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Accurate prediction of residue burial as well as quantitative prediction of residue-specific
contributions to protein stability and activity is challenging, especially in the absence of
experimental structural information. This is important for prediction and understanding of
disease causing mutations, and for protein stabilization and design. Using yeast surface
display of a saturation mutagenesis library of the bacterial toxin CcdB, we probe the
relationship between ligand binding and expression level of displayed protein, with in vivo
solubility in E. coli and in vitro thermal stability. We find that both the stability and solubility
correlate well with the total amount of active protein on the yeast cell surface but not with
total amount of expressed protein. We coupled FACS and deep sequencing to reconstruct
the binding and expression mean fluorescent intensity of each mutant. The reconstructed
mean fluorescence intensity (MFIseq) was used to differentiate between buried site,
exposed non active-site and exposed active-site positions with high accuracy. The
MFIseq was also used as a criterion to identify destabilized as well as stabilized
mutants in the library, and to predict the melting temperatures of destabilized mutants.
These predictions were experimentally validated and were more accurate than those of
various computational predictors. The approach was extended to successfully identify
buried and active-site residues in the receptor binding domain of the spike protein of
SARS-CoV-2, suggesting it has general applicability.
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INTRODUCTION

Mutagenesis is often used to generate variants of proteins with improved biophysical properties such
as solubility and activity and to understand protein function. The advancement of high-throughput
mutagenesis techniques has enabled the generation of a large number of variants of a protein in a
short span of time, in a massively parallelizable manner (Zheng et al., 2004; Jain and Varadarajan,
2014; Wrenbeck et al., 2016). If an appropriate functional assay to score protein activity in vivo exist,
it is possible to infer the relative activity of each variant in the library, through library screening
coupled to next generation sequencing (Fowler et al., 2010; Adkar et al., 2012; Matreyek et al., 2018).
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However, there is a dearth of efficient, high-throughput methods
to measure the solubility and stability of multiple protein variants
in parallel, and to discriminate between buried and active-site
residues solely using mutational data (Bhasin and Varadarajan,
2021).

Yeast surface display (YSD) is commonly used as a tool to
identify protein variants with improved biophysical properties
(Schweickhardt et al., 2003; Jones et al., 2006). YSD is preferable
to bacterial expression for disulfide containing or glycosylated
proteins. Agglutinin based Aga2p is the most widely used system
to display proteins on the yeast cell surface (Shusta et al., 2008).
Aga2p is a small protein (7.5 kDa), covalently linked via
disulphide linkages to the yeast cell surface protein Aga1p
(Boder and Wittrup, 1997). Previous studies have shown that
the amount of protein displayed on the yeast cell surface is
directly correlated to the amount of protein secreted by the
cells, as well as the thermal stability of the protein (Shusta
et al., 1999). However, in other studies where the secretion
efficiency (Hagihara and Kim, 2002) or yeast cell surface
expression of proteins was measured, no such correlation was
observed (Park et al., 2006; Piatesi et al., 2006). Proteolysis of
yeast surface displayed proteins has also been used to differentiate
properly folded, stable variants from unstructured variants or
molten globules, as a proxy for stabilization (Chevalier et al.,
2017; Rocklin et al., 2017; Basanta et al., 2020). However, this has
primarily been applied to relatively small proteins (Chevalier
et al., 2017; Rocklin et al., 2017; Dou et al., 2018; Basanta et al.,
2020).

A previous study which showed correlation between stability
and expression levels was carried out on a limited number of
mutants, that were studied individually. In addition, the WT
protein itself had a very low Tm (Shusta et al., 1999). It has also
been suggested that if the stability of a protein crosses a certain
threshold, its expression does not increase linearly with increase
in stability and it is therefore difficult to distinguish stable
mutants from less stable ones, using only expression as the
criterion (Traxlmayr and Shusta, 2017). With a very high level
of yeast surface expression for unstable variants, the yeast quality
control system may not be able to differentiate between properly
folded, unfolded or molten globule like proteins. However, once
displayed on the yeast cell surface such mutants may unfold or
aggregate and hence will not bind to a tertiary structure specific
ligand or cognate partner.

To verify the above hypothesis, we used Escherichia. coli
(E.coli) CcdB as a model protein. CcdB is the toxin
component of the CcdAB toxin-antitoxin (TA) module which
binds both free DNA Gyrase and the DNA Gyrase-DNA
complex, these are referred to as inhibition and poisoning
respectively. Formation of the poisoned CcdB:DNA Gyrase:
DNA ternary complex stalls replication and causes cell death
(Bernard and Couturier, 1992). The other component of this TA
module codes for an antitoxin CcdA, which neutralizes the
toxicity of the CcdB toxin upon binding to CcdB. A mutation
of Arginine to Cysteine in the DNA Gyrase subunit A (GyrA) at
residue 462 can abolish the binding of Gyrase to CcdB (Bernard
and Couturier, 1992). The CSH501 E. coli strain carries this
mutation in the gene of the gyrA subunit which makes it

insensitive to CcdB (Bajaj et al., 2008). In a previous study, a
single-site saturation mutagenesis library of CcdB was generated
and the mutants were scored based on their in vivo growth
phenotype (MSseq score) (Adkar et al., 2012). In E. coli, a good
correlation was found between the MSseq score of ∼70 mutants
with either ΔTm of purified protein (r � 0.65) or in vivo solubility
in E. coli (r � 0.69) (Tripathi et al., 2016). In contrast to plate
based phenotypes, YSD provides greater flexibility and improved
quantitation. We therefore wished to explore the correlation
between the amount of surface expression or ligand binding
seen with YSD, with thermal stability and E. coli in vivo
solubility using this large set of characterized mutants, which
had a range of in vitro thermal stability and in vivo solubility.

We initially examined 30 different variants of CcdB. Mutants
were chosen so as to have varying solubility (when expressed in
E. coli), in vitro thermal stability, accessibility and residue depth.
Fewer mutants were chosen for exposed residues, where most
mutants are tolerated. Residue V18 is one of the most highly
buried residues in CcdB and several mutants which span a range
of thermal stability and in vivo solubility were chosen at this
position. The in vivo solubility of these mutants ranged from
completely soluble to insoluble. We did not find a good
correlation between total expressed protein amount on the
yeast cell surface and either in vivo solubility in E. coli, or
in vitro determined thermal stability. However, a better
correlation was observed between the amount of active protein
on the yeast cell surface (i.e., the amount of bound ligand) with in
vivo solubility/thermal stability. In the yeast cell surface display
system (Chao et al., 2006), activity was monitored by measuring
the extent of binding of yeast cell surface displayed CcdB to a
FLAG tagged fragment of GyrA14 as described previously (Sahoo
et al., 2015).

Multiple rounds of sorting enrich mutants which have the
highest expression and binding on the yeast cell surface. Sorting
in such a waymay lead to the identification of mutants with better
biophysical properties, however, it does not give any information
about the relative activity of all the mutants in a library. We
coupled FACS and deep sequencing to reconstruct the MFI
(MFIseq) of each mutant in the Site Saturation Mutagenesis
(SSM) library of CcdB, using single round FACS sorting
methodology. We use this parameter MFIseq, to rank all the
mutants based on their activity to generate the mutational
landscape or distribution of fitness effects (DFE). We found
that the DFE generated using binding was more accurate than
the DFE generated using expression. Overall, our MFIseq scoring
parameter could readily discriminate between stable and
destabilized mutants of CcdB in a highly multiplexed manner.

It is well known that mutations that affect activity occur
primarily at either surface exposed residues directly involved
in binding or catalysis or at buried residues important for folding
and stability. It has been difficult to distinguish between these two
classes of residues, solely from mutational data (Bhasin and
Varadarajan, 2021). We show here that by examining the
effects of charged substitution on surface expression we can
discriminate between the two classes of residues. To further
validate the approach described above, we analyzed previously
published saturation mutagenesis YSD expression and binding
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data for the receptor binding domain (RBD) of SARS-CoV-2 to
its ligand ACE-2 (Starr et al., 2020). We could successfully predict
both binding-site and buried residues solely from the mutational
data in this system as well.

MATERIALS AND METHODS

Bacterial Strains, Yeast Strains and
Plasmids
E.coli CSH501 strain carries a mutation in the gyrA gene
which abolishes inhibition and poisoning by CcdB (Bajaj
et al., 2008). The EBY100 strain of Saccharomyces
cerevisiae has the aga1 gene under the Gal1 promoter for
inducible expression and a TRP1 auxotrophic mutation. The
strain lacks the aga2 gene, so only Aga2p fused protein
expressed from the plasmid, will form a complex with the
Aga1p for yeast cell surface display (Boder and Wittrup,
2000). The ccdB gene was cloned in the pBAD24 plasmid
for controllable expression in E. coli. ccdB mutants were
cloned in the pPNLS shuttle vector for yeast cell surface
expression (Najar et al., 2017).

Cloning of WT and Mutant ccdB in E.coli
ccdB mutants in pBAD24 were generated using three fragment
Gibson assembly. Briefly, ccdB was amplified in two fragments
using two sets of oligos. For each fragment one of the oligos binds
to the vector and the other binds to the gene. The primer of both
fragments which bind to the gene were completely overlapping
and contained the desired mutation. The fragments were gel
extracted and Gibson assembled with NdeI and HindIII digested
pBAD24 vector. The Gibson assembled product was
electroporated in E. coli CSH501 strain and positive
transformants were selected on LB agar media containing
ampicillin (100 μg/ml). The sequence was confirmed by Sanger
sequencing. Sequence confirmedWT or mutant ccdB in pBAD24
vector was used as a template for PCR to amplify the ccdB gene by
Vent DNA polymerase. The PCR amplified product was co-
transformed with SfiI digested pPNLS vector in the EBY100 strain
of Saccharomyces cerevisiae using LiAc/SS carrier DNA/PEG
method for in vivo recombination (Gietz and Schiestl, 2007).
Positive transformants were selected on SDCAA Tryptophan
dropout media plates and the sequence was confirmed by
Sanger sequencing.

Protein Purification
WT and mutant CcdB was purified as described previously
(Chattopadhyay and Varadarajan, 2019). Briefly, an overnight
culture was diluted 100-fold in LB media containing ampicillin
(100 μg/ml) and induced with L-arabinose (0.2% w/v) at an
OD600 of ∼0.5. Following induction for 3 h, cells were
harvested and lysed by sonication. The soluble fraction was
separated using centrifugation and incubated with CcdA
peptide (residues 45–72nd) coupled to Affigel-15 at 4°C. The
unbound fraction was removed and the column was washed
with bicarbonate buffer (50 mM NaHCO3, 500 mM NaCl, pH
8.5). The bound protein was eluted with 200 mM glycine (pH 2.5)

and collected in an equal volume of 400 mMHEPES buffer (pH 8)
to neutralize the acidity of glycine.

GyrA14 was purified as described previously (Dao-Thi et al.,
2004). Briefly, an overnight culture was diluted 100-fold in LB
media containing ampicillin (100 μg/ml) and induced with IPTG
(1 mM) at an OD600 of ∼0.5. Following induction for 3 h, cells
were harvested and resuspended in TES buffer (0.2 M Tris, pH
7.5, 0.5 mM EDTA, 0.5 M sucrose and 1 mM PMSF). Cells were
lysed and the soluble fraction was separated using centrifugation.
The soluble fraction was incubated with pre-equilibrated Ni-NTA
beads for 2 h at 4°C. The unbound fraction was removed, and the
column was washed with 100 column volumes of wash buffer
(50 mM imidazole in 0.05 M Tris, pH 8, 0.5 MNaCl). The protein
was eluted with 500 mM imidazole in 0.05 M Tris, pH 8, 0.5 M
NaCl and dialysed against 1x PBS.

Estimation of Solubility of WT and Mutant
CcdB in E.coli
E.coli CSH501 strain, transformed with pBAD24 plasmid
containing WT or mutant ccdB, was grown in media
containing ampicillin for 16 h at 37°C and 180 RPM. A
secondary culture was grown by diluting overnight grown
culture 100-fold. Upon reaching an OD600 of 0.4–0.5, CcdB
variants were induced with Arabinose at a final concentration
of 0.2% (w/v) for 3 h. The cells were harvested from 1.5 ml culture
and lysed in 500 µl 1X PBS, using sonication. Supernatant and
pellet fractions were separated by centrifugation at 13,000 RPM at
4°C. The pellet fraction was resuspended in 500 µl 1X PBS and
equal volumes of pellet and supernatant fractions were loaded on
Tricine-SDS-PAGE to measure the relative amounts of protein in
each fraction.

Protein Thermal Stability Measurement
Using Thermal Shift Assay
The thermal shift assay was conducted in an iCycle iQ5 Real Time
Detection System (Bio-Rad, Hercules, CA). A solution of total
volume 20 μl containing 10 μM of the purified CcdB protein and
2.5X Sypro orange dye in suitable buffer (200 mM HEPES,
100 mM glycine), pH 7.5 was added to a well of a 96-well
iCycler iQ PCR plate. The plate was heated from 15°C to 90°C
with a 0.5°C increment every 30 s. The normalized fluorescence
data was plotted against temperature and Tm measured as
described (Niesen et al., 2007; Tripathi et al., 2016).

Yeast Surface Expression ofWT andMutant
CcdB Proteins in EBY100 Cells and Flow
Cytometric Analysis
Saccharomyces cerevisiae EBY100 cells containing WT ccdB or
mutant in pPNLS plasmids were grown in 3 ml SDCAA media
(glucose 20 g/L, yeast nitrogen base 6.7 g/L, casamino acid 5 g/L,
citrate 4.3 g/L, sodium citrate dihydrate 14.3 g/L) for 16 hours.
Grown cells were diluted to an OD600 of 0.2 in 3 ml SDCAA
media and grown till the OD600 reached two. Thirty million cells
were harvested using centrifugation and resuspended in 3 ml
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SGCAA induction media (galactose 20 g/L, yeast nitrogen base
6.7 g/L, casamino acid 5 g/L, citrate 4.3 g/L, sodium citrate
dihydrate 14.3 g/L) for 16 hours at 30°C, 250 RPM (Chao
et al., 2006). One million cells were used for flow cytometric
analysis. The amount of total protein expressed on the yeast cell
surface was estimated by incubating the induced cells in 20 μl
FACS buffer (1X PBS and 0.5% BSA), containing chicken anti-
HA antibodies from Bethyl labs (1:600 dilution) for 30 min at 4°C.
This was followed by washing the cells twice with 100 μl FACS
buffer at 4°C. Washed cells were incubated with 20 µL FACS
buffer containing goat anti-chicken antibodies conjugated to
Alexa Fluor 488 (1:300 dilution), for 20 min at 4°C.
Fluorescence of yeast cells was measured by flow-cytometric
analysis. The total amount of active protein on the yeast cell
surface was estimated by incubating the induced cells in 20 μl
FACS buffer containing 100 nM GyrA14 for 45 min at 4°C. Cells
were washed and incubated with 20 µl mouse anti-FLAG
antibodies (1:300). This was followed by washing the cells
twice with FACS buffer, followed by incubating with 20 µl
rabbit anti-mouse antibodies conjugated to Alexa Fluor 633
(1:1,600 dilution). The flow-cytometric analysis was carried out
on BD Accuri or BD Aria III instruments.

Yeast Surface Expression and Sorting of
CcdB Single-Site Saturation Mutagenesis
Library
Previously, an SSM library of ccdB was generated in the pBAD24
vector (Adkar et al., 2012; Tripathi et al., 2016). The library was
PCR amplified using primers having homology to the pPNLS
vector. The PCR amplified library was gel extracted and cloned in
pPNLS vector using yeast in vivo recombination.

A similar protocol was used for sample preparation of the
library for FACS as described above for the single mutants
with slight modifications. Briefly, ten million cells were taken
for FACS sample preparation and the reagents were used in
10X higher volumes compared to the earlier flowcytometric
analysis. Two different concentrations of GyrA14 (100 nM,
5 nM) were used for sorting CcdB mutants based on the
binding in the 1D histogram. The cells were sorted in 11
and 10 different populations (bins) in case of binding with
GyrA14 at concentrations of 100 and 5 nM respectively.
Additionally, 11 different populations (bins) were sorted
from the expression histogram. The experiment was
repeated in a biological replicate. The sorting of CcdB
libraries was performed using a BD Aria III cell sorter.

Sample Preparation for Deep Sequencing
Sorted populations were grown on SDCAA agar plates for 48 h.
Colonies were scraped and plasmids were extracted from the cells.
The ccdB gene was PCR amplified using primers which bind
upstream and downstream of the ccdB sequence and had
multiplex identifier (MID) sequence to segregate the reads
from different sorted bins. The DNA was amplified for 15
cycles using PCR and the amplified product was gel extracted
and purified. Equal amounts of DNA from each sorted
population were pooled, and the library was generated using

the TruSeq™ DNA PCR-Free kit from Illumina. The sequencing
was done on an Illumina HiSeq 2,500 250 PE platform at
Macrogen, South Korea after incorporating 20% ϕX174 DNA
in the library.

Analysis of Deep Sequencing Data
Deep sequencing data for the ccdB mutants obtained from the
Hiseq 2,500 platform was processed using a pipeline developed by
adopting certain aspects from an already existing in-house
protocol (https://github.com/skshrutikhare/cys_library_analysis).
The latter method involved the alignment with wild type sequence
followed bymerging of the paired-end reads, while in the modified
protocol, the reads are first merged and then aligned with the wild-
type sequence. The present methodology consists of the following
steps: assembling the paired end reads, quality filtering, binning,
alignment and mutant identification. All these steps were
incorporated in a pipeline and made executable from a single
command using a parameter file unique to a given data-set. In the
first step, paired end reads were assembled using the PEAR v0.9.6
(Paired-End Read Merger) tool (Zhang et al., 2014). The “quality
filtering” step involved deletion of terminal “NNN” residues in the
reads, and removal of reads, not containing the relevant MID and/
or primers, along with the reads having mismatched MID’s.
Finally, only those reads having bases with Phred score ≥20 are
retained. A binning step involved further filtering, which
eliminated all those reads having incorrectly placed primers,
truncated MIDs/primers (due to quality filtering) and shorter/
longer sequences than the length of the wild type sequences. The
remaining reads were binned according to the respective MIDs. In
the alignment step, reads were aligned with the wild type ccdB
sequence using the Water v6.4.0.0 program (Smith and
Waterman, 1981) and reformatted. The default values of all
parameters, except the gap opening penalty, which was
changed to 20, was used. In the final step of “substitution”,
reads were classified based on insertions, deletions and
substitutions (single, double etc mutants).

Mean Fluorescence Intensity
Reconstruction From Deep Sequencing
Data
Reads of each mutant were normalized across different bins
individually (Equation 1), and the fraction of each mutant
(Xi) distributed amongst the different bins was calculated
(Equation 2). The reconstructed MFI for an individual mutant
was calculated by the summation of the product, obtained upon
multiplying the fraction (Xi) of the mutant in a particular bin 1)
with the MFI of the corresponding bin obtained from the FACS
experiment (Fi), across the various bins populated by the
respective mutant (Equation 3).

Normalized read of mutant in bin i (Ni)
� No. of reads of mutant i in bin i

∑reads in bin i
Equation 1

Fraction of mutant in each gate(Xi) � Ni
∑n

1Ni
Equation 2
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Reconstructed MFI � ∑
n

1

FipXi Equation 3

The MFIseq of the biological replicates were different so theMFIseq
of one of the replicates was adjusted using “m” and “c” obtained from
the correlation between the replicates and then averaged.

AverageMFIseq � MFIseq (replicate 1) + (m pMFIseq (replicate 2) + C)
2

Maximum Likelihood Mean Fluorescence
Intensity) Calculation
Reads of eachmutant were normalized within and across the bins.
The fraction of each mutant (Xi), distributed amongst the
different bins, was calculated as explained in the above section.
The fraction (Xi) was multiplied with a scaling factor to convert
the data into integers as this is required by the package below. The
mlMFI was calculated using a maximum likelihood method using
the fitdistrplus R package as explained earlier (Starr et al., 2020).
The “fitdistcens” function in the fitdistplus R package helps in the
estimation of fluorescence values for such observations using a
maximum likelihood approach, where the values are transformed
into a data frame of two columns left and right, describing each
observed value as an interval and assuming a normal distribution
of values. The left column contains the left bound of the interval
and the right column contains the right bound of the interval for
interval-censored observations, based on the fluorescence
boundaries of each bin. The maximum likelihood approach
was used to estimate the MFI of binding and expression for
each mutant, based on its distribution of reads across the sorted
bins, and the fluorescence boundaries of each sorted bin.

Mean Fluorescence Intensity Calculations
After Bins Merging
The bins were merged following which mlMFI amd MFIseq were
calculated for GyrA14 binding (100 nM) for replicate 1. The fraction
of each mutant in each bin was calculated as explained in the earlier
sections. To merge bins for a given mutant, fractions present in each
of the bins to be merged were added arithmetically. For mlMFA
calculation, the minimum and maximum fluorescent boundary of
the merged bin was set at the lowest and highest value of the
fluorescent boundary for that set of bins. The mlMFI of CcdB
mutants was calculated as explained above. In the case of
MFIseq, the mean fluorescent intensity of merged bins was
determined by making a new bin spanning the set of merged
bins. The MFIseq of CcdB mutants was then calculated as
explained above.

Depth, Accessibility and RankScore
Calculations
Depth was calculated using the server DEPTH (Chakravarty and
Varadarajan, 1999; Tan et al., 2011). Accessibility was calculated
using the program NACCESS (Hubbard SJ, 1993). In both cases,

the input co-ordinates were homodimeric CcdB (PDB ID 3VUB).
RankScore and MSseq are measures of mutational sensitivity in
E. coli. Values were obtained from Adkar et al. (Adkar et al.,
2012). Buried residues were those with <10% accessibility in
3VUB. Active-site residues were those with ΔASA>0. ΔASA
difference between the solvent accessible surface area of CcdB
residues in the free (3VUB) and GyrA14-bound forms (1X75)
respectively (Aghera et al., 2020).

Deep Mutational Scanning of SARS COV-2
Receptor Binding Domain
The deep mutational scanning data was taken from a recent
report (Starr et al., 2020) in which two independent libraries of
RBD were generated and sorted in four different bins based on
expression or binding to ACE-2. In the MFI of binding and
expression for individual mutants was reconstructed in that study
using a maximum likelihoodmethod using fitdistrplus R package.
The expression MFI [Sortseq (expr)] data was shared by the
authors in a repository (https://github.com/jbloomlab/SARS-
CoV-2-RBD_DMS). We reconstructed the binding MFI
[Sortseq (bind)] at an ACE-2 concentration of 100 pM
(TiteSeq_09). For Sortseq (bind) estimation we used the script
provided by the authors (https://github.com/jbloomlab/SARS-
CoV-2-RBD_DMS/blob/master/results/summary/compute_
expression_meanF.md). The authors used data from both single
and multiple mutants, together with a model to account for
epistatic effects to infer the MFI values for individual mutants.
We modified the script to change the input data required to
calculate Sortseq (bind). For both Sortseq (bind) and Sortseq
(expr), we analyzed only single mutant data to avoid any artifacts
that might arise from the epistatic model and took the average of
delta Sortseq MFI {log (Sortseq (WT))—log [Sortseq (mutant)]}
of mutants which had multiple barcodes. The Sortseq MFI values
of mutants were averaged between the two libraries and the
antilog was calculated for delta Sortseq MFI to analyse the ratio of
Sortseq (bind) or Sortseq (expr) of mutants with respect to WT.

Statistical Analysis
The correlations and p values for its significance were calculated
using the GraphPad Prism software 9.0.0 (* indicates p < 0.05, **
indicates p < 0.01, **** indicates p < 0.0001). The weighted
correlations were calculated using the weights function of R. For
the computation of weighted correlation, a weight of 1/(σ/µ) was
used on the mean values of replicates.

RESULTS

Yeast Surface Display of CcdB Mutants
Yeast surface display (YSD) has become an increasingly popular
tool for protein engineering and library screening applications
(Pepper et al., 2008). Aga2p mating adhesion receptor of
Saccharomyces cerevisiae is used as a fusion protein for yeast
surface display. For surface expression, we used a vector in which
CcdB is fused at the C-terminus of Aga2 (Sahoo et al., 2015). We
generated (Supplementary Figure S1) and individually
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characterized 30 CcdB variants on the yeast cell surface. Most
CcdB mutants had similar levels of expression to the WT protein
(Figure 1A). However, the mutants showed different amounts of
active protein as assayed by binding to the FLAG tagged GyrA14
compared to the WT protein (Figure 1B). Previously, we have
characterized the in vitro thermal stability and in vivo
solubility of several CcdB mutants (Tripathi et al., 2016).
The amounts of total and active protein were estimated
using antibodies against the HA-tag at the N-terminal of
the yeast surface displayed CcdB and the C-terminal FLAG
tag of GyrA14 respectively. The correlation coefficient (r)
between amount of total protein on the yeast cell surface
with in vivo solubility or Tm of the corresponding purified
protein were 0.31 and 0.70 respectively (Figures 2A,B). It is
unclear why mutants which have very low solubility in E. coli
are highly expressed on the yeast cell surface. It was previously
hypothesized that the protein folding quality control system in
yeast is not as effective as in mammalian systems, therefore
partially folded/molten globule/aggregated protein may exist
on the surface of yeast (Park et al., 2006). A correlation of r �
0.80 was found between the amount of active protein on the
yeast cell surface with its in vivo solubility determined in E. coli
(Figure 2C). We also found a better correlation (r � 0.90)
between amount of active CcdB protein on the yeast cell
surface and its in vitro thermal stability (Figure 2D),
compared to that between total CcdB protein on the yeast
cell surface and thermal stability.

Deep Sequencing Analysis of CcdB Library
and Mean Fluorescence Intensity
Calculation for CcdB Mutants
To extend these results, an SSM library of ccdB was expressed
on the yeast cell surface. Different populations based on extent
of binding to gyrase or cell surface expression were sorted. A
total of 32 different populations were sorted at two different
concentrations of GyrA14 (100 nM, 5 nM) as a function of
either surface expression level or the extent of binding to
GyrA14 (Supplementary Figure S2). The lower
concentration of GyrA14 was chosen to be around the KD

of CcdB-GyrA binding (Supplementary Figure S3), the higher
concentration was one where WT CcdB approaches saturation
in binding with GyrA14 on the yeast cell surface. We
hypothesized that at lower concentrations of GyrA14, the
binding on the yeast cell surface will be a function of both
stability as well as binding affinity. However, at saturating
concentration of GyrA14, the binding on the yeast cell
surface will largely be a function of amount of correctly
folded protein that in turn might be a function of protein
stability, rather than the Kd of the mutant(s). MFI was
calculated for each mutant as explained in the Methods
section. The MFI was calculated at different stringencies
(where the stringency refers to the sum of reads for a given
mutant over each gate of the histogram), namely 25, 50, 100,
150, and 200 reads. All mutants with a total read number less
than the stringency value were removed from the analysis. As
the stringency increased, the pairwise correlation between the
biological replicates increased (Supplementary Figure S4,
Supplementary Table S1). The data was analysed with a
stringency of 50 reads, since at higher stringencies,
correlation did not improve significantly, but the number of
mutants reduced. Reconstructed Binding and Expression MFI
from deep sequencing data are hereafter referred to as MFIseq
(bind) and MFIseq (expr) respectively.

Mean Fluorescence Intensity
Reconstruction and its Correlation With
Stability, Solubility and Residue Burial
A few published studies have described estimation of MFI values
using deep sequencing of sorted populations and are therefore
similar to our experimental strategy. However, the procedure for
MFI reconstruction in these reports was relatively complicated
compared to that used here (Sharon et al., 2012; Noderer et al.,
2014; Peterman and Levine, 2016; Cambray et al., 2018). In those
studies, the fractions of reads were calculated in each bin for all
the mutants and MFI (mlMFI) of mutants were calculated by
fitting the data to a maximum likelihood distribution of the
histogram. We found that if mutants are present in only one bin
(highly destabilized or nonsense mutants) then this method is
unable to perform the MFI calculation (Starr et al., 2020). For the
remaining mutants we found a good correlation between MFIseq
and mlMFI for binding at 5 and 100 nM GyrA14, and for
expression (Supplementary Figure S5). For mutants with over
50 reads, we could calculate the MFI of 11,153 mutants using the

FIGURE 1 | Comparison of the level of expression and binding of CcdB
mutants on the yeast cell surface. (A) The expression and (B) binding to
GyrA14 of individual mutants. Errors are calculated from two biological
replicates. Most mutants expressed at high levels, however, the amount
of active protein varied widely. A few mutants which showed a high level of
expression did not show any binding to GyrA14. In both panels, mutants are
arranged in order of increasing expression level.
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maximum likelihood method and 11,436 mutants using our
method. We also found that progressively reducing the
number of bins from eleven to six, does not significantly affect
the estimated MFI values, however a further reduction to four
bins results in a noticeable change in the estimated values using
either method (Supplementary Figure S6). A good correlation
was also found between the MFI of individually analysed mutants
and their corresponding MFIseq values, validating our approach
of MFI reconstruction (Supplementary Figure S7A, 7B).
Individually analysed mutants showed a good correlation
between the amount of active protein on the cell surface and
in vitro measured thermal stability of the purified protein.
Similarly, we also found a good correlation between MFIseq
(bind) of mutants inferred from deep sequencing, and thermal
stability as well as in vivo solubility for the selected mutants
(Supplementary Figure S7C, 7D).

For the exposed residues (>10% accessibility) (Supplementary
Figure S8), mutations did not affect the degree of surface
expression and binding to GyrA14 (Figures 3A,B). Expression
was also unaffected by mutations in the active-site residues

(identified from PDB ID:1X75) (Figure 3C, Supplementary
Figure S8). However, many buried site mutants showed very
low expression, possibly because of aggregation and degradation
inside cells or during export (Figure 3C). In the case of binding
for buried and active-site residues, a very high mutational
sensitivity was found (Figure 3D) similar to the previous
report of CcdB mutants in E. coli (Tripathi et al., 2016). We
also found a very high mutational sensitivity of binding for a few
non-interacting residues in the loop connecting beta strands S2
and S3 at both 5 and 100 nM GyrA14 concentration
(Supplementary Figure S9). The residues I24, I25 and D26 in
this loop are directly involved in interacting with Gyrase and
mutation at non-interacting residues (22, 23 and 27) in the loop
might restrict or alter the conformation of the loop, thus reducing
the affinity of CcdB mutants to GyrA14. However, there was no
effect on the expression of the mutants in this loop, indicating
that the mutant proteins are not destabilized (Supplementary
Figure S9). We did not find a high correlation between MFIseq
(bind) and either accessibility or depth, because many mutations
at both buried and active-site residues have high mutational

FIGURE 2 | Weighted correlations of E. coli in vivo solubility and in vitro thermal stability with the amount of total and active protein respectively, on the yeast cell
surface. For individual mutants, MFI’s of expression and binding were estimated by probing the HA tag on surface expressed protein and the FLAG tag on cell surface
bound GyrA14 respectively. For weighted correlation calculation, a weight of 1/(σ/µ) was used. Here σ and µ represent the standard deviation and mean values for each
point respectively. Weighted correlation of the total amount of protein (Expression MFI) displayed on the yeast cell surface with (A) in vivo solubility and (B) ΔTm [Tm
(mutant)-Tm (WT)] of CcdB mutants. Weighted correlation of the amount of active protein (Binding MFI) on the yeast cell surface with (C) E. coli in vivo solubility and (D)
ΔTm of CcdB mutants. A better correlation was observed between biophysical parameters with binding MFI rather than expression MFI. In the figure, the ΔTm of WT was
increased by 1°C to remove overlap with another point. Data for E. coli in vivo solubility and thermal stability was taken from Tripathi et al. (Tripathi et al., 2016). WT data is
shown in open circles. p values indicate the significance for non-zero slope values in all the correlations.
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sensitivity (Supplementary Table S2). The previously described
parameter RankScore, is a measure of mutant activity in E. coli
(Adkar et al., 2012) with high RankScore denoting lower activity.
We found a poor correlation between the MFIseq (bind) values of
CcdB mutants at both exposed non active-site as well as active-
site residues, and RankScore. In E. coli, most of the exposed non
active-site residues do not show any mutational sensitivity,
i.e., they have the same RankScore values as WT. However, in
the present case many such CcdB mutants show lower binding to
GyrA14 compared toWT. The loss of binding could be attributed
to the decrease in the affinity between CcdB and Gyrase, or
destabilization due to mutation. We defined a new parameter
MrMFI (mean residue MFI) which is the mean of the MFI values
of all the mutants at a certain position. MrMFI (expr) andMrMFI
(bind) at 100 nM GyrA14, show a good correlation with

RankScore (Supplementary Table S2). MrMFI (expr) also
showed good correlation with Depth which is a structural
measure of residue burial (Chakravarty and Varadarajan,
1999). However, in the case of binding at 5 nM, a weaker
correlation of MrMFI (bind) with the aforementioned
parameters was observed (Supplementary Table S2). In
previous studies, identification of the active-site residues solely
from the deep sequencing data was not very efficient (Adkar et al.,
2012; Bhasin and Varadarajan, 2021), this is presumably because
in vivo activity is often governed by threshold effects, and because
mutations at buried residues also affect activity. The current
methodology removes such drawbacks. We could distinguish
between buried and active-site residues by comparing the
MFIseq (bind) and MFIseq (expr). Most buried site residues
showed low values of both MFIseq (bind) and MFIseq (expr)

FIGURE 3 | Heatmap of normalized MFIseq values for CcdBmutants. MFIseq value of mutant was divided by the MFIseq value of WT to normalize it. (A)MFIseq (expr)
and (B)MFIseq (bind) at 100 nMGyrA14 for exposed non active-site residues. (C)MFIseq (expr) and (D)MFIseq (bind) for buried and active-site residues. Exposed, buried
(PDB ID:3VUB) and active-site (PDB ID:1X75) residues are segregated based on the crystal structure. Residues which had accessibility greater than 10% were
considered exposed, all remaining residues were considered buried, and active-site mutants in contact with GyrA14 were identified as explained the Methods
section. Blue to red colour represents increasing normalized MFIseq values, black colour shows theWT residue at the corresponding position. White colour indicates that
the mutant is not available. The buried site residues have very high mutational sensitivity both in case of expression and binding. The active-site residues showmutational
sensitivity only with respect to Gyrase binding. Information about the mutational sensitivity of expression and binding can be used to differentiate exposed, buried and
active-site residues.

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 8008198

Ahmed et al. Predicting Residue Burial, Mutant Stability

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


compared to WT. However, the active-site residues showed low
MFIseq (bind) but similar MFIseq (expr) compared to WT. We
found that the average MFIseq values of charged residues are a
good predictor to discriminate between buried and active-site
residues. For calculating MrMFIcharged of charged WT residues,
we only consider mutants with opposite charge. For some
mutants at buried positions, we found a very low
MrMFIcharged (expr) but the mutants were absent in
MrMFIcharged (bind). We found that such mutants had very
high reads, suggesting that the values of MrMFIcharged (expr)
are correct. We anticipated that such mutants lack binding and
are therefore present only in the bin which had a background level
of binding signal, the presence of mutant in only that gate led to
the removal of such mutants due to the stringency set for the
analysis. Hence, such mutants were assigned a MrMFIcharged
(bind) similar to other buried positions. MrMFIcharged had a
bimodal distribution (Supplementary Figure S10), so k-means
clustering was performed to identify the mean (µ) and standard
deviation (σ) of each distribution. The distributions were named
D1 (higher MrMFIcharged) and D2 (lower MrMFI charged). Buried
site residues were assigned to be those which have MrMFIcharged
(bind) and MFIseq (expr) less than the set threshold (µ+0.5*σ) for
distribution D2. Active-site residues were assigned as those which
had MrMFIcharged (bind) less than (µ+σ) of the D2 distribution
and MFIseq (expr) higher than (µ−2*σ) of distribution D1
(Figure 4). The accuracy, specificity and sensitivity of
prediction of exposed non active-site, buried and exposed
active-site residues are mentioned in Supplementary Table S3.
We also compared our prediction results derived from saturation
mutagenesis phenotypes with those of an in silico predictor,
PROF (Rost and Sander, 1994). For a residue to be classified
as buried by PROF, the relative solvent accessibility cut-off used
is < 12. We observed a slightly lower specificity and accuracy for
CcdB, and lower sensitivity in the case of RBD when predictions
were made using PROF (Supplementary Table S4), relative to
our predictions. We also examined the performance of PROF
with other proteins and found that the specificity of the
predictions was higher than 0.8 in all the cases except for
CcdB. However, the sensitivity of the predictions was lower
than 0.8 in all the cases except for CcdB, Gal4 and Ubiquitin.
The accuracy for the PROF prediction was 0.77 and 0.78 for CcdB
and RBD respectively, comparable but slightly lower than the
corresponding values of 0.92 and 0.8 for CcdB and RBD
respectively, from the saturation mutagenesis predictions in
this work.

Selection and Characterization of Putative
Stabilized Mutants From Deep Sequencing
Data
In the previous section, we discussed the correlation between
protein biophysical properties such as thermal stability and in
vivo solubility with either the amount of active protein or the ratio
of active protein to total protein on the yeast cell surface for a few
(30) mutants. However, most of these mutants were destabilized
with respect to the WT protein. To confirm whether this
correlation also holds for mutants that have stability similar or

greater thanWT, we selected a few CcdB mutants based on either
the MFIseq (bind) or MFIseq (ratio) [MFIseq (bind)/MFIseq (expr)]
for in vitro characterization of thermal stability. We examined the
average and standard deviation of expression for all mutants and
selected only those mutants based on MFIseq (ratio) which cross a
minimum cut-off (µ+0.5*σ) for MFIseq (expr) to remove the bias
created by mutants which have very low expression. No threshold
for expression was set for selection of mutants based on their
MFIseq (bind). No selection of the mutants was performed based
solely on the MFIseq (expr).

Six mutants were characterized using the criteria MFIseq (bind) at
5 nM GyrA14, none of them showed a higher Tm than WT
(Figure 5A); whereas two of the mutants selected on the basis of
MFIseq (ratio) showed a significantly higher Tm than WT
(Figure 5B). A subset of seven mutants was selected based on
MFIseq (bind) at 100 nM GyrA14, none of the mutants showed
higher stability than WT CcdB (Figure 5C). Ten mutants were
selected based on MFIseq (ratio) and characterized, four showed
higher stability, two mutants were similar to WT and the remaining
four were less stable than WT CcdB (Figure 5D). We therefore
hypothesize that if the stability of a mutant crosses a threshold then
its expression will not increase further. To confirm this hypothesis,
we measured the amount of active protein on the yeast cell surface
for seven individual mutants which had Tm’s ranging from 60°C to
70°C, and found that the expression and binding for these mutants
are similar to each other and to WT (Supplementary Figure S11).

Prediction of Thermal Stabilities of Putative
Destabilized Mutants
For destabilized mutants we observed a good correlation between
MFIseq (bind) and Tm of individual mutants (Supplementary
Figure S7D). Using this correlation, we next predicted the Tm of
each mutant for an additional set of (n � 28) previously described
CcdBmutants (Tripathi et al., 2016) based on their MFIseq (bind).
We found a good correlation (r � 0.82) between predicted and
in vitro measured Tm for this set of CcdB mutants as well
(Supplementary Figure S12A). This now allows us to identify
putative destabilized mutants and accurately predict the extent of
destabilization for all such mutants in the CcdB YSD library. We
also predicted the thermal stability of CcdB mutants using the in
silico predictor, HoTMuSiCv1.0 (Pucci et al., 2020), however, we
did not find a good correlation between measured and predicted
Tm (Supplementary Figure S12B). It has been shown that
in vitro protein thermal stability and free energy of unfolding
are correlated (Chen et al., 2000; Prajapati et al., 2007; Tripathi
et al., 2016). We therefore predicted the free energy of unfolding
for CcdB mutants using SDM (Pandurangan et al., 2017), mCSM
(Pires et al., 2014b), PoPMuSiC (Dehouck et al., 2011), DynaMut
(Rodrigues et al., 2018), DUET (Pires et al., 2014a),
MAESTROweb (Laimer et al., 2016), DeepDDG (Cao et al.,
2019), CUPSAT (Parthiban et al., 2006), PremPS (Chen et al.,
2020) and INPS-MD (Savojardo et al., 2016). We found moderate
correlations, with DeepDDG performing the best (r � 0.59), but
still poorer compared to our prediction from YSD data (r � 0.82).
For a more detailed comparison we analysed the predictions of
stability by DeepDDG, since this showed the highest correlation

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 8008199

Ahmed et al. Predicting Residue Burial, Mutant Stability

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


with measured stability of individual mutants at non active-site
residues.We excluded residues 21, 22, 23 and 27 as these positions
behaved like active-site residues. We found that trends for ΔΔG
predicted by DeepDDG for exposed non active-site residues are
similar to those obtained from MFIseq (bind) (Figures 6A,B).
However, we observed some mutant specific differences at
residues 8, 16, 50, 53 and 96. Mutations at residues 50 and 96
have highly deleterious effects which reduced GyrA14 binding to
yeast surface displayed protein, these are only partially predicted by
DeepDDG. In the case of charged and polar mutations at residue 8,
16 and 53 we did not observe a reduction in binding, but the
software predicted them to be destabilizing. In the case of buried
positions, we foundmutation specific effects at 35, 52 and 94 where
DeepDDG predicted changes were significantly smaller than the
experimentally observed ones. We also found that most of the
phenylalanine, tryptophan and arginine mutations were highly
destabilizing and themutants did not bind to GyrA14, however the
software gave a lower stability penalty for these substitutions
(Figures 6C,D). Our MFI based measurements suggested
greater destabilization for several mutants relative to DeepDDG
prediction. While the overall trends were similar, as discussed
above, there are several differences between MFI based and
DeepDDG based stability predictions.

Deep Mutational Scanning of SARS-CoV-2
Receptor Binding Domain
To examine the generality of our approach, we also analyzed
recently reported deep mutational scanning data of the SARS-
CoV-2 receptor binding domain (Starr et al., 2020). In this study

two separate libraries were generated and individually sorted
based on expression and binding to ACE-2. The binding [Sortseq
(bind)] or expression [Sortseq (expr]) MFIs relative to WT for
barcoded mutants were calculated from the deposited NGS data
as explained in the Methods section. Additionally, we analyzed
binding at only one concentration of ACE-2 (100 pM,
TiteSeq_09) at which the binding started to saturate. Buried
residues were those with <10% side chain accessibility in chain
C of PDB ID 7KMH (Jones B. E. et al., 2020). ACE-2 binding
(active-site) residues were assigned as those contacting ACE-2
(Malladi et al., 2021). To identify the active-site and buried
residues from Sortseq data, we calculated the MrMFIcharged for
each position. Similar to CcdB, we observed a bimodal
distribution for both MrMFIcharged (bind) and MrMFIcharged
(expr) (Supplementary Figure S13) and k-means and
standard deviation were calculated for both the distribution
D1 (higher MrMFIcharged) and D2 (lower MrMFIcharged). As
described above for CcdB, buried residues were identified as
those which had MrMFIcharged (bind) and MrMFIcharged (expr)
less than the set threshold (µ+0.5*σ) for distribution D2. The
active-site positions were identified as those which had
MrMFIcharged (bind) lower than the set threshold (µ+σ) for
population D2 and MrMFIcharged (expr) values higher then
(µ-2*σ) for population D1. We accurately identified most of
the buried residues, however there were some false positive
and false negative predictions relative to the crystal structure
information (Figure 7). We found 21 positions to be false
negative buried positions. We categorized these false negatives
into two categories, namely, glycine and the side chains which are
pointing towards the surface. The accessibility calculated by

FIGURE 4 | Identification of buried and active-site residues from MrMFIcharged (bind) and MrMFIcharged (expr). Side chain accessibilities in dimeric CcdB (PDB:
3VUB), darker to lighter shade indicate increasing accessibility, accessibility is reported as log accessibility. The mutants were clustered into two bins based on the
distribution of MrMFIcharged and k-means and standard deviations were calculated for both distributions. The distributions were named D1 (higher MrMFIcharged) and D2
(lower MrMFIcharged). Residues which had MrMFIcharged (binding) and MrMFIcharged (expr) lower than (µ+0.5*σ) of distribution D2 were characterized as buried. The
false negatives were Y6, D19, Q21, S22, S70, V75 and G77, the polar side chains of these residues are pointing towards the surface. Active-site residues were identified
as those in contact with GyyrA14 (PDB ID 1X75). Residues which had MrMFIcharged (binding) less than (µ+σ) of D2 distribution and MrMFIcharged (expr) higher than (µ-2*σ)
of distribution D1 were predicted as active-site. We obtained a few putative false positives. However, these residues are likely involved in functional aspects of activity that
cannot be inferred from the CcdB:GyrA14 crystal structure. The same residues were seen to be important for CcdB activity in vivo in E. coli (Tripathi et al., 2016). Some
positions could not be categorized due to lack of reads, such positions are indicated with an ‘X’. Positions indicated with ‘*’ are the ones where MrMFIcharged (expr) was
observed and the mutants had high read counts but the mutants were absent in MrMFIcharged (bind), such positions were assigned MrMFIcharged (bind) values similar to
other buried positions.
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DEPTH server for glycine was zero and we therefore expected
glycine to fall into the false negative buried category. Thirteen
positions out of twenty-one false negative were glycine. Another
six positions, 336, 348, 361, 443 and 480 had their side chains
pointing towards the protein surface. We also found similar false
negative buried residues in CcdB where the side chain hydrophilic
group was pointing towards the protein surface. Position 363 and
365 in RBD had accessibility <10% and were pointing towards the
core of the protein in the PDB (7KMH) used to calculate
accessibility. However, we found that these positions have high
accessibility (>30%) in another structure (PDB ID 7D2Z). All the
available RBD structures are in complex with other molecules,
this might be responsible for variation in the accessibility of
residues in different RBD structures. We found 17 false positive
buried residue predictions, seven of them were aromatic, seven
are charged or polar, two are prolines and one is an aliphatic
residue. These positions have both reduced expression and
binding for charged residue substitutions (Supplementary
Figure S14A, 14D) similar to the buried residues
(Supplementary Figure S14B, 14E). The specificity, sensitivity
and accuracy of prediction is mentioned in Supplementary Table
S3. Active site residues were identified with very high accuracy
(Supplementary Table S3), though there were a few false

negative and false positive predictions. Additionally, we found
several positions which had Sortseq (expr) like WT, however,
they had very low Sortseq (bind) (Supplementary Figure S14A,
14D). We hypothesize that these positions are also assisting in the
maintenance of proper RBM conformation and enabling its
binding to ACE-2. Residues 447, 448, 473 and 476 which gave
false positive results, 447 and 476 are part of the receptor binding
motif (RBM) and contain glycine in a conformation which is
available only for glycine. Hence mutation to a non-Gly residue
will likely disrupt the conformation of the RBM thus decreasing
binding to ACE-2. Mutations at positions 446, 453, 493 and 498
gave false negative results. Of these false negative positions, 446 is
again glycine. We found that the Arg mutants at N493 and N498
positions have very little effect on expression and binding
(Supplementary Figure S14C, 14F). We hypothesized that
these positions may not have the most optimal WT residue, or
they may show no mutational penalty for binding to ACE-2. A
recent report showed that the affinity of Q498R to ACE-2 is
higher than WT RBD (Xue et al., 2020) and was enriched as
double mutant Q498R/N501Y when selection was performed for
RBD mutants having high affinity towards ACE-2 (Zahradník
et al., 2021). It has also been reported that when chimeric virus
evolved in the presence of neutralizing antibodies C121 and C141,

FIGURE 5 | ΔTm of putative stabilized CcdB mutants. Mutants were identified from (A)MFIseq (bind) at 5 nM GyrA14, (B)MFIseq (ratio) at 5 nM GyrA14, (C)MFIseq
(bind) at 100 nM GyrA14, (D) MFIseq (ratio) at 100 nM GyrA14. The mutants were randomly selected from a subset of forty mutants which showed the highest MFIseq
(bind) or the highest MFIseq (ratio) and had MFIseq (expr) > 6,672.
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this enriched for the Q493R mutation. The mutant virus grows to
high PFU titers similar to WT, and infectivity is also inhibited by
a chimeric ACE-2 analog, similar to WT (Weisblum et al., 2020).
The specificity, sensitivity and accuracy of prediction is
mentioned in Supplementary Table S3.

DISCUSSION

With the advancement of mutagenesis and directed evolution
methodologies, proteins with modified traits and function can be
developed in a relatively short duration of time (Chen and

FIGURE 6 | Comparison of stabilities estimated by DeepDDG and yeast surface display. Heat maps for (A,C) MFIseq (bind) normalized to WT and (B,D) ΔΔG
predicted by DeepDDG. Residue positions or specific amino acid mutations showing significantly different predicted stabilities by the two methods are highlighted by a
box. Blue to red colour corresponds to increasing stability.

FIGURE 7 | Prediction of buried and active-site positions in SARS-CoV-2 RBD from Sortseq data. Buried residues were identified from chain C of PDB ID 7KMH,
residues which had <10% side chain accessibility were categorized as buried. The accessibility and depth was calculated using DEPTH server (Tan et al., 2011). Active-
site residues were identified from PDB ID 6M0J as explained earlier (Malladi et al., 2021). Criteria used to predict buried and active-site positions from MFI data were
identical to those used for CcdB. Positions which did not haveMrMFI data or could not be assigned to either buried or active-site categories are highlightedwith “X”.
Accessibility calculated by DEPTH server for glycine is zero and these are marked with a “*”.
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Arnold, 1991; Winter et al., 1994; Bornscheuer et al., 2019). E. coli
remains an expression host of choice for many proteins and high
level, soluble E. coli expression is a desirable attribute. When
eukaryotic or unstable prokaryotic proteins are overexpressed in
bacteria, they often tend to form insoluble aggregates called
inclusion bodies (IB). Formation of IBs often results in low
yields of purified soluble protein. Designing improved variants
of a protein by increasing half-life, stability and activity is an
ongoing requirement of most pharmaceutical and biotechnology
industries. However, a reliable, high-throughput, efficient and
rapid method is required for solubility and stability analysis of
engineered proteins. Previously, several high-throughput
methods to select for soluble expression have been developed
based on fusion to a reporter protein. These rely on the reporter
activity, which is perturbed if an aggregation prone protein is
fused (Maxwell et al., 1999; Waldo et al., 1999; Wigley et al., 2001;
Fisher, 2006). These methods can be used to isolate protein
variants with enhanced solubility but cannot reveal if the fused
protein is properly folded. In some cases, such unstable proteins
may also form soluble aggregates (Tripathi et al., 2016). Since
many of these reporter screens employ cytoplasmic expression
and use bacterial hosts, disulphide rich or glycosylated proteins,
or those binding to complex ligands cannot be studied. Yeast
surface display coupled to FACS, has been widely used to evolve
such targets. Typically, populations are sorted for multiple rounds
to enrich for stable binders to a target of interest (Kieke et al.,
1999; Esteban and Zhao, 2004; Kim et al., 2006; Traxlmayr and
Obinger, 2012). While this approach readily selects for high
affinity binders, selecting for stable proteins is more difficult.
In some cases, this methodology has also been used to isolate
stable variants of proteins (Pepper et al., 2008) and a good
correlation was observed between surface expression and
improved biophysical parameters. However, other studies in
different systems did not find such a correlation (Park et al.,
2006; Piatesi et al., 2006).

In the present work we utilize YSD to measure the amount of
total protein as well as total active protein displayed on the yeast
cell surface. A good correlation was found between the amount of
active CcdB mutant on the yeast surface and corresponding in
vivo solubility in E. coli (r � 0.85) or Tm (r � 0.80). A recent report
also suggests that the amount of active protein on the yeast cell
surface can be used as a criterion to isolate stable mutants
(Traxlmayr and Shusta, 2017). In the present study, no
correlation was found between the amount of total protein on
the yeast cell surface and the biophysical properties of mutants. A
few mutants which have very low solubility in E. coli showed very
high expression, but there was a negligible amount of active
protein on the yeast surface. It has been previously suggested that
the quality control system in yeast is not able to discriminate these
mutants from properly folded ones or alternatively that the folded
conformation is maintained by chaperones in the ER (Park et al.,
2006). Once these mutants are exported to the cell surface they
may start to unfold. This could be one reason why some groups
including ours did not find a good correlation of surface
expression with the stability or solubility of these proteins. In
previous studies (Shusta et al., 1999), a very limited number of
proteins were used for surface expression studies, it is possible

that in this small number, mutants which had high surface
expression or secretion but lower stability than WT were not
observed.

Yeast surface display coupled to FACS typically requires
multiple rounds of sorting to enrich variants with desired
activity and phenotype. Here, we have performed a single
round of sorting and developed a rapid, uncomplicated
procedure of estimating MFI’s of individual mutants of CcdB
combining FACS and deep sequencing. This MFIseq was shown to
correlate well with the corresponding experimentally measured
MFIs for several individual mutants. The MFIseq was used to
generate the mutational landscape of expression and binding of a
mutant library. We showed that such data can be used to
accurately discriminate between buried, exposed non active-
site and exposed active-site residues both for CcdB and an
unrelated protein, RBD of the spike protein of SARS-CoV-2.
Highly destabilizing charged mutations in the core of the protein
decreased both expression and binding, while the active-site
residues showed reduction in binding alone for charged
mutations. Relative to an earlier study which assayed in vivo
activity in E. coli (Adkar et al., 2012), the present methodology is
better able to identify and distinguish between the two categories
of mutationally sensitive residues, namely buried and exposed,
active-site residues. Identification of active-site residues of
interacting partners through charged mutation scanning
provides a better alternative to alanine and cysteine scanning
mutagenesis. In general, mutations that affect total activity in vivo
can do so by affecting specific activity without changing the
amount of folded protein, decrease the amount of folded protein
without affecting specific activity or a combination of the above.
The present analysis distinguishes between the above possibilities,
and is therefore able to distinguish buried from exposed, active-
site positions. This is useful for applications that attempt to use
saturation mutagenesis data for protein model discrimination
and structure prediction (Khare et al., 2019; Jones E. M. et al.,
2020) as well as interpreting clinical data on disease causing
mutations (Findlay et al., 2018; Livesey and Marsh, 2020).

MFIseq (bind) was also used to predict the Tm of CcdB
mutants. We found a good correlation between predicted and
measured ΔTm for a subset of CcdB mutants. We also compared
the accuracy of in silico approaches used to predict the stability of
mutants and found that these predictors had lower accuracy
relative to our approach. We used experimental stability
measurements for a small number of destabilized mutations,
combined with MFIseq measurement to predict stabilities of all
destabilized mutants in the saturation mutagenesis library. We
could readily identify destabilized mutants of CcdB, however, the
recovery of mutants more stable than WT was lower, but still
significant, considering the rarity of such mutations. This is likely
due to the possibility that if the stability of the protein crosses a
threshold, additional increments in stability do not result in
enhanced expression or binding.

A limitation of the present approach is that it requires an
epitope tagged or fluorescently labelled conformation specific
binding partner. Another limitation could be differential
relative stability of proteins upon yeast cell surface display
compared to expression in the native host and/or
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intracellular expression. For glycosylated proteins, the stability
of mutants may also be altered because of hyper glycosylation of
protein on the yeast cell surface compared to proteins expressed
in mammalian systems or prokaryotic systems where
glycosylation is absent. The presence of glycosylation may
also affect the binding to a cognate partner which in turn
may give rise to false results. This does not appear to be the
case for the SARS-CoV-2 RBD which contains two glycans at
residues 331 and 343, but may be an issue for proteins with
multiple glycosylation sites. We are examining these
possibilities in ongoing studies. Despite these caveats, the
present study suggests that the proposed methodology can
accurately distinguish buried from active-site residues,
quantitatively estimate thermal stabilities of destabilized
mutants in large libraries, and also be used with moderate
accuracy to identify stabilized mutants.
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