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Phase separation of intrinsically disordered proteins (IDPs) is a phenomenon

associated with many essential cellular processes, but a robust method to

compute the binodal from molecular dynamics simulations of IDPs modeled at

the all-atom level in explicit solvent is still elusive, due to the difficulty in

preparing a suitable initial dense configuration and in achieving phase

equilibration. Here we present SpiDec as such a method, based on

spontaneous phase separation via spinodal decomposition that produces a

dense slab when the system is initiated at a homogeneous, low density. After

illustrating the method on four model systems, we apply SpiDec to a

tetrapeptide modeled at the all-atom level and solvated in TIP3P water. The

concentrations in the dense and dilute phases agree qualitatively with

experimental results and point to binodals as a sensitive property for force-

field parameterization. SpiDec may prove useful for the accurate determination

of the phase equilibrium of IDPs.
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Introduction

Biomolecular condensates formed via liquid-liquid phase separation drive much of

biology, but accurate computation of the binodal, representing the equilibrium

concentrations in the bulk and dense phases as a function of temperature, based on

atomistic modeling of the components presents a significant challenge. A related issue is

the mechanism leading to phase separation. Theories predict that, depending on the initial
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densities or compositions, phase separation occurs by two

mechanisms (Figure 1). Inside the spinodal, the system is

thermodynamically unstable and phase separation occurs

spontaneously, in a process known as spinodal decomposition.

This process is initiated by large-scale density fluctuations, leading

to interconnected domains. Further condensation then leads to

separated condensates. Between the binodal and spinodal, the

system is metastable, and phase separation occurs by nucleation

and growth. This mechanism is initiated by local density

fluctuations, leading to the generation of nuclei. Further growth

then produces stable condensates. The dividing line between these

two mechanisms, i.e., the spinodal, is known for a number of

theoretical models (Figure 1) and has been measured for both

structured and disordered proteins (Thomson et al., 1987; Bracha

et al., 2018). Both spinodal decomposition and nucleation have

been observed for the formation of biomolecular condensates

(Bracha et al., 2018; Kasinsky et al., 2021). It has been

suggested that cells may want to keep component

concentrations to a minimum required for phase separation,

i.e., crossing the low-concentration branch of the binodal just

enough into the left metastable region, and thus nucleation and

growth is the favored mechanism (Zeng et al., 2020). However, in

most theoretical models (Figure 1), the spinodal covers the bulk of

the area under the binodal, and therefore random initial

preparations have much higher chances for phase separation by

spinodal decomposition than by nucleation and growth. Indeed,

phase separation is observed instantaneously in many in vitro

preparations; the rapid speed is consistent with spinodal

decomposition.

In computer simulations of model systems, depending on

the initial density, spinodal decomposition produces a variety

of morphologies for the dense phase, including sphere,

cylinder, slab, hollow cylinder, and hollow sphere (Binder

et al., 2012; Díaz-Herrera et al., 2022). The morphologies are a

reflection of the finite system size, where surface energy

associated with interfacial tension becomes nonnegligible

compared to the free energy within the dense phase. In

essence, each shape optimizes the balance between these

two terms of free energy at the given density. The slab

morphology is of special interest because it represents the

macroscopic form of the dense phase. More importantly, for

this paper, the slab morphology is the basis of the method for

computing binodals to be presented below.

Over the years, a variety of methods have been developed to

compute the binodals of coarse-grained model systems (for a

brief review and illustration, see Mazarakos et al., 2023). One of

the earliest methods is based on preparing a dense slab at the

center of an otherwise empty simulation box (Rao and Levesque,

1976). Molecular dynamics (MD) simulations then allow the

dense and bulk phases to reach equilibration, and the densities of

the two phases are then evaluated to build the binodal. This

classical slab method has now been applied to a variety of coarse-

grained models of biomolecular condensates, from spherical

particles and homopolymers (as crude models of structured

proteins and IDPs) (Mazarakos and Zhou, 2021; Mazarakos

and Zhou, 2022) to residue-level models of IDPs (Das et al.,

2018; Dignon et al., 2018; Statt et al., 2020) to multi-bead-per-

residue models of dipeptides (Tang et al., 2021). An exciting

recent development is the migration of this method to

simulations of all-atom models of IDPs in explicit solvent, by

first carrying out full simulations at the coarse-grained level and

then mapping to atomistic systems (Zheng et al., 2020; Welsh

et al., 2022). Still, the mapping is not a trivial task and, after

mapping, simulations at the all-atom level may fail to allow

exchange of protein molecules between the phases, let alone

reaching phase equilibrium (Zheng et al., 2020). In comparison,

Gibbs ensemble simulations (Panagiotopoulos, 1987), while

proven useful for providing insights on biomolecular

condensates (Nguemaha and Zhou, 2018; Ghosh et al., 2019)

and complex coacervates (Lytle et al., 2016; Li et al., 2018), are

more restrictive, in particular due to the difficulty in inserting a

polymer chain into a dense solution. Recent implementation by

field-theoretic simulations has widened the applicability of the

Gibbs ensemble (McCarty et al., 2019), but application to all-

atom models seems out of reach at present. Lastly the FMAP

method, based on using the fast Fourier transform to evaluate

intermolecular interaction energies, has been developed to

calculate the binodals of structured proteins, but not IDPs,

FIGURE 1
Binodals and spinodals of two model systems. (A) Van der
Waals fluid, which satisfies the following equation of state:
(P + 9

8kBTc
ρ2

ρc
)(1 − ρ

3ρc
) � ρkBT , where P, ρ, T denote the pressure,

density, and temperature, Tc and ρc denote the critical
temperature and critical density, and kB is the Boltzmann constant.
(B) Symmetric polymer blend that follows the Flory-Huggins
theory for the Helmholtz free energy:
F

MkBT
� ϕ

L ln ϕ + 1−ϕ
L ln(1 − ϕ) + χϕ(1 − ϕ), where M is the total number

of polymer chains, L is the number of beads per chain, ϕ is themole
fraction of one polymer species in the binary blend, and χ
measures the energy gap between inter- and intra-species
interactions. Inside the spinodal region, the system is unstable and
phase separates by spinodal decomposition; between the binodal
and spinodal, the system is metastable and phase separates by
nucleation and growth. Note that there has been some
controversy regarding the location of the spinodal in computer
simulations (Binder et al., 2012; Díaz-Herrera et al., 2022).
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modeled at the all-atom level in implicit solvent (Qin and Zhou,

2016).

Here we present a method that we dub SpiDec, as an efficient

alternative to the classical slab method. Instead of an initial dense

slab, we start the system at a homogeneous, low density inside the

spinodal. Spinodal decomposition then quickly brings the system

to a slab morphology. We demonstrate this method both on four

model systems and on a phase-separating tetrapeptide (Abbas

et al., 2021) at the all-atom level in explicit solvent.

Computational methods

Model systems

We tested the SpiDec method onmodel systems composed of

Lennard-Jones (LJ) particles, LJ chains, hydrophobic-hydrophilic

(HP) chains, and patchy particles. The interaction potentials for

LJ particles and LJ chains are the same as in our previous studies

(Mazarakos and Zhou, 2021; Mazarakos and Zhou, 2022).

Specifically, the LJ particles interact via the LJ potential,

ULJ(r) � 4ε[(σ
r
)12

− (σ
r
)6] (1)

but with a cutoff imposed at rc � 3σ, so the actual potential

function is shifted to

US
LJ(r) � {ULJ(r) − ULJ(rc), r< rc

0, r≥ rc
(2)

The LJ chains consist of 10 beads. The beads interact via a

force-shifted LJ potential:

UFS
LJ(r) �

⎧⎨⎩ ULJ(r) − ULJ(rc) − dULJ(r)
dr

∣∣∣∣∣∣∣r�rc(r − rc), r< rc

0, r≥ rc

(3)

with a cutoff rc � 6σ. This potential is not applied to adjacent

beads in a chain; instead they are connected by harmonic bonds

with an equilibrium length of σ and a spring constant of

75,000 ε/σ2. Some simulations were also carried out for the LJ

chains with the spring constant reduced to 750 ε/σ2 and 75 ε/σ2.

The HP chains are very much like the LJ chains, except that there

are two kinds of beads, H and P (Statt et al., 2020). Each chain has

two P beads, at positions 1 and 5; the rest are H beads. Some

simulations were also carried out with the two P beads at

positions 5 and 6. H beads interact with each other via the

above force-shifted LJ potential, whereas all other pairwise

interactions (H-P and P-P) were the purely repulsive Weeks-

Chandler-Anderson (WCA) potential (Weeks et al., 1971),

UWCA(r) � {ULJ(r) + ε, r< 21/6σ
0, r≥ 21/6σ

(4)

The interaction potential for patchy particles was the same as

in our previous studies (Nguemaha and Zhou, 2018; Ghosh et al.,

2019). Each particle has four equal-sized circular patches with

centers located at the vertices of a tetrahedron. Each patch has a

spanning polar angle of θs, which is set to a value (cos θs = 0.35)

so the patches cover a fraction of 0.7 of the particle surface. The

particles have a diameter σ and interact via the potential (Kern

and Frenkel, 2003).

UPP(r,Ω1,Ω2) �
⎧⎪⎪⎨⎪⎪⎩

∞, r< σ
−ε∑

αβ

fαβ(r̂,Ω1,Ω2), σ ≤ r< σ + λ

0, r≥ σ + λ

(5)

where the range of interaction, λ, is fixed to 0.5σ; r̂ denotes the

unit vector along the inter-particle displacement r (pointing from

particle 1 to particle 2); Ωi denotes the orientation of particle i;

and fαβ(r̂,Ω1,Ω2) is 1 if patch α of particle 1 is “bonded” with

patch β of particle 2, and 0 otherwise. The bonding condition is

satisfied if the inter-particle vector falls within both patches,

i.e., r̂ · n1α > cos θs and −r̂ · n2β > cos θs, where niα is the unit

vector from the center of particle i to the center of patch α on

particle i. The orientation of each patchy particle was specified by

the unit vectors along the three axes of a Cartesian coordinate

system fixed to the particle.

Initialization for simulations

We studied LJ particles by both MD and Monte-Carlo (MC)

simulations, LJ and HP chains by MD simulations, and patchy

particles by MC simulation. The simulation boxes were

rectangular, with side length Lx in two directions and Lz (≥Lx)
in the third direction. To prepare for MD simulations, particles

or chains were randomly inserted into the simulation box at

density ρ0. For MC simulations, the particles were initially placed

on a cubic lattice spanning the simulation box, again at an initial

density ρ0. The values of ρ0 are given below. The periodic

boundary condition was applied during the simulations.

Ranges in initial density for various dense-
phase morphologies

We scanned the initial density to identify the dense-phase

morphologies of a given system, with the temperature at the

lowest value (0.65, 1.70, 1.05, and 0.61 for LJ particles, LJ chains,

HP chains, and patchy particles, respectively). The initial density

was scanned up to 0.8, in two series. In the first series, the particle

numbers were fixed (1,000 for LJ particles and LJ and HP chains;

750 for patchy particles); the simulation boxes were cubic, and

the side lengths were varied to span the range of initial densities,

which was from 0.05 to 0.8 at increments of 0.05.
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In the second series, done for LJ particles and LJ chains, Lx
was fixed (10 for LJ particles and 13 for LJ chains), and Lz/Lx was

varied from 1 to 5 in increments of 0.25 or 0.5. The initial

densities were 0.01–0.12 in increments of 0.01, 0.125 to 0.3 in

increments of 0.025, 0.3 to 0.8 (for LJ particles) or 0.7 (for LJ

chains) in increments of 0.05. The corresponding particle (or

bead) numbers ranged from 10 to 4,000 for LJ particles and from

20 to 7,690 for LJ chains. For a given Lz/Lx, at increasing initial

densities, spinodal decomposition or lack thereof results in seven

distinct cases: a low-density homogenous phase, five dense-phase

morphologies, and a high-density homogenous phase. For the

boundary between the case of a low-density homogenous phase

and the case of a dense phase with a spherical morphology, we

took the midpoint between the highest initial density that

resulted in a low-density homogenous phase and the lowest

initial density that resulted in a dense phase with a spherical

morphology. Sometimes it was uncertain whether to identify the

status resulted from an intermediate initial density as a low-

density homogenous phase or a dense phase with a spherical

morphology; we then assigned that initial density as the

boundary value. A similar procedure was followed to identify

the next boundary, i.e., between a dense phase with a spherical

morphology and a dense phase with a cylindrical morphology.

The process continued until the last boundary, i.e., between a

dense phase with a hollow sphere and a high-density

homogenous phase, was determined.

Molecular dynamics simulations for LJ
particles and LJ and HP chains

These simulations were carried out using the HOOMD-blue

package (version 2.5.0) on GPUs (Glaser et al., 2015). All the

particles or beads have the same diameter σ, which sets the unit

of lengths, and the same mass m. The units for number density,

temperature, interfacial tension, and time are σ−3, ε/kB, ε/σ2, and
mσ2/ε

√
≡ τ, respectively. Below we will often leave out these units

in order to reduce clutter. The MD simulations were carried out at

constant particle (or bead) number (N), volume, and temperature.

Temperature was regulated by the Langevin thermostat with a

friction coefficient of 0.1 m/τ. The time step was 0.005 τ for

particle systems and 0.001 τ for chain systems. For identifying

the dense-phase morphologies of a given system, the initial densities

were scanned over a range as described above. The presentation

below applies to simulations where a slab morphology was formed

and used to calculate binodals and interfacial tension.

The initial densities were 0.3 for LJ particles and 0.25 for LJ and

HP chains. Separate simulations were carried out over a range of

temperatures. To investigate the effects of system size and Lz/Lx
ratio, we chose N in the range of 1,000–10,000, and Lz/Lx from

1.25 to 33.3 for LJ particles, from 1.16 to 18.2 for LJ chains, and 1.5 to

5 for HP chains. For LJ particles, the simulation length was

10 million steps, but was extended to 100 or 200 million steps

whenmultiple slabs took a long time to fuse into a single slab (atN ≥
6,000 and Lz/Lx ≥ 20). The same was true for LJ chains, except that

the longer simulations were 100–300 million steps and applied to

more cases (N as low as 4,000 and Lz/Lx as low as 2). The simulation

length was 100 million steps for HP chains. The time interval for

saving snapshots was 1,000 time steps for simulations with a total

length of 10 million steps and 10,000 time steps for longer

simulations.

Monte Carlo simulations

For patchy particles, the initial density was 0.36, N ranged from

250 to 1,250, and Lz/Lxwas 1.5, 3, and 5.MC simulations were run for

2 million steps, and up to 5 million steps for larger N and elongated

simulation boxes. Snapshots were saved for analysis once every

2000MC steps. Each MC step consisted of either a displacement

or a rotation (with equal probability) for every particle. The

displacement was randomly selected inside a cube centered at the

original position and with a side length of 0.09 σ. The rotation was

realized by picking an arbitrary new direction for the z axis of the

particle-fixed coordinate systemand rotating the line of nodes, defined

as the cross product of the old and new z axes, by an angle to become

the new x axis of the particle-fixed coordinate system (Nguemaha and

Zhou, 2018). The latter was arbitrarily chosen between −0.05 and

0.05 radians. AnMC simulation was also carried out for LJ particles at

ρ0 = 0.3, N = 1,000, and Lz/Lx = 3 for 3 million steps (saving every

100MC steps) to determine the binodal and interfacial tension, for

comparison with the results obtained byMD simulations. In this case

no rotation was included in the MC step.

Time for phase separation via spinodal
decomposition

In simulations where the dense phase had a slab morphology,

wemonitored the time that it took for slabs to emerge from spinodal

decomposition. In each saved snapshot, the density profile along the

normal direction of the slabs (typically the z direction) was

calculated in slices with a default thickness of 1σ and the

maximum density was collected as a function of simulation time.

After slabs were formed, the maximum densities reached a plateau.

We took the first time that the maximum density exceeded the

plateau value as the time to phase separate, denoted by τPS. In some

cases the default thickness of the slices for density calculation was

adjusted so the resulting τPS was close to the value obtained by visual

inspection, in which we looked for slabs with relatively flat surfaces.

When multiple slabs were formed, we also monitored the

time, τSS, that it took for the slabs to fuse one by one, finally into

a single slab. The number of slabs in each saved snapshot after

τPS was determined by the following procedure. Again, the

density profile was calculated in slices of thickness 1σ. Each slice

was then labeled as “H” (for high density) if its density exceeded
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a high cutoff ρH, as “L” (for low density) if its density dipped

below a low cutoff ρL, or filtered out if its density fell between ρH
and ρL. In this way the density profile was converted to a

sequence like HHHHLLL. . .HHH. Each transition from H to L

or L to H in this sequence defined an interface. The number of

slabs was 1/2 of the number of interfaces. The first time that the

number of slabs reduced to 1 was τSS. The high cutoff density

was in the range of 0.5–0.6 whereas the low cutoff density was in

the range of 0.1–0.4; their precise values were selected for each

system so the resulting τSS was close to the value obtained by

visual inspection, in which we looked for a single slab in the

entire simulation box.

Densities in the dense and bulk phases

In all the simulations where a slab morphology was formed

and used to calculate equilibrium properties, averages were taken

over the second half of the simulations. However, when τSS
occurred in the second half of a simulation, as in a few cases for LJ

chains and more cases for patchy particles with large N and long

boxes, averages were only taken from τSS to the end of the

simulation, to ensure that the simulation box contained only a

single slab in this calculations.

The density profile, ρ(z), along the z direction was calculated

by dividing the simulation box into slices of thickness 0.1σ along

z. In each snapshot, the periodic system was translated to have

the center of mass located at the center of the simulation box. The

total number of particles (or beads) in each slice was then divided

by its volume to yield an estimate for the density at that particular

z in that snapshot. This estimate was then averaged over all the

snapshots saved for analysis to obtain ρ(z). In cases where the

slab was oriented with its normal along x or y (occurring only

when Lz/Lx was close to 1), the density profile was calculated

along that direction.

To obtain the densities, ρd and ρb, in the dense and bulk

phases, we fit the density profile in the positive z range to the

following function:

ρ(z) � ρd + ρb
2

− ρd − ρb
2

tanh [(z − z0)/w] (6)

where z0 represents the midpoint of the interface between the

two phases, and w is a measure of the width of the interface.

Critical temperature

The binodal, comprising bulk- and dense-phase densities as a

function of temperature, was fit to the following equations

1
2
(ρb + ρd) � ρc + A(T − Tc) (7a)
ρd − ρb � B(Tc − T)β (7b)

where Tc is the critical temperature, ρc is the critical density, A

and B are constants, and the exponent β is set to 0.32.

Interfacial tension

The interfacial tension γ was determined according to the

Kirkwood-Buff method (Kirkwood and Buff, 1949):

γ � Lz

2
〈pzz − pxx + pyy

2
〉 (8)

where pxx, pyy, and pyy are the diagonal elements of the pressure

tensor, and the brackets indicate an equilibrium average. We

calculated these diagonal elements on snapshots separated by

10 time steps for the MD simulations and averaged them over the

same portion of each simulation as used for calculating densities.

Interfacial tension was not calculated for patchy particles,

because the pressure tensor could not be properly defined due

to the discontinuous nature of the interaction potential.

Interfacial tension was determined for LJ particles from an

MC simulation, from pressure tensor calculated at every

100 MC steps and averaged over the second half of the

simulation.

Molecular dynamics simulations of phase-
separating tetrapeptide

We also tested SpiDec on a peptide, consisting of two copies

of a phenylalanine dipeptide crosslinked at the C-termini by a

disulfide bond (denoted as FFssFF), that was recently shown to

phase separate (Abbas et al., 2021). FFssFF was prepared in

ChemDraw and saved in Protein Data Bank (PDB) format for

force-field parametrization, which was done using Gaussian 16 at

the HF/6-31G* level for atomic charges and using general Amber

force field (GAFF) (Wang et al., 2004) for other parameters. The

initial configuration of 64 copies of the peptide in a water box was

prepared in two steps. First, eight copies were randomly inserted

into a cubic box with a side length of 30 Å and solvated with

TIP3P water (Jorgensen et al., 1983) using CHARMM-GUI (Jo

et al., 2008). This system was relaxed by energy minimization

(2000 steps of steepest descent and 3,000 steps of conjugate

gradient) and a 100 psMD simulation at constant NVT (ramping

from 0 to 294 K in 40 ps and at 294 K for remaining 60 ps) with a

1 fs timestep. The box with only the peptides in the last snapshot

was duplicated in each of the three orthogonal directions to build

a system with 64 copies in a cubic box with a side length of 60 Å,

which was solvated again with 4693 TIP3P water molecules. The

latter system was also relaxed by energy minimization and 500 ps

of constant-NVT simulation (ramping from 0 to 294 K in 40 ps

and at 294 K for remaining 460 ps). To further condense the

system, half of the water molecules were randomly removed and

the system was again relaxed by the same procedure of energy
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minimization plus 500 ps of constant-NVT simulation. It was

then equilibrated at constant NPT (294 K and 1 bar) and with a

2 fs timestep, for 8.6 µs until the peptides formed a single slab

with normal in the z direction. The side length of the cubic box at

this point was reduced to 51.72 Å. Long-range electrostatic

interactions were treated by the particle mesh Ewald method

(Essmann et al., 1995) with nonbonded cutoff at 8 Å.

Temperature was regulated by the Langevin thermostat with a

damping constant of 3 ps−1; pressure was regulated using the

Berendsen barostat (Berendsen et al., 1984). All bonds connected

with hydrogen atoms were constrained using the SHAKE

algorithm (Ryckaert et al., 1977).

The single slab of 64 copies was finally placed in a rectangular

box with Lz/Lx = 5. To model pH 7, 32 copies were randomly

chosen to have a terminal amide protonated. The system was

neutralized with 32 Cl− ions and solvated with 20,174 TIP3P

water molecules; the total number of atoms was 66,986. Initial

relaxation was done with energy minimization and 500 ps of

constant NVT simulation with a 1 fs timestep, followed by 100 ns

of equilibration at constant NPT with a 2 fs timestep. Finally

constant-NVT production runs with a 2 fs timestep, at T = 294 K

and 326 K, each for 2 µs. The box dimensions were 51.47 Å ×

51.47 Å × 260.38 Å and 52.04 Å × 52.04 Å × 263.24 Å,

respectively, at the two temperatures. The last snapshot of the

326 K simulation was ramped to 340 K or 360 K (in a 500 ps of

constant NVT simulation) and production runs were carried out

at these higher temperatures for 2 µs each. All MD simulations

were carried out on GPUs using pmemd.cuda (Salomon-Ferrer

et al., 2013). Snapshots were saved at 100 ps intervals for analysis.

Results

Variety of dense-phase morphologies
from spinodal decomposition

In Figure 2A, we display the dense-phase morphologies of LJ

particles in a cubic box at T = 0.65, obtained from MD

FIGURE 2
Morphologies of the dense phases of LJ particles and LJ chains over a range of initial densities inside the spinodal. (A) Morphologies for an LJ
particle system of N = 1,000 particles in a cubic box at T = 0.65. The dense phase appears as a sphere, cylinder, slab, hollow cylinder, and hollow
sphere at ρ0 = 0.1, 0.2, 0.3, 0.6, and 0.7 respectively. The initial densities were changed by varying the box side lengths, which are shown here not to
scale. At each density, the cubic box is cut by a plane (rendered as gray when the background is empty), and only the half behind the cut is
displayed. (B)Corresponding results for an LJ chain system (100 10-bead chains) at T= 1.7 and ρ0 = 0.1, 0.2, 0.3, 0.5, and 0.6. (C) Boundaries between
different morphologies for LJ particles in rectangular boxes with different Lz/Lx ratios. The density ranges for different morphologies are illustrated in
the inset. Lx = 10 and T = 0.65. (D) Corresponding results for an LJ chain system at Lx = 13 and T = 1.7.
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simulations at increasing initial densities (ρ0). The dense phase

appears as a sphere at ρ0 = 0.1, a cylinder at ρ0 = 0.2, a slab at ρ0 =

0.3, a hollow cylinder at ρ0 = 0.6, and a hollow sphere at ρ0 = 0.7.

Similar observations are found for the other model systems, and

are displayed in Figure 2B for LJ chains at T = 1.7 and in

Supplementary Figure S1 for HP chains at T = 1.05.

We scanned the initial densities to identify the boundaries

between different dense-phase morphologies. For example, for LJ

particles in a cubic box (Lz/Lx = 1) at T = 0.65, the transitions

from a single low-density phase to a spherical dense phase, from

sphere to cylinder, from cylinder to slab, from slab to hollow

cylinder, from hollow cylinder to hollow sphere, and from hollow

sphere to a single high-density phase occur at initial densities of

0.04, 0.1375, 0.2625, 0.525, 0.675, and 0.75, respectively. Note

that we checked the dense-phase morphologies on the very short

timescale of phase separation via spinodal decomposition (see

below for more details). On this timescale, phase separation via

nucleation and growth would not have occurred. Therefore

simulations from initial densities in the metastable regions,

between the spinodal and binodal, would remain a single

phase, and the boundaries with the two single phases

effectively define the spinodal densities. In the foregoing

example, the lowest and highest boundary values, 0.04 and

0.75, are the spinodal densities.

At increasing Lz/Lx, the range of initial densities for the slab

morphology widens in both directions, squeezing the other inter-

morphology boundaries at both ends of the range (Figure 2C).

The dependences of the boundary density values on Lz/Lx fit well

to a simple function,

ρ0 �
ρ1 + ρ∞ξ

1 + ξ
(9)

where ξ � Lz/Lx − 1, ρ1 denotes the density at Lz/Lx = 1, and ρ∞
represents the density extrapolated to infinite Lz/Lx. The three

lower boundaries have a common ρ∞ value of 0.015, whereas the

three upper boundaries have a common ρ∞ value of 0.81. Similar

observations are found for the other model systems. The results

for LJ chains at T = 1.7 are shown in Figure 2D, where the fit to

Eq. 9 yields a ρ∞ value of 0.006 for the three lower branches and a

ρ∞ value of 0.69 for the three upper branches. These lower and

upper ρ∞ values may represent the spinodal densities at infinite

system sizes.

Slab formation at different Lz/Lx ratios

The slabmorphology allows easy determination of binodals (see

Computational Methods). We thus pay special attention to this

morphology. In Figures 3, 4, we display snapshots of slabs formed in

simulations of the four model systems over a range of Lz/Lx. In a

cubic simulation box, there is no preferred direction, and so slabs can

form with the normal along any of the three orthogonal directions.

The indeterminacy in slab orientation persists when Lz/Lx is slightly

FIGURE 3
Slab formation at various Lz/Lx values. (A) LJ particle system at
N = 4,000, T = 0.65, ρ0 = 0.3, and Lz/Lx = 1.25, 3.26, and 13.3. (B) LJ
chain system at N = 4,000, T = 1.7, ρ0 = 0.25, and Lz/Lx = 1.16, 3.79,
and 7.28. The z axis is along the vertical direction. For each
system, the simulation boxes are drawn approximately to scale.
Arrows indicate the fusion of multiple slabs into a single slab.

FIGURE 4
Slab formation at various Lz/Lx values. (A) HP chain system at
N = 4,000, T = 1.05, ρ0 = 0.25, and Lz/Lx = 1.5, 3.0, and 5.0. (B)
Patchy particle system at N = 500, T = 0.61, ρ0 = 0.36, and Lz/Lx =
1.5, 3.0, and 5.0. The z axis is along the vertical direction. For
each system, the simulation boxes are drawn approximately to
scale. Arrows indicate the fusion of multiple slabs into a single slab.
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above 1 (Figures 3A,B). Regardless of the slab orientation, the

thickness of the bulk phase in simulation boxes with Lz/Lx close

to 1 is small, which would make it difficult to calculate the bulk-

phase density and determine the binodal.

At Lz/Lx above ~2, slabs are always oriented with the normal

along the z direction. As Lz/Lx is further increased above ~4,

multiple slabs can form (Figures 3, 4). Over time these multiple

slabs fuse one by one, eventually leading to the complete fusion

into a single slab (Supplementary Movie S1).

Timescales for phase separation via
spinodal decomposition and for complete
slab fusion

We devised a procedure to determine the time (τPS) at which

slabs first emerge from spinodal decomposition (Supplementary

Figure S2A). The results for three model systems from MD

simulations at N = 4,000 are shown in Supplementary Figure

S3A. For LJ particles, slab formation is quick, occurring on the

order of 2 × 104 time steps in MD simulations. τPS decreases with

increasing Lz/Lx. For LJ and HP chains, τPS shows an even

stronger initial decline (near Lz/Lx = 1). In the range of Lz/Lx
from 2 to 7, the τPS values (in LJ time units) for LJ and HP chains

are 3–8 times as long as that for LJ particles. For patchy particles

at N = 500 and Lz/Lx from 1.5 to 5, τPS is of the order of 3 × 105

MC steps.

For the purpose of determining binodals, another important

timescale is τSS, for complete fusion into a single slab when

multiple slabs emerge from spinodal decomposition

(Supplementary Figure S2B). The results for τSS are shown in

Supplementary Figure S3B. In contrast to τPS, τSS exhibits a sharp

increasing trend with increasing Lz/Lx. The main reason for the

increase in τSS is that, with higher Lz/Lx, more slabs form initially

and hence more fusion events must take place before complete

fusion. A secondary reason is that, with higher Lz/Lx, slabs are

farther apart initially and hence each fusion event can take

longer. In any event, for LJ particles, τSS is under a million

time steps even at Lz/Lx = 13.3. Since we equilibrate at least

5 million time steps anyway, so slab fusion for LJ particles at N =

4,000 did not necessitate longer simulations. The same holds for

LJ and HP chains at N = 4,000 and Lz/Lx ≤ 5, with τSS under

3.1 million time steps. However, for LJ chains at Lz/Lx = 7.28, τSS
exceeds 5 million time steps, and as a result we extended the

simulations to 200 million steps. For patchy particles at N =

500 and Lz/Lx from 3 to 5, τSS is 0.9–1.8 million MC steps.

Optimum in Lz/Lx and selection of ρ0 for
binodal determination

So it appears that there is an optimum in Lz/Lx in performing

simulations to form a single slab for binodal determination.

When Lz/Lx is too small (e.g., below 2), a single slab may

directly form from spinodal decomposition, but the

orientation of the slab is indeterminant and the thickness of

the bulk phase in the simulation box may be too small for a

precise determination of the bulk-phase density. On the other

hand, when Lz/Lx is too large (e.g., above 7), multiple slabs

emerge from spinodal decomposition and can take a long time to

fuse into a single slab. This long fusion time will increase the total

simulation time. The optimal Lz/Lx is from 3 to 5.

Slab formation also requires a correct choice for the initial

density. Fortunately, at Lz/Lx from 3 to 5, the range of initial

densities leading to slab formation is pretty wide (see Figures

2C,D). Here is a general procedure for selecting an

appropriate ρ0 to start the simulation. The procedure

involves running short simulations (e.g., 1 million steps;

see Supplementary Figure S3A) at an Lz/Lx between 3 and

5 and ρ0 at iΔρ0, with i = 1, 2, . . ., and Δρ0 between 0.05 and 0.1.
As ρ0 is increased, a dense phase should emerge, with shapes in

the order of sphere, cylinder, slab, hollow cylinder. Finally

choose the midpoint in the range of initial densities leading to

slab formation. This procedure can be applied once, at the

lowest temperature for which the binodal is to be determined.

Once the initial density is found at this temperature, it can be

used for long simulations in the full temperature range to

determine the binodal.

Binodals of four model systems

Once a single slab is formed and equilibrated with the bulk

phase at each temperature within a selected range, we can

calculate the densities of the two phases as a function of

temperature. The resulting binodals are shown in Figures

5A,B for the LJ particle and LJ chain systems at N =

4,000 and in Supplementary Figures S4A, S4B for the HP

chain system at N = 4,000 and the patchy particle system at

N = 500. For each system, we report binodals calculated at three

Lz/Lx ratios. The lowest of these ratios is close to the cubic limit,

and it leads to underestimation of the critical temperature. As

already pointed out, at Lz/Lx close to 1, there is very little space

for the bulk phase. As the critical temperature is approached, the

interface between the dense and bulk phases widens, leaving little

space for a fully formed dense phase as well. As a result, the

dense-phase density becomes too low whereas the bulk-phase

density becomes too high. These opposite errors lead to

narrowing of the binodal near the critical point and the

underestimation of Tc. In contrast, when Lz/Lx is within the

recommended range of 3–5, or at a higher value as long as the

single-slab morphology is sampled at equilibrium for a

sufficiently long time, the calculated binodals reach

convergence. Further validation of convergence is provided by

a comparison of Tc values at Lz/Lx ≥ 1.66 and N from 1,000 to

10,000 for LJ particles and LJ and HP chains or N from 250 to
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1,250 for patchy particles (Supplementary Figure S5). The

minimum particle number for robust binodal calculation is

4,000 for LJ particles and LJ and HP chains and 500 for

patchy particles. Tc values determined at smaller particle

numbers show greater variations. The results for patchy

particles also demonstrate that SpiDec works in MC

simulations just as well as it does in MD simulations, as

shown for LJ particles and LJ and HP chains. We also applied

SpiDec in MC simulations of LJ particles. The binodals obtained

in MD and MC simulations show close agreement

(Supplementary Figure S6A).

We also tested for possible effects of the spring constant on

the binodal of the LJ chain system. As shown in

Supplementary Figure S7A, the effects are very modest. The

binodal remains essentially unchanged when the spring

constant is reduced from 75,000 ε/σ2 to 750 ε/σ2, and

shows a small decrease in Tc when the spring constant is

further reduced to 75 ε/σ2. The spring constant potentially can

affect the overall size of the chain, e.g., as measured by the

radius of gyration, Rg. However, in the dense phase, chain

configurations are largely dictated by inter-chain attraction.

The histograms of Rg are essentially identical when the chain

spring constants are 75,000 ε/σ2 and 75 ε/σ2, with a mean value

of 1.49 σ2, which is expanded, due to inter-chain attraction,

from a value of 1.28 σ2 for a freely jointed chain with 10 beads.

The domination of inter-chain attraction over intrinsic chain

flexibility explains why the chain spring constant has at most a

very modest effect on the binodal.

We also tested the effect of the HP chain sequence,

specifically the positions of the two P beads. As shown in

Supplementary Figure S7B, the positions of the P beads have a

significant effect on the binodal. Tc has a significant increase

when the two P beads are moved next to each other. P beads

are repulsive to all beads, and the repulsion can be minimized

when P beads are clustered together. When the two P beads

within a chain are next to each other, P beads are much easier

to cluster, and this increased clustering explains the increase

in Tc.

FIGURE 5
Binodals and interfacial tensions calculated from snapshots with a single slab. (A) Binodals of the LJ particle system atN=4,000 and Lz/Lx= 1.25,
3.26, and 13.3. (B) Binodals of the LJ chain system at N = 4,000 and Lz/Lx = 1.16, 3.79, and 7.28. (C) Interfacial tension versus temperature for the LJ
particle system at the three Lz/Lx ratios. (D) Interfacial tension versus temperature for LJ chain system at the three Lz/Lx ratios.
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Interfacial tensions of three model
systems

The single-slab morphology generated by SpiDec also allows

us to calculate the interfacial tension. The results are shown in

Figures 5C,D for the LJ particle and LJ chain systems and in

Supplementary Figure S4C for the HP chain system, all at N =

4,000. Again, as long as Lz/Lx is above 2, convergent results are

obtained.We also obtained very similar interfacial tension for the

LJ particle system from both MD and MC simulations

(Supplementary Figure S6B).

Interfacial tension is a measure of the different extents of

intermolecular interactions in the two phases on the opposite

sides of an interface. As the temperature approaches Tc, the two

phases become more and more similar. Correspondingly the

interfacial tension decreases as T approaches Tc and finally

vanishes at Tc, where the two phases become identical.

Application of SpiDec to a peptide system
modeled at the all-atom level in explicit
solvent

Finally we tested SpiDec on the tetrapeptide FFssFF

(Figure 6A) that was recently shown to phase separate (Abbas

et al., 2021). Starting from a random, loose configuration solvated

in water, 64 copies of the peptide condensed into a single slab

(Figure 6B). We subsequently solvated this single slab in an

elongated box (Lz/Lx = 5). The copies equilibrated between the

dense and bulk phases. We calculated the average concentrations

(expressed as wt/wt, i.e., weight of peptide over weight of water)

along the z axis, and fit the concentration profile to eq [6] to

obtain the dense- and bulk-phase concentrations (Figure 6C). At

294 K, the two concentrations are 0.94 wt/wt and 0.0085 wt/wt,

respectively. These values are each about 3-fold higher than the

experimental counterparts (Abbas et al., 2021), reflecting the

need for improved force-field parameterization. We also carried

out simulations at 326, 340, and 360 K. At the elevated

temperatures, the two densities move toward each other

(Figure 6D), as expected for a system showing upper critical

solution temperature.

Discussion

We have characterized the morphologies and timescales of

spinodal decomposition in model systems and demonstrated that

slab formation via spinodal decomposition can be used to

calculate the binodal and interfacial tension. At different

initial densities in a rectangular simulation box, spinodal

decomposition produces distinct dense-phase morphologies,

including sphere, cylinder, slab, hollow cylinder, and hollow

FIGURE 6
Application of SpiDec to a phase-separating peptide. (A) Structure of FFssFF. (B) The SpiDec simulation procedure. First, a random, loose
configuration condensed into a single slab. Then the slab was solvated into an elongated box and the two phases reached equilibrium. The fourth
snapshot shown was taken at 1.065 µs of a 2-µs simulation at 294 K. (C) Concentration profile (circles) at 294 K and fit to eq [6] (red curve).
Concentrationswere calculated by counting copy numbers in 2-Å slices along the z direction; the location of each copywas represented by the
midpoint of the central disulfide bond. The conversion of concentrations to wt/wt used amolecular weight of 741.5 Da for the peptide and a density
of 1 kg/L for water. (D) Dilute- and dense-phase concentrations at four temperatures, from 294 K to 360 K. The red curve shows a binodal to guide
the eye.

Frontiers in Molecular Biosciences frontiersin.org10

Mazarakos et al. 10.3389/fmolb.2022.1021939

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1021939


sphere. The range of initial densities for slab formation is the

widest among all the dense-phase morphologies, and this range

further widens as Lz/Lx increases. At Lz/Lx above ~3, multiple

slabs emerge from spinodal decomposition. The time for multiple

slabs to fuse into a single slab increases rapidly with increasing

Lz/Lx. The optimal Lz/Lx is thus 3 to 5 for computing the binodal

and interfacial tension. Most importantly, we have shown that

the SpiDecmethod is effective both for model systems and for all-

atom phase-separating peptides solvated in TIP3P water. In this

method, one starts simulations with the system in a homogenous

solution, and relies on spinodal decomposition to rapidly bring

the system to a two-phase state.

In addition to computing the equilibrium properties (binodal

and interfacial tension) of phase separation, SpiDec simulations

can be adapted to study dynamic properties of related processes.

In particular, the fusion between multiple slabs observed here

corresponds to condensate fusion. Therefore SpiDec simulations

at large Lz/Lx can be used to model condensate coarsening,

potentially providing a molecular view into the mechanism and

kinetics of the coarsening process. Moreover, all the simulations

reported above have resulted in complete phase separation, but at

lower temperatures (or equivalently, at stronger intermolecular

attraction), as expected (Foffi et al., 2005), spinodal

decomposition may be arrested, leading to gelation

(Supplementary Movie S2). Therefore SpiDec simulations at

those conditions provide a means to study condensate gelation.

For the phase-separating tetrapeptide, our simulation results

agree qualitatively with experimental data (Abbas et al., 2021),

but quantitatively, the computed concentrations in the two

phases are each about 3-fold higher than the experimental

counterparts. Binodals are exquisitely sensitive to force fields,

and now, with SpiDec, we will have the opportunity to use

experimental binodals for force-field parameterization of IDPs,

leading to accurate modeling of IDPs and their condensate

properties.

The advantages of SpiDec can be summarized as follows.

Whereas the classical slab method yields only phase

equilibrium properties, SpiDec can also be used to study

gelation and condensate fusion. For atomistic systems, the

implementation of the slab method involved first carrying out

a simulation at the coarse-grained level and then mapping a

resulting dense slab to the atomistic level (Zheng et al., 2020;

Welsh et al., 2022). The mapping is a complicated procedure,

and in the subsequent atomistic simulation the protein

molecules can easily get trapped in the dense slab. In

contrast, as demonstrated here, SpiDec eliminates the need

for an initial coarse-grained simulation and directly yields an

atomistic system that exchanges between the phases. For

systems without any prior knowledge of the binodal, it may

be difficult to pick the right initial concentration and therefore

one may need to start SpiDec simulations at several initial

concentrations. We expect this difficulty to diminish as

SpiDec is used on more systems.

Associated content
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Seven additional figures (Supplementary Figures S1–S7)

presenting the dense-phase morphologies of HP chains; the

timescales for phase separation and for complete fusion of

multiple slabs into a single slab, and illustration of their

determination; binodal and interfacial tension of HP chains

and binodal of patchy particles; the effects of system size and

Lz/Lx ratio on the calculated critical temperature;

comparison of the binodal and interfacial tension of LJ

particles determined by MD and MC simulations;

binodals of the LJ chain system with different spring

constants and of the HP chain system with different

sequences and Supplementary Movie S1 showing the

phase separation of LJ particles via spinodal

decomposition and the fusion of multiple slabs, and

Supplementary Movie S2 showing arrested spinodal

decomposition leading to gelation of HP chains at T = 0.2.
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