridization (FISH)
and Genetically-Encoded labelling.

Immunofluorescence labelling uses antibodies with high
specificity for a single target, typically a protein, as a probe
(Joshi and Yu, 2017). This labelling technique is highly
versatile, with an extensive range of commercially available
fluorophore-labelled antibodies, which can be applied in
different combinations to enable the labelling of several targets
in a single cell (Buchwalow et al., 2005). Larger scale label-
multiplexing can be achieved via performing cyclic
immunofluorescence, whereby multiple rounds of labelling and
imaging are conducted through the removal or inactivation of the
fluorophore after each round (Wählby et al., 2002; Buchwalow
et al., 2005; Ko et al., 2020). However, the applications of
immunofluorescence for live cell imaging are generally limited
to cell-surface or extra-cellular targets, as cells must be fixed and
permeabilised before larger molecules such as antibodies are able
to enter (Griffiths and Lucocq, 2014).

FISH techniques use fluorophore-labelled short nucleic acid
sequences as the targeted probes of complementary RNA or DNA
sequences (Huber et al., 2018). They are commonly applied to
study genetic aberrations such as duplications, deletions,
insertions, and translocations from the single gene to whole
chromosome scale. Single-molecule FISH (smFISH) is a
significant variation of FISH that allows for the accurate
targeting and detection of individual RNA molecules,
providing quantitative information on sub-cellular abundance,
localisation and co-localisation of specific RNA sequences
(Femino et al., 1998; Raj et al., 2008). smFISH can also be
applied to many types of RNA molecules, including messenger
RNA (mRNA) (Femino et al., 1998), long non-coding RNAs
(Cabili et al., 2015), and ribosomal RNA (Buxbaum et al., 2014).

The smFISH techniques have been expanded further to
accommodate greater scale in the number of molecules that
can be detected within a single cell. For example, one
adaptation called SeqFISH+ was able to capture in situ
imaging of mRNAs for 10,000 genes in individual cells at high

resolution (Eng et al., 2019). Whilst FISH has been traditionally
performed in fixed cells, CRISPR live-cell fluorescent in situ
hybridization (LiveFISH) has recently been developed,
enabling real-time imaging of DNA and RNA dynamics in live
cells (Wang et al., 2019b).

Genetic encoding of labels, typically through fusion with the
gene of a target protein at the DNA level, is a popular technique
that ensures excellent target specificity in vitro and in vivo. GE
labels may be intrinsically fluorescent proteins (Thorn, 2017) or
tags designed to bind exogenous fluorophores with high
specificity (Elia, 2021). Genetically-encoded labelling may also
be used to label secondary targets, such as nucleic acids via RNA-
or DNA-binding protein domains, or targeted to organelles of
interest using specific protein localisation signals (Chudakov
et al., 2010). Genetically-encoded sensors are also available for
the visualisation and measurement of intra- and extra-cellular
physiological, chemical and mechanical properties in vivo
(Germond et al., 2016; Cost et al., 2019).

Single-cell imaging can also be conducted without the use of
fluorescent labelling, using transmitted- or reflected-light
microscopes. Label-free microscopy is a valuable technique for
the study of cellular biology, offering greater simplicity and lower
perturbation than many label-based methods, including
fluorescence microscopy (Kasprowicz et al., 2017).
Furthermore, label-free imaging techniques typically offer
distinct but complementary information to fluorescence
microscopy, and as such the two techniques are often applied
together (Figure 1). Brightfield microscopy creates a dark image
on a light background as light is differentially absorbed, reflected,
or refracted by biological structures. Moreover, a variety of
techniques, such as darkfield, phase-contrast, polarised light,
and differential interference contrast microscopy, have been
developed with the capacity to enhance contrast optically,
without compromising resolution, and resulting in detailed
imaging of subcellular structures (Murphy and Davidson,
2012). The information that can be extracted from label-free
images generated with such techniques is also expanding with the
development of powerful computational algorithms. For
example, a number of in silico labelling methods have been
developed in recent years, with the capacity to predict
multiplexed fluorescent labels in novel, unlabelled images with
high accuracy in live and fixed cells (Christiansen et al., 2018). A
recent model from Cheng, Fu (Cheng et al., 2021) predicts labels
corresponding to the sub-cellular structures DNA, actin,
endosome and the Golgi apparatus, as well as labels informing
of cellular events such as proliferation and apoptosis. Similar
models have been developed with the capacity to predict
fluorescence labelling of 3D images (Ounkomol et al., 2018;
Guo et al., 2020).

METHODS FOR SINGLE-CELL IMAGING
DATA ANALYSIS

The development of sophisticated and automated methods for
the processing and analysis of imaging data, typically via machine
learning (ML) and computer vision (CV), has contributed
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significantly to the increased popularity of biological image-based
research (Danuser, 2011; Meijering, 2020). Despite this, the
diversity of assays, techniques, and technologies available for
generating cellular imaging data, along with the variability of
experimental conditions and lack of standard imaging protocols,
precludes the development of a ‘one-size-fits-all’ pipeline (Eliceiri
et al., 2012). As such, only a broad overview of common
approaches and generalised open source tools for the
processing and analysis of fluorescence microscopy image data
will be discussed in this review.

Some popular open source tools available for single-cell image
data analysis include Icy (de Chaumont et al., 2012), ilastik (Berg
et al., 2019), Microscopy Image Browser (Belevich et al., 2016),
BioImageXD (Kankaanpää et al., 2012), Cytokit (Czech et al.,
2019), KNIME (Fillbrunn et al., 2017), CellProfiler (McQuin
et al., 2018) and FIJI (Schindelin et al., 2012) (ImageJ
(Abràmoff et al., 2004)). The majority of these tools offer an
implementation via a graphical or command line interface, and
some in programming languages such as Python (Van Rossum,
2009) or R (R Core Team, 2020). Typically, these tools provide a
variety of processing and analysis methods that can be “mixed
and matched,” allowing the user to develop a customised pipeline
to suit their specific needs. For example, CellProfiler includes over
70 independent modules designed for unique tasks, whilst there
are several thousand modules available in the ImageJ ecosystem
(McQuin et al., 2018). There are also a variety of powerful image
processing libraries available in programming environments,
including Scikit-image (van der Walt et al., 2014), Pillow
(Clark, 2015) and OpenCV (Bradski, 2000) for Python, and
EBImage (Pau et al., 2010), imageHTS (Pau et al., 2020) in R.
These, along with a variety of independently developed packages,
can be applied in a similar manner for the development of a
customised pipeline. Regardless of the nature of the interface, a
conventional pipeline for single-cell imaging data consists of
three main components: pre-processing for the correction of
experimental or imaging artifacts, segmentation of the objects
of interest, and an analysis of these objects.

Pre-Processing
The extent and specific methods applied for pre-processing of an
image dataset will vary significantly depending on the type and
quality of the images. Typically, all raw biological image data will
require some form of denoising (Meiniel et al., 2018). A common
source of systematic noise in microscopy imaging data is the
presence of non-uniform illumination of the Field Of View
(FOV), resulting from factors such as the light source, optical
path, camera nonlinearity, or dust and staining artifacts. If left
uncorrected, this non-uniformity can bias the measurements of
properties of interest such as textural and intensity features, as
well as interfere with the quality of processing steps downstream
(Dey, 2019). The variety of illumination correction methods
available is extensive (Singh et al., 2014; Smith et al., 2015;
Peng et al., 2017; Nordenfelt et al., 2018), and are reviewed
elsewhere for both general (Piccinini et al., 2012; Dey, 2019)
and specific use cases (Liu et al., 2017). Other common pre-
processing steps may include deconvolution to correct for signal
blurring (Swedlow, 2013) and stitching and registration for
samples split over multiple FOVs or imaged in multiple
planes, wavelengths or modalities.

Object Segmentation
The accurate detection and segmentation of individual cells, or
sub-cellular regions of interest, is an essential but challenging step
in the quantitative analysis of cellular imaging data at the single-cell
scale (Meijering, 2012). Traditional approaches to segmentation
include thresholding (Otsu, 1979), feature detection (Kass et al.,
1987) and watershed-based (Beucher and Meyer, 1993) methods.
For particularly heterogeneous, noisy or complex datasets, machine
learningmodels including U-Net (Falk et al., 2019), DeepCell (Van
Valen et al., 2016), CDeep3M (Haberl et al., 2018), and CellPose
(Stringer et al., 2021), are a popular choice. The segmentation of
label-free images can be particularly challenging (Cameron et al.,
2020; Liu et al., 2021a), and as such a number ofmethods have been
developed specifically for this task (Vicar et al., 2019). A variety of
segmentation methods designed for specific cell types (Li J et al.,

FIGURE 1 |Optical microscopy images taken of ageing mesenchymal stem cells. Fluorescence image (A) provides information on the abundance and distribution
of DNA (blue), α-Tubulin (green) and Senescence-associated beta-galactosidase (red). Brightfield image (B) provides information on the cellular and sub-cellular
morphology. Images have been enhanced for visualisation.
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2019; Salvi et al., 2019) or datatypes, such as 3D images (Çiçek et al.,
2016), are also available. The performance of segmentation
methods have been reviewed and compared in detail elsewhere
(Dima et al., 2011; Thomas and John, 2017; Caicedo et al., 2019;
Cameron et al., 2020).

Analysis
Analysis of single-cell imaging data relies on extracting
informative descriptors of phenotypic characteristics, or
features, from the images. These features may be manually
designed (handcrafted), and selected by the user, or
automatically extracted from the data using machine learning
algorithms, such as multi-layer artificial neural networks (ANNs).
Using handcrafted features is often the more labour intensive
approach, however they are also typically easier to interpret, and
may even be defined in biologically meaningful terms such as cell
membrane circularity or nuclei intensity (Caicedo et al., 2017).
Automatically learned features usually take the form of abstract
data representations, which are less intuitive, but may also more
effectively capture the complexity of heterogenous and high
dimensional datasets (Razavian et al., 2014).

These image-derived features describe phenotypic profiles of
the system or condition under study (Caicedo et al., 2017; Grys
et al., 2017), and are routinely utilised to group cells according to
type (Zhang et al., 2017; Yao et al., 2019) or specific processes,
such as phases of cell cycle (Eulenberg et al., 2017) via
classification or clustering methods. Outlier detection methods
can also be applied to identify rare or novel cell-types within
heterogeneous populations (Mattiazzi Usaj et al., 2020).
Phenotypic profiling of cellular responses to chemical
(Kleinstreuer et al., 2014), environmental, and genetic (Rohban
et al., 2017) perturbations is frequently applied for functional
annotation and classification of the perturbants (Caicedo et al.,
2016). Another common analysis is the quantification of the
abundance and sub-cellular localisation of proteins (Pärnamaa
and Parts, 2017) or RNA molecules (Samacoits et al., 2018) of
interest. Other applications include lineage trajectory inference
(Buggenthin et al., 2017), which commonly makes use of cell-
tracking methods on live, long-term imaging data to accurately
ascertain lineage progression (Piltti et al., 2018; Lugagne et al.,
2020). Object tracking methods can be similarly applied to study
subcellular dynamic processes, such as binding dynamics
(Presman et al., 2017) or molecule trafficking (Chen et al.,
2016), among others (Nketia et al., 2017; Brandão et al., 2021).

Multimodal Data Integration Techniques
Integrative approaches are commonly used for a range of different
studies including classification (e.g. disease vs. normal), regression,
annotation labelling (e.g. based on morphological or phenotypic
descriptions), clustering, feature selection (biomarker discovery)
and association studies. These studies share some strategies when
categorising integrative approaches of multi-modal data. One
strategy is to categorise the approaches into correlation analysis
where the goal is to find correlations from the result obtained from
the analysis of individual data types. Others include sequential
analysis, where the analysis of one data type is followed by the
integration of another data type), and integrative analysis where

integrative analysis of all data types are conducted to obtain an
overall determination (Figure 2) (Lee et al., 2020).

Another approach is to classify methods based on the strategies
to build a multivariate final model. These methods are classified
into concatenation-, transformation- and model-based integration
(Figure 3) (Ritchie et al., 2015; Zitnik et al., 2019; Venugopalan
et al., 2021). Concatenation-based classification involves
combining datasets at the raw or processed level, followed by
fitting into a supervised or unsupervised model and then analysis.
Depending on the type of the data (e.g. images), the data is
converted into a feature vector to be combined with other
datasets. In transformation-based integration, the original data
is transformed separately, and the modelling approach is applied at
the level of the transformed matrices i.e. data types are integrated
during the learning process. Model-based integration involves
fitting separate models for individual data types and then
combining their outputs to generate knowledge about the
overall trait of interest (Ritchie et al., 2015; Venugopalan et al.,
2021). The strengths and limitations of integration methods
according to this classification strategy, and corresponding
examples, are summarised in Supplementary Table S1. These
methods are also referred to as early, intermediate and late
integration, respectively (Li et al., 2016; Venugopalan et al., 2021).

Here we review the commonly-used methods for integrating
images with omics data.

Annotation
The first approach for integrating images with multi-omics data is
to derive phenotypic information from imaging data, which is
then utilised as annotations to aid in the interpretation of omics
data. Thul, Åkesson (Thul et al., 2017) created an image-based
map of the human subcellular proteome. They integrated
transcriptomics data with high-resolution immunofluorescence
microscopy images to determine the subcellular location of
12,003 proteins in various cell lines. Traditional image-derived
annotations are usually manually curated in the form of
morphological, biochemical, or physiological descriptions or
measurements. Moreover, this information is also used for
categorical classifications (e.g. presence or absence of a specific
phenotype) (Hériché et al., 2019). For instance, in the context of
cellular senescence, microscopy images of cells stained for
senescence-specific markers such as senescence-associated
beta-galactosidase (SA-β-gal) are often used to determine the
presence of the senescent phenotype (Dimri et al., 1995). This
determination can be further supported through quantifying the
expression levels of proteins relevant to the senescent phenotype,
such as cell-cycle arrest markers p21 and p16. Moreover, staining
of the cellular membranes, cytoskeleton or cytoplasm provides
morphological information. Cells present with a distinct
morphology after transitioning into the senescent state,
including enlarged and irregular cell shape, increased
granularity and multinucleation (Biran et al., 2017).

Although traditional joint-analyses of multi-modal data are
informative and relatively accurate, they are limited in their
ability to identify patterns in complex biological data that
often contain thousands of features. Therefore, features most
relevant to each data type must first be identified and extracted
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from the raw data before they can be integrated and analysed to
draw biologically meaningful conclusions from them. However,
as datasets increase in volume, dimensionality and heterogeneity,
our ability to identify and extract meaningful features becomes

increasingly difficult and inefficient. This problem can be
circumvented using more complex mathematical methods for
multi-modal data representation and machine learning (ML)
models to integrate multi-modal data.

FIGURE 2 |Diagram depicting multi-modal data integration strategies according to the correlation, sequential and integrative categorisations. Triangles (green) and
circles (blue) represent datasets from distinct biological data modalities. (A) For correlation-based integration strategies, distinct data modalities are processed and
analysed independently, and correlations between the data are identified from the results. (B) In sequential integration strategies the results of the analysis on one data
modality are refined by the integration of additional data modalities in subsequent analyses. (C) In the integrative analysis approach, each data modality undergoes
feature transformation independently, which are subsequently combined and analysed.

FIGURE 3 |Diagram depictingmulti-modal data integration strategies according to the concatenation-, transformation- andmodel-based categorisation. Triangles
(green), circles (blue) and squares (orange) represent datasets from distinct biological data modalities. (A) In concatenation-based integration, multi-modal data is joined
at the raw or processed level before being passed to an ensuing model for analysis. (B) In transformation-based strategies, each data modality undergoes modelling to
transform features separately, which are subsequently integrated and passed to a final model for analysis (C) In model-based integration, each data modality
undergoes modelling and analysis independently, and model outputs are integrated to generate the final result.
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Higher-Order Data Representation
The volume and complexity of data derived from images and
multi-omics data brings the challenge of joining these data in an
integrative framework (Hériché et al., 2019). Multi-modal
integration methods look for patterns within and across data
types, with or without prior knowledge (supervised or
unsupervised) of the identity or label of the samples. Multiple
high dimensional data can be incorporated and represented as
higher order data structures or tensors (Chollet, 2018). Tensors
then undergo dimensionality reduction to be integrated and
jointly analysed (Li et al., 2016; Hériché et al., 2019). In the
context of multimodal data integration, higher-order data
representation and tensor factorisation methods have been
used in the biological domain. For instance, Zhang, Liu
(Zhang et al., 2012) used simultaneous non-negative matrix
factorisation to integrate multi-omics cancer data. Argelaguet,
Velten (Argelaguet et al., 2018) performed an integrative analysis
of various biological data (drug response, mutation status, and
transcriptome and DNA methylation profiles) using a joint
matrix factorization approach formulated in a Bayesian
framework. Last but not least, Acar, Papalexakis (Acar et al.,
2014) performed a joint analysis of nuclear magnetic resonance
and liquid chromatography–MS data using tensor factorisation.

Feature Vector Extraction
Both images and multi-omics data can be represented as
numerical descriptors in the form of feature vectors (Hériché
et al., 2019). Due to the high dimensional nature of the images
and multi-omics data, it is often challenging to combine their

respective features in the original input space. Thus, new features
from each data type can be extracted and then combined.
Depending on the nature of the data, feature extraction
methods such as matrix factorisation methods (e.g. PCA and
NMF) or dimensionality reduction methods like autoencoders
are applied (Li et al., 2016; Hériché et al., 2019). This is then
followed by the classification or clustering on the combined
features. The new features in the lower dimensional feature
space are commonly numeric, providing a quantifiable
measure of heterogeneity in each data mode and easy
integration of their respective features. Feature vectors also
provide a more efficient downstream analysis due to their
reduced dimensionally (Li et al., 2016). Moreover, they can
easily be incorporated into relational data (where the similarity
between samples are known) by kernel feature extraction
methods (Li and Ngom, 2014; Li et al., 2016).

Artificial Neural Networks
Artificial Neural Networks (ANN) are a class of ML algorithms
that are based on many processing units (or “neurons”), typically
organised into multiple layers which are inter-connected via
edges to form a network (Figure 4A). These edges are
assigned weights, which determine the strength of the
connection between neurons and are adjusted throughout the
network’s learning process to improve the model performance.
The neurons of a network’s input layer contain the initialising
data, which undergoes some transformation at the neurons of one
or more hidden layers, followed by an output layer which
produces the final result. The neurons contained within the

FIGURE 4 | Deep Artificial Neural Network (ANN) Architectures. Left: a key for several types of neurons used in ANN architectures. (A) Mathematical model of a
neuron. The weighted (Wi) sum of all inputs (Xi) to the neuron is computed and passed to the activation function, which produces the neurons output. This output is
propagated as an input to neurons in subsequent layers of the network. (B) A Convolutional Neural Network (CNN) is a feed-forward ANN architecture containing
convolutional and pooling layers, which allow local patterns to be learned and detected in a spatially invariant manner. (C) A Recurrent Neural Network (RNN) is a
recursive ANN architecture containing neurons with an internal memory state, which retain information about prior inputs to themodel. (D) An Autoencoder (AE) is a feed-
forward ANN architecture that is comprised of an encoder module that learns a latent representation of the input, and a decoder module that reconstructs the original
input data from the encoded representation.
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hidden layers compute the weighted sum of their inputs, apply an
activation function, and produce the output (Angermueller et al.,
2016b). The activation functions of neurons within hidden layers
are typically non-linear, allowing inputs to be transformed in a
manner that simultaneously increases the selectivity and
invariance of the data representations (features) (LeCun et al.,
2015). In “Deep” ANNs containing multiple hidden layers, the
outputs from one layer act as input to the following layer. The
compounding non-linearity allows for features of increasing
complexity to be learned in a hierarchical manner as
information progresses through the network. These features
are optimised according to the specific task for which the
model has been trained, typically classification, regression, or
recognition (LeCun et al., 2015). As biological systems are
inherently non-linear, this ability to generate intricate
nonlinear input-output mappings is of great benefit for
resolving the heterogeneity and complexity contained within
biological data (Willy et al., 2003; Janson, 2012). The features
learned by ANNs can also be extracted as feature vectors from the
intermediate layers of the trained model, and subsequently
combined for downstream integrative analyses (Chen et al.,
2020). By utilising different layer types, neuron connections,
activation functions, and learning rules, ANN architectures
can be designed with a range of distinct behaviours and
applications.

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a feed-forward ANN
architecture designed to process input data in the form of
multiple arrays (i.e. a tensor), making them particularly well-
suited to processing raw image data, which usually takes the form
of several two-dimensional arrays, representing each colour
channel. They are also capable of processing sequence or
signal data in the form of multiple one-dimensional arrays.
CNNs are typically composed of multiple blocks of
convolution and pooling layers which perform the feature
learning task (Figure 4B). The convolutional layers contained
within CNNs use arrays of weights (kernels) with a pre-defined
shape to learn locally distinct patterns in the data through
convolution operations. These patterns may represent edges or
curves that form an object in an image, or a series of specific bases
that form a transcription factor binding site in a genome
sequence. The kernels are applied across the entirety of the
data array, allowing these features to be detected in a spatially-
invariant manner. Pooling layers perform down-sampling
operations to merge semantically similar features, leading to
robust feature detection and reduced model parameters
(LeCun et al., 2015). The final layers of the CNN are fully-
connected layers, where neurons are connected to every neuron
in the previous layer, which map the learned features to the final
output prediction. A more detailed explanation of CNNs can be
found in several recent reviews (Gu et al., 2018; Khan et al., 2020).

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a class of ANNs that are
specialised for sequential data, such as DNA sequences or time
series measurements. RNNs take a single element (e.g. an amino

acid in a protein sequence) as input at a time, allowing them to
process sequences of variable length. The output generated by the
neurons of the hidden layer for each element can then be passed
as input to another neuron or looped directly back into that same
neuron (Figure 4C). This cyclic processing allows the RNN to
retain information pertaining to previous outputs in an internal
‘memory’, which is incorporated in the processing of the next
element of the sequence. Accordingly, during each new cycle, the
output of the hidden layer neurons is generated on the basis of
both the new sequence element and the memory of previous
sequence elements. As the memory capacity of the basic RNN
architecture is relatively limited, a number of derivatives that have
been developed to overcome this, including Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) architectures.
These architectures are explored further in other reviews
(Jozefowicz et al., 2015; Yu et al., 2019).

Autoencoder
One of the most popular ANN architectures applied for feature
extraction is the Autoencoder (AE), which learns features in an
unsupervised or ‘self-supervised’manner. The task of an AE is to
encode the input data into an internal representation through
learning combinations of non-linear features, and then
reconstruct the output from this encoding (Figure 4D).
Through iteration, the AE model aims to find a codification of
the data that enables the most accurate data reconstruction. This
encoding can then be extracted to create a feature vector. AEs
have been adapted to suit different data modalities through the
incorporation of other ANN architectures, including
convolutional AEs for multi-array data and LSTM
autoencoders for sequence data (Charte et al., 2018). Various
forms of regularisation can also be introduced to ensure the AE is
learning a suitably meaningful encoding of the data, as is the case
for sparse, denoising and contractive AEs (Zhai et al., 2018).
Variational autoencoders (VAEs) are a class of AEs which aim to
approximate the underlying distribution of the input data
through implementing a variational Bayesian inference
approach to encoding (Charte et al., 2018). The generative
nature of VAEs make them particularly applicable to multi-
modal data integration tasks (Simidjievski et al., 2019). AEs
are covered in more detail in a number of recent reviews
(Charte et al., 2018; Pulgar et al., 2020).

Transfer Learning
Transfer learning is the strategy of utilising knowledge learned by
a previously trained ANN to enhance the performance of a new
model with a different target domain or task. This approach is
commonly applied for feature extraction, as ANNs trained on
extremely large and diverse datasets tend to learn generic but
high-quality features that are transferable across a variety of
domain tasks (Pan and Yang, 2010). A number of high-
performance models pre-trained on the ImageNet challenge
dataset, consisting of 1.4 million images across 10,000 classes,
have been utilised for feature extraction from biological imaging
data with particular success (Russakovsky et al., 2015). For
example, Khan et al. (Khan et al., 2019) extracted generic
features from breast cytology images using three pre-trained
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CNNs (GoogleNet (Szegedy et al., 2015), VGGNet (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016)), which enabled
the detection and classification of malignant cells with an
accuracy greater than 97% when combined.

These are but some of the ANN architectures most commonly
utilised in multi-modal biological data integration studies. For an
extensive review of ANNs and their biological applications, please
refer to (LeCun et al., 2015; Angermueller et al., 2016b; Jones
et al., 2017; Khamparia and Singh, 2019; Li Y et al., 2019; Tang
et al., 2019; Emmert-Streib et al., 2020; Mahmud et al., 2021).
Adaptations of many ANN architectures, including CNN, RNN
and AE, that are designed to receive graph structured biological
data such as gene regulatory networks as input are also available
(Jin et al., 2021; Muzio et al., 2021).

CASE STUDIES

An attractive feature of AI is the ability to identify and extract
informative patterns from complex, nonlinear data. Without the
need for prior knowledge, AI unveils the mechanism underlying a
complex biological process. Recently, ML and deep learning (DL)
techniques have been developed and applied in many biomedical
health and pharmaceutical-related fields (Gawehn et al., 2016;
Mamoshina et al., 2016; Lenselink et al., 2017). These include,
prediction of organic chemistry reactions (Wei et al., 2016),
optimisation of chemical synthesis (Segler et al., 2018),
prediction of pharmacological properties of drugs and drug
repurposing (Aliper et al., 2016), modelling structural features
of RNA-binding protein targets (Zhang et al., 2015), analysis of
drug-induced liver injury (Xu et al., 2015), or the study of human
long non-coding RNAs (Fan et al., 2015).

In the context of integrative analysis, depending on the nature
of the task (classification, prediction, annotation, or marker
discovery), the data types and the amount of data to handle,
the constructed models from different ML algorithms are
integrated into a single framework to capture the complex
mechanism of biological systems. These frameworks are built
based on different approaches and as such have different costs
and benefits. Network-based fusion methods are able to infer
direct or indirect associations in heterogeneous networks.
Bayesian-based methods use prior information and model
measurements in building the final model. Tree-based models
make the final decision based on the trees constructed from
individual or collective data types. Additionally, there is a range of
deep ANNs that are used to integrate multi-modal data in a single
framework (Bersanelli et al., 2016; Li et al., 2016). Here we discuss
case-studies that have implemented commonly used frameworks
for multi-modal data integration.

Kim et al. (Kim et al., 2013) used grammatical evolution neural
network (GENN) to predict clinical outcomes for cancer patients
by integrating gene copy number, DNAmethylation, miRNA and
gene expression data. Their computational platform ATHENA
allows users to input multimodal omics data. In the first step, the
noise variable from each genomic data is filtered out. Individual
datasets then go through GENNmodelling; the variables that best
describe each genomic dataset are selected for the final GENN

modelling and integration. An advantage of this framework is its
ability to model complex and non-linear relationships between
variables, thus identifying interactions that influence variance in
an outcome of interest. The final integrated model provides a
global view of interaction within and between different levels of
genomic data. They tested the final integrated framework on
ovarian cancer data from the Cancer Genome Atlas and found
that the identified interactions between multiple levels of
genomics data are associated with an improved prognosis for
ovarian cancer patients.

Chaudhary et al. (2018) used concatenation and DL to
integrate mRNA expression, miRNA expression and DNA
methylation data to improve clinical outcomes for patients
with hepatocellular carcinoma. They implemented an AE
model with three hidden layers. For each of the transformed
features produced by the AE, they selected survival-associated
features through a univariate Cox proportional hazards model.
Next, they used these reduced new features to cluster the samples
using the K-means clustering algorithm which led to the
discovery of two subtypes with significant differences in
survival. Furthermore, they validated these two subtypes in
five independent cohorts which have an miRNA or mRNA or
DNA methylation dataset.

In the context of single cell data integration, Tao et al. (2021)
proposed a flexible framework, GLUER, for integrating single-cell
omics and imaging data. After normalising the data for each
modality, they employ a joint nonnegative matrix factorization
(NMF) to identify common factor across data sets of different
modalities while maintaining their biological differences. This is
followed by using a mutual nearest neighbour (MNN) algorithm
to map many-to-many relationships among cells across the data
sets, generating factor loading matrices (dimensionality reduced
matrices) for each data modality. One factor loading matrix is
defined as a reference and the rest as query matrices. A distance
between reference and query matrices is computed and used to
determine the putative cell pairs between the two datasets. Finally
they implement a CNN to learn nonlinear relationships between
the factor loading matrices of reference and query datasets. The
learnt functions are then used to co-embed the data by combining
the reference factor loading matrix and query factor loading
matrices.

Yang, Belyaeva (Yang et al., 2021) used AEs to integrate
different single cell-sequencing modalities coupled with single
cell-imaging data. Their study focused on identifying
heterogonous cell states in human naïve CD4+ T-cells. In their
framework, a different AE model is used to embed each of the
data modalities into a shared latent space. The alignment and
integration of each embedding within the latent space was
performed using an adversarial training approach. Unlike
other integration methods (Gundersen et al., 2020), this
approach does not require paired data.

Stuart et al. (2019) used canonical correlation analysis (CCA)
and MNN to develop a framework for reference assembly and
transfer learning for transcriptomic, epigenomic, proteomic, and
spatially-resolved single-cell data. First, they used CCA to jointly
reduce the dimensionality of the reference and query datasets.
These datasets originate from separate single cell experiments but
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share cells from similar biological states. This is followed by
identifying anchors (biologically-matched cells in a pair of
datasets) using MNNs in the shared lower-dimensional space.
Anchors encode the cellular relationships across datasets that will
form the basis for all subsequent integration analyses. A score is
assigned to each anchor pair based on the consistency of anchors
across the neighbourhood structure of each dataset. Anchors and
their score are then utilised to compute “correction” vectors for
each query cell, transforming its expression so it can be jointly
analysed as part of an integrated reference.

APPLICATIONS OF SINGLE-CELL AND
INTEGRATIVE MULTI-MODAL DATA
ANALYSIS IN AGEING STUDIES AND
RELATED RESOURCES

Because ageing is a complex biological process, we have selected
this particular area of biomedical and health, to showcase studies
where multi-modal integration of data has had impact. The
complexity of identifying regulators in ageing is due to the
fact that ageing is influenced by genetic, epigenetic,
transcription, metabolic and post-translation modifications.
Systems-level multi-dimensional strategies are therefore
required to capture the heterogeneity associated with the
ageing phenotype. Due to their improved resolution and
advancement, single-cell technologies allow for generation of
largescale multi-modal data, which provides opportunities to
integrate these datasets to inform our understanding of the
mechanism of ageing and age-related disease.

Single cell multi-omics data have been used to discover novel
cell types and cell state during ageing; detect cell population shifts
and cell-state changes; identify tissue and cell-type specific genes
and features; and identify ageing related genes in less abundant
cell types (He et al., 2020). The results from these studies are
applied in biomarker discovery, drug target identification,
regenerative medicine, gene therapy, immune oncology and
immunosenescence (Zhavoronkov et al., 2019). For example,
Ma, Sun (Ma et al., 2020) created the first single-cell atlas of
ageing and ageing interventions in rats that were subjected to a
normal and caloric restriction (CR) diet. They studied the ageing-
related changes in cell-type composition, gene expression and
core transcription factors across tissues due to CR in young and
aged rats. Zhang et al. (2019) utilised single-cell whole-genome
sequencing to compare somatic mutations in human B
lymphocytes in four age groups (newborn, adult, aged and
centenarian). They found that somatic mutations increase
from <500 per cell to >3,000 per cell across the human
lifespan. For a comprehensive list of single cell omics studies
in ageing refer to (He et al., 2020).

Single-cell imaging has been applied extensively to the
discovery and characterisation of cell types and cell states
associated with ageing and age-associated diseases. For
example, Phillip et al. (2017) used a range of single-cell
imaging technologies to quantify hundreds of biophysical and
biomolecular properties of cells obtained from individuals

between 2 and 96 years of age. Based on these measurements
they were able to identify key phenotypes associated with cellular
ageing, such as reduced motility and increased cytoplasmic
stiffness, which they used to develop a biological ageing clock.
A number of models based on single-cell imaging data have also
been developed for the identification of senescent cells (Oja et al.,
2018; Kusumoto et al., 2021; Zhai et al., 2021). Wu et al. (2020)
has also demonstrated that cellular morphology obtained from
imaging data is predictive of the tumorigenic and metastatic
potential of individual cells.

The functional annotation of genes linked to ageing and age-
associated diseases has also been achieved via single-cell imaging.
For instance, Jiao et al. (2019) performed an image-based genetic
screen to construct morphological profiles of 125 genes from loci
associated with Type-2 diabetes, adiposity, and insulin resistance.
Clustering of these profiles revealed novel protein–protein and
gene regulatory interactions relevant to Type-2 diabetes. High-
throughput single-cell imaging is routinely applied for the
discovery of therapeutic compounds to treat a range of age-
associated diseases, including Alzheimer’s disease (Honarnejad
et al., 2013), osteoarthritis (Nogueira-Recalde et al., 2019),
Hutchinson–Gilford Progeria Syndrome (Kubben et al., 2016)
and cancer (Caie et al., 2010; Moffat et al., 2014), as well as
therapeutics for biological ageing as a whole (Sarkar et al., 2020),
often through targeting cellular senescence (Fuhrmann-
Stroissnigg et al., 2017).

Integrative multimodal analyses of biological imaging and
omics data are popular in ageing-related research.
Venugopalan et al. (2021) used deep AEs and CNNs to extract
and integrate features from clinical, genomic and neurological
imaging data to classify patients according to the severity of their
Alzheimer’s disease stage. They also demonstrated that this
multi-modal model outperformed single-modality models for
the predictive task. Another common application of integrative
analysis in age-associated disease is the integration of tissue-level
imaging with genomic or transcriptomic data for the
identification and classification of cancer sub-types (Shao
et al., 2020; Liu et al., 2021b). Alternatively, Sailem and Bakal
(2017) performed a correlation-based integrative analysis of
single-cell morphology and bulk transcriptional data, finding
that alterations in cell shape promoted breast cancer
progression through the modulation of NF-kB. Although these
studies have typically been limited to the tissue level, the recent
advances in single-cell technologies and computational methods
discussed in this review hold great promise for enhancing our
understanding of the molecular basis of the biological ageing
process. For example, Meyer et al. (2020) recently developed a
same-cell pharmacogenomics approach, fate-seq, which uses live
imaging to predict the drug response of individual cells, that are
subsequently isolated and profiled using single-cell RNA-seq.
With this technique, they were able to identify the
transcriptional profile responsible for modulating cancer-drug
resistance.

There are many examples where AI has been successfully
applied in longevity medicine research, including biomarker
discovery (Putin et al., 2016; Moskalev et al., 2017;
Zhavoronkov et al., 2021), using deep learning to predict
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chronological age (Wang et al., 2017) and analysis of relationships
between life-style traits (e.g. smoking) and accelerated ageing
(Mamoshina et al., 2019). Please refer to the following reviews for
a comprehensive overview on applications of AI in biomedicine
(Fabris et al., 2017; Ching et al., 2018; Rifaioglu et al., 2018;
Tsigelny, 2018) and ageing research (Zhavoronkov et al., 2019; He
et al., 2020).

The large amount of data generated in ageing research has
been organised and disseminated in various databases. The
publicly available databases consist of ageing phenotypes,
longevity records, ageing- and senescence-related genes, and
factors with lifespan-extending effects. These include Human
Aging Genomic Resources (HAGR) containing GenAge, AnAge,
GenDR, LongevityMap, DrugAge and CellAge (Tacutu et al.,
2017). GenAge is a benchmark database for ageing- and
longevity-associated genes. CellAge is a manually curated
database of senescence-associated genes and DrugAge contains
over 500 ageing-related drugs in model organisms. For more
information about HAGR databases refer to (Tacutu et al., 2017).
Other ageing-research related databases include Geroprotectors
(Moskalev et al., 2015), AgeFactDB (Hühne et al., 2014), the
Digital Ageing Atlas (Craig et al., 2015), AGEMAP (Zahn et al.,
2007), SeneQuest (https://senequest.net/) by ICSA (International
Cell Senescence Association). Last but not least, the Aging Atlas
(Consortium, 2020) is a curated biomedical database which
comprises of multi-omics datasets (sc-transcriptomics,
epigenomics, proteomics and pharmacogenomics) and the
tools to analyse and visualise the datasets.

CONCLUSION

In this review, we provide an overview of the current single-cell
omics and imaging technologies, their respective methods for data
analysis and common approaches for multi-modal data
integration. While single-cell omics and imaging both represent
two broad areas of interest, the intention of this review was not to
provide an exhaustive treatment of these topics but instead offer a
guide to help navigate the growing landscape of these two areas.
We expect that the number of new techniques, data analysis
approaches, and opportunities for integrating single-cell omics

data with images will continue to grow and mature, and we
hope that this review provides a reader, especially one who is a
beginner to single cell biology, with enough content to learn about
these areas more effectively and easily.

Single-cell omics technologies offer unprecedented
opportunities to systematically explore cellular and molecular
diversity at a single cell resolution. The data generated through
these technologies have had a significant impact in understanding
the heterogeneity in a cell population or tissue, leading to
discovery of novel cell types, their function and their
underlying genetic composition. Single cell imaging
technologies capture morphological description of tissues and
cells. Through the use of these technologies, we are also able to
identify and quantify molecular profiles with single-molecule
resolution. Advances in different single cell technologies that
allow the capture of multiple features of a cell, in combination
with the development of new multi-modal data integration
approaches presented in this review are rapidly emerging and
beginning to present promising results in different fields of
biomedical research.
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