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DNA damage response (DDR) deficiencies result in genome instability, which is

one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes

take part in various DDR pathways, determining cell fate in the wake of DNA

damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the

main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the

treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent

DDR is fatal for tumor cells with homologous recombination deficiencies (HRD),

especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-

dependent pathway, while allowing healthy cells to survive. Moreover, PARPi

indirectly influence the tumor microenvironment by increasing genomic

instability, immune pathway activation and PD-L1 expression on cancer cells.

For this reason, PARPi might enhance sensitivity to immune checkpoint

inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for

PARPi-ICI combination therapies. In this review, we discuss the complex

background of the different roles of PARP1/2 in the cell and summarize the

basics of how PARPi work from bench to bedside. Furthermore, we detail the

early data of ongoing clinical trials indicating the synergistic effect of PARPi and

ICIs. We also introduce the diagnostic tools for therapy development and

discuss the future perspectives and limitations of this approach.
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Introduction

Cancer is a large group of diseases characterized by the uncontrollable growth of

abnormal cells. There are 19.3 milion new cancer diagnoses each year worldwide, with an

estimated 10 milion cancer-related deaths occurring in 2020, placing an enormous burden

on healthcare systems (Sung et al., 2021).

Although the targeted cancer therapies have advanced noticeably in recent years,

chemotherapy remains the most commonly used treatment in many kinds of cancer.

Unfortunately, the side effects are inevitable, as chemotherapy is unable to differentiate

malignant and non-malignant cells. Severe side effects of cancer treatment like vomiting
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(>90% of patients require antiemetics during the treatment),

fatigue, generalized pain or gastrointestinal disturbances are

common in patients (Lorusso et al., 2017) (Pearce et al.,

2017). For this reason, the development of new therapies

focuses on acting directly on cancer-specific targets, which, in

theory, allows increased efficacy against cancer cells while

minimizing side effects. Currently available treatments that

meet the above requirements include small-molecule drugs

(used for the targets inside the cells, such as proteasome

inhibitors and signal transduction inhibitors) and monoclonal

antibodies (designed to attach to specific targets on cancer cells).

Generally, targeted therapies counter cancer through different

mechanisms, such as inhibition of angiogenesis, blocking of the

cell cycle, delivering cytotoxic substances directly into cancer

cells etc.

One of the most dynamically developing targeted therapies

are poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi).

Although this term in principle refers to inhibitors of any

member of the PARP family of enzymes, most relevant for

cancer therapy are those targeting PARP1 and PARP2, which

are primarily involved in DNA repair (Lüscher et al., 2021).

Therefore, inhibition of PARP1/2 results in genome instability

that destroys cancer cells while allowing non-malignant cell

survival. Since 2014, there are four PARPi approved for

clinical use (olaparib, rucaparib, niraparib, talazoparib),

indicated for the treatment of ovarian, fallopian tube and

primary peritoneal carcinoma, HER2-negative breast cancer,

metastatic pancreatic cancer and prostate cancer–especially

(but not exclusively) when these cancers harbor breast cancer

type 1 susceptibility protein 1 or 2 (BRCA1/2) mutations. In

addition, there are many promising clinical trials at various stages

that investigate other PARPi and their diverse indications.

Moreover, PARPi are showing encouraging results in

combined therapies, especially with immune checkpoint

inhibitors (ICIs), holding great promise for many cancer

patients. Although PARPi are thought to be relatively specific

blocking agents and do not show frequent and severe side effects,

PARP1/2 enzymes play many roles at different cell cycle stages.

Therefore, drawing the interaction network of PARP1/2 in the

cell is crucial for navigating the new possible therapies and

determining possible side effects that may appear on the way.

In this review, we try to place PARPi in that network, discuss

recent combined therapies of PARPi and ICIs, and point out the

possible future perspectives that come into view en route.

PARP enzymes—Structure and
mechanism of action

PARP proteins were discovered in the early 1960s by Chambon

et al. (1963). Subsequent research showed that PARP family takes part

in several cellular processes (Krishnakumar andKraus, 2010), themost

intriguing being the interaction with DNA (Nobori et al., 1989), which

contributes to cellular recovery from DNA damage (Durkacz et al.,

1980).

First discoveries of possible functions of PARPs in the cell on the

molecular level went hand in hand with dissecting its structure. To

date the family of PARP proteins has 17members that share structural

and functional similarities while constituting a diverse and remarkable

group of proteins. PARP family members are defined by their shared

ADP-ribosyl transferase (ART) domain but otherwise differ in length

and domain composition. PARPs generally function by modifying

other proteins with single ADP-ribose units or poly (ADP-ribose)

(PAR) chains (derived fromnicotamide adenine dinucleotide–NAD+),

which affect protein activity, interactions, localization and half-life.

Moreover, PARP family members can also catalyse the reversible

ADP-ribosylation of phosphorylated DNA and RNA ends, which was

discussed by Groslambert et al. (2021). The 90% of total cellular

PARylation is produced by PARP1—the most abundant and best

studied member of the PARP family (Kameshita et al., 1984). The

basic structure of the PARP1molecule and its role in DNA repair was

summarized in Figure 1. PARP1 consists of three main domains: the

DNA Binding Domain (DBD) at the N-terminus, the central

Automodification Domain (AMD), and the Catalytic Domain

(CD) at the C-terminus (Hakmé et al., 2008). The most

remarkable features of the DBD are the nuclear localization

sequence (NLS) and three zinc fingers (Zn1/2/3). The latter

are–together with the WGR motif in the CD–the primary sensors

of DNA breaks, both Double Strand Breaks (DSBs) and Single Strand

Breaks (SSBs) (Langelier et al., 2011), driving the collective assembly of

PARP1 domains around the break in a way that stimulates the

catalytic activity of this enzyme (Langelier et al., 2012)

(Eustermann et al., 2015).

AMD is composed of a globular BRCA1 C-terminus (BRCT)

motif and a linker region that comprises the main

automodification (ADP-ribosylation) sites (Prokhorova et al.,

2021b). The BRCTmotif has been implicated in interactions with

proteins and DNA alike (Yelamos et al., 2011) (Hottiger et al.,

2010) (Rudolph et al., 2021a).

The main motif of the CD domain is called the signature

motif of the ART subdomain. It is composed of six beta-sheets

and one alpha-helix (Otto et al., 2005) and includes both an

NAD+ binding pocket and the key catalytic residue, Glu988

(Schreiber et al., 2006). The regulatory helical domain (HD)

consists of helices in the absence of DNA and becomes unfolded

when PARP1 binds to damaged DNA (Dawicki-McKenna et al.,

2015). The HD domain is thought to inhibit the access of NAD+

to the active site in the absence of DNA but allow NAD+ access

upon DNA break-induced unfolding.

Upstream of the HD domain, the WGR (Trp-Gly-Arg) motif

is the key regulator of catalytic activity in response to DNA

damage by interacting with DNA (Langelier et al., 2012).

In addition to PARP1, two other PARPs have been

implicated in DNA damage response (DDR): PARP2 and

PARP3. These paralogues are shorter than PARP1, lacking the

N-terminal portion comprising zinc finger and BRCT motifs.

Frontiers in Molecular Biosciences frontiersin.org02

Hunia et al. 10.3389/fmolb.2022.1073797

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1073797


The WGR motif of PARP2 and PARP3 is responsible for DNA

binding as well as sensing the nature of DNA breaks, especially

phosphorylation (Langelier et al., 2014). In contrast, PARP1 is

relatively insensitive to the phosphorylation state of DNA breaks

that it binds to and is activated by (Obaji et al., 2018) (Bilokapic

et al., 2020). Specifically in the case of PARP2, the WGR domain

is apparently capable of simultaneously binding to two blunt

DNA ends, possibly in order to bridge them for subsequent

ligation (Gaullier et al., 2020)

The product of PARP activity, the PAR chain, is a large, negatively

charged polymer composed of ADP-ribose monomers connected

through glycosidic ribose-ribose bonds. The chains can be linear or

branched and are typically attached to protein substrates. PARPs can

alsomodify proteinswith only a singleADP-ribose unit (mono (ADP-

ribose) or MAR. PAR and MAR modification occurs mostly on Ser,

Glu, and Asp residues in proteins, and can be enzymatically removed

by specific ADP-ribosyl hydrolases (Palazzo et al., 2018) (Larsen et al.,

2018) (Hendriks et al., 2019).

PARP1 in DNA repair

Enzymatic DDR mechanisms correct the damage that occurs

spontaneously in the cell during metabolic changes under the

influence of both exogenous and endogenous (physical and

chemical) factors. These mechanisms act during different

phases of the cell cycle, both during replication and during

the intervals between divisions. If the defects are not

recognized and removed, they may lead to permanent changes

in DNA andmutations in subsequent cycles. Due to the variety of

factors influencing DNA integrity, multiple repair mechanisms

have developed in cells. The most significant DDR pathways

include:

1) Nucleotide excision repair (NER), which is a highly conserved

DDR pathway that corrects a wide range of genomic lesions,

especially double helix-distorting bulky lesions (Spivak,

2015),

2) Base excision repair (BER), occurring mainly during the

G1 phase of the cell cycle, repairing forms of damage that

do not significantly distort the DNA helix (Dianov and

Hübscher, 2013). To note, the BER pathway generates

SSBs, which are the most common lesions occurring in the

cell (Caldecott, 2008). They are also generated by various

endogenous or exogenous DNA-damaging agents, such as

ionizing radiation, free radicals, topoisomerase I (TOP1)

(Caldecott, 2008). SSBs may cause the blockade or collapse

of DNA replication forks during the S phase, leading to the

formation of DSBs (Kouzminova and Kuzminov, 2006)

(Kuzminov, 2001). SSBs in non-proliferating cells may stall

RNA polymerase progression during transcription, leading to

cell death (Bendixen et al., 1990). SSBs are repaired in the SSB

Repair (SSBR) process (Dianov andHübscher, 2013), which is

sometimes considered as a subpathway of BER (Abbotts and

FIGURE 1
PARP1 structure andmechanism of action. PARP1molecule consists of 3main domains: DNA binding domain (DBD) with zinc fingers (Zn1-Zn3),
Automodification Domain (AMD) with BRCA1 C-terminus (BRCT) subdomain and catalytic domain (CD) with helical domain (HD) and C-terminal
ADP-ribosyl transferase (ART) subdomain. TheWGR domain consists of the Trp-Gly-Argmotif. Such structure allows PARP1 to recognize and bind to
the DNA damage site. Then it catalyzes the (poly-ADP)-ribosylation process, allowing the recruitment of auxiliary proteins responsible for
chromatin modification, stabilization of replication forks, repair of DSBs and repair of ssDNA nicks and breaks. Created with BioRender.com.
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Wilson, 2017). SSBR is orchestrated by X-ray repair cross

complementing protein 1 (XRCC1) and PARP1 as the key

proteins and generally consists of SSB detection (by PARP1),

DNA end processing, DNA gap-filling and DNA ligation

(Abbotts and Wilson, 2017).

3) Mismatch repair (MMR) removes errors that were not

corrected by DNA polymerases during replication (Kunkel

and Erie, 2015),

4) Homologous recombination (HR) dominates the late S and

G2 phases (Branzei and Foiani, 2008). Upon damage

detection, BRCA1, BRCA2 and a partner and localizer of

BRCA2, PALB2, recruit the RAD51 recombinase, which is the

end effector in HR that performs DSB repair using a

homologous chromatid as a template. DSBs are especially

dangerous for the cell and can easily lead to apoptosis. In

addition to HR, they can also be repaired via different

pathways depending on cell cycle phase in which they

occur (Chapman et al., 2012).

5) Non-homologous end joining recombination (NHEJ) is an

alternative pathway for repairing DSBs, preferred during the

G1 phase of the cell cycle. (Branzei and Foiani, 2008) (Lee and

Dutta, 2021). DSBs are recognized by the Ku70-Ku80

heterodimer, which allows recruitment of DNA-dependent

protein kinase (DNA-PK), DNA ligase 4 (LIG4) and the

X-ray repair cross-complementing protein 4 (XRCC4)

factor. These proteins activate the process, stabilize DNA

and orientate it during LIG4-mediated ligation. If the ends of

the DNA are incompatible, they can be adjusted for ligation

by the nuclease Artemis or by DNA polymerase mu (Polμ),

DNA polymerase lambda (Polλ), and terminal

deoxynucleotidyl transferase (TdT) polymerases. NHEJ can

also be divided into two main pathways of common

characteristics: classical (cNHEJ) and alternative (aNHEJ).

While cNHEJ comprises most of the features described above

and attributed to NHEJ in general, aNHEJ is a more recently

discovered mechanism of DSB repair, serving as a less

efficient backup reaction. Its activity has been noticed

during cNHEJ deficiency or impairment (Zhao et al., 2020).

In this complex scenery of proteins engaged in the diverse

repertoire of DNA repair pathways, one of the most intriguing

characters belong to the PARP family, which is known to act in

various pathways of the cell (Figure 2); however, their most

remarkable feature is undoubtedly initiation of the DDR pathway

(Ray Chaudhuri and Nussenzweig, 2017) (Langelier et al., 2014).

In the DDR process, PARP1 is involved in three general steps:

1) detection of DNA damage, 2) recruitment of co-factors and 3)

regulation of biochemical activities. Initially, PARP was mostly

known to be involved in the BER and SSBR pathways, involving

such factors as XRCC1 and DNA ligase 3 (LIG3) (Fisher et al.,

2007) (El-Khamisy, 2003) (Dantzer et al., 2000). Later studies

showed the role of PARP1 in NER (Pines et al., 2012) (Robu et al.,

2013), cNHEJ (Luijsterburg et al., 2016) and aNHEJ (Mansour

et al., 2010), microhomology-mediated end joining (MMEJ)

(Dutta et al., 2017), HR (Hochegger et al., 2006) (Hu et al.,

2014), MMR (Liu et al., 2011), and maintenance of replication

fork stability (Ronson et al., 2018) (Yang et al., 2004). Notably,

recent publications point out the connection between PARP1 and

Okazaki fragments (Hanzlikova et al., 2018) (Vaitsiankova et al.,

2022).

Regarding the function in replication fork stability,

PARP1 and PARP2 act in concert to detect disrupted

replication forks, recruit the repair protein Mre11, stimulate

recombination repair and restart replication (Bryant et al.,

2009). Mre11 is activated by PARP at the stalled fork and

restarts the Mre11-dependent replication and recombination

(Kim et al., 2005).

The recruitment of different binding proteins to PARP1 is

possible because of the zinc fingers 1–3. However the presence of

zinc finger domains seems not to be necessary, as PARP2 and

PARP3 are also able to recognize specific DNA breaks featuring

5’ phosphate groups, despite lacking the zinc finger domains.

This process also leads to DDR initiation (Langelier et al., 2014).

In this case the WGR domain, present also in PARP1, allows

PARP2 and PARP3 to interact with DNA. Also the N-terminus

of PARP2 manifests DNA-binding activity. It plays a role in the

activation of PARP2 on SSBs (Riccio et al., 2016). PARP1 and

PARP2 molecules remain mostly monomeric while in free form,

but they form temporary dimer formations while binding to

nicked sites or gaps (Eustermann et al., 2011).

DNA damage sensing is a clocklike mechanism and requires

precise mechanism of break site detection as well as fast transport

to the damaged site on DNA and between such sites. One recent

speculative model for PARP1’s movement along DNA is called

the ‘monkey bar’ mechanism (inter-segment transfer) (Rudolph

et al., 2018). In this mechanism, PARP1 moves from one DNA

break to the next in such a way that it always holds on to at least

FIGURE 2
Different roles of PARP1 in the cell. This ubiquitousness
defines the potential effects of its inhibition. Created with
BioRender.com.
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one DNA break, like a monkey that is holding a branch with one

hand until it grasps the next branch with the other hand. This is

due to the fact that binding to a new DNA break is required in

order to stimulate release from the previous break. This

mechanism is thought to enhance the ability of PARP1 to

effectively scan genome and detect the level of DNA damage

(Rudolph et al., 2018). The conformational change of the WGR

domain was shown to be crucial in this process (Rudolph et al.,

2020).

As described above, engagement with a DNA break through

zinc finger domains and WGR is also key to the allosteric

activation, which is mediated by the destabilization of the HD

subdomain (Dawicki-McKenna et al., 2015) (Langelier et al.,

2008).

As the PAR balance is crucial for the cell, the processes of

PARylation and dePARylation are tightly controlled to maintain

the equilibrium (D’Amours et al., 1999) (Fouquerel et al., 2014).

PAR removal is carried out by poly (ADP-ribose) glycohydrolase

(PARG) and ADP-ribosyl-acceptor hydrolase 3 (ARH3) (Rack

et al., 2020) (Fontana et al., 2017) PARG and ARH3 suppression

were noted to be synthetically lethal due to the increase in

PARylation. (Prokhorova et al., 2021a).

PARP enzymes are able to covalently modify various targets, like

transcription factors (involving transcriptional repressor CTCF,

activator protein 1 (AP1), yin yang 1 (YY1), nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB), nuclear enzymes

(aurora B kinase) (Kraus, 2008) (Monaco et al., 2005), and histoneH1,

H2A and H2B, regulating the chromatin structure (Kim et al., 2005).

PARPs also tend to modify themselves (automodification), which is

particularly well established for PARP1 that ADP-ribosylates a set of

conserved residues in the AD. PARylation is known to play an

important role in the epigenetic regulation of chromatin structure,

as well as gene expression, under physiological conditions, with the

maintenance of DNA integrity (Caiafa et al., 2009). On the epigenetic

level, histone PARylation factor 1 (HPF1) is one of the most essential

proteins interacting with PARP1 and PARP2 enzymes (Gibbs-

Seymour et al., 2016). Recent findings of Suskiewicz et al. describe

the role ofHPF1 as amolecule complementing the PARP1/2 active site

essential for the addition of ADP-ribose moieties in the DDR process

(Suskiewicz et al., 2020). It turns out that the most common cellular

acceptor of ADP-ribosylation–protein serine residues–cannot be

efficiently targeted by PARP1 or PARP2 alone, and HPF1 must be

present.

Besides ribosomal and nuclear DNA, PARP1 was also

reported to be involved in the epigenetic regulation of

mtDNA repair and transcription (Lapucci et al., 2011).

PARP1 in metabolic regulation

PARP enzymes are NAD + consumers with the capacity to

globally affect the cellular energy pool and metabolic state,

potentially having dramatic cellular consequences. Thus, their

enzymatic activity is tightly controlled (Andrabi et al., 2014).

PARP1 is also known to influence mitochondrial function and

oxidative metabolism. Studies on a 129/SvImJ mouse knockout

showed that PARP1 deletion led to increased food intake

(Devalaraja-Narashimha and Padanilam, 2010). Further

investigation showed the reduction in the glycolytic rate,

which has been linked to a reduction in NAD+ availability

over the years (Bai et al., 2011). PARP1 over-activation was

shown to be able to reduce hexokinase activity, thus resulting in

global carbohydrate metabolism perturbations (Houtkooper

et al., 2010) (Andrabi et al., 2014)

PARP1 in cell death

PARPs have been reported to take part in several kinds of cell

death pathways. At moderate levels of DNA damage apoptosis is

the key feature, with Caspase3 and Caspase7 cutting

PARP1 molecule into 2 fragments after D214, between first

two zinc finger domains and Zn3 (Soldani and Scovassi, 2002)

(Germain et al., 1999) (Kaufmann et al., 1993) (Tewari et al.,

1995). At highly elevated levels of DNA damage,

PARP1 overactivation is observed, resulting in necrotic cell

death (caused by depletion of NAD+ and ATP) (Sosna et al.,

2014). Meanwhile PARP1 detecting low levels of DNA damage

steers the fate of cells into survival and DNA repair (Bouchard

et al., 2003).

PARP1, along with apoptosis inducing factor (AIF), has been

suggested to play a crucial role in another kind of caspase-

independent cell death, parthanatos (Yu et al., 2006).

Parthanatos was thought to be the ultimate effect of PARP

overactivation leading to increased NAD+ consumption and

subsequent loss of ATP (Ha and Snyder, 1999), until the

decrease of NAD+ and ATP was associated with glycolysis

inhibition through PAR chain binding on the PAR-binding

motif (PBM) of hexokinase (Andrabi et al., 2014) (Fouquerel

et al., 2014). It can be specifically observed in stroke, diabetes, and

Parkinson disease (Andrabi et al., 2008).

Besides this, PARP1 is engaged in DNA damage-dependent

autophagy (Muñoz-Gámez et al., 2009) and shows a

cytoprotective role in oxidative stress-induced necrotic cell

death. PARP1 also stimulates the unfolded protein response

(Shoab Mansuri and Singh, 2014).

PARP1 in cancer

PARP1 may facilitate HR by recruitment of such proteins as

ataxia telangiectasia mutated (ATM), nibrin (NBS1), and

Mre11 to sites of DSB of DNA (Haince et al., 2008), however

its major role in the HR repair involves localization of BRCA1/2.

BRCA1 is involved in the surveillance of DNA damage and

transduction of DNA repair responses, while BRCA2 is directly
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engaged in DNA DSBR via modulation of Rad51 by HR (Tutt

and Ashworth, 2002). Their mutations are able to prevent DNA

repair mechanisms and increase the risk of malignances

(Hennessy et al., 2010).

PARP1 overexpression has been demonstrated in many

cancers, which indicates its importance in cancerogenesis and

may be an independent prognostic factor. In colorectal cancer

level of PARP1 expression was positively correlated with tumor

size and histopathological features according to TNM

classification system (Nosho et al., 2006). Increased levels of

PARP1 have also been observed in breast cancer (Siraj et al.,

2018), gastric cancer (Afzal et al., 2019), ovarian cancer

(Kummar et al., 2012), pancreatic cancer (Xu et al., 2019),

and liver cancer (Li et al., 2017) The dependence of prostate

cancer on PARP1 activity was shown in the reduction of AR to

PARP1 inhibition (Espinoza, 2013).

PARP1 is also relevant for diseases other than cancer. There

is evidence that it is associated with the pathogenesis of diseases

such as rheumatoid arthritis (García et al., 2006) (Li et al., 2016),

chronic gastritis (Lee et al., 2016), acute and chronic

inflammatory bowel disease (Sánchez-Fidalgo et al., 2007),

allergic responses and asthma (Ghonim et al., 2015)

(Oumouna et al., 2006), oxidative/nitrosative stress following

infarction-reperfusion and septic shock (Soriano et al., 2006)

(Kang et al., 2010) (Pazzaglia and Pioli, 2019).

PARP inhibitors - Rationale

Considering PARP1’s role in the DDR and having in mind

that genome instability is one of the hallmarks of cancer, the idea

of developing PARPi arose in oncology studies. Almost 3 decades

ago, Satoh et al. (1994) showed that as much as 90% of PARP

activity must be stopped to impair the DNA repair process.

Hence, potential PARPi have to manifest both high specificity

and effectiveness, to bear a potential for clinical application

(Bryant et al., 2005) (Farmer et al., 2005) (Calvert and

Azzariti, 2011) (Plummer et al., 2008) (Calabrese et al., 2003).

The PARPi currently developed and used in clinics are mainly

active against PARP1 and its closest homologue, PARP2, but only

weakly against other PARPs (Rudolph et al., 2022). The attempts

to develop PARPi led to two different approaches: 1) targeting

cells which are predisposed to cell death when PARP activity is

lost; 2) searching for a combination therapy with a different type

of DNA-damaging agents (Papeo et al., 2013). First of these ideas

is presented by PARPi’s role in the potential therapy of cells with

deficiency in the BRCA1/2-dependent HR pathway–a process

known as a synthetic lethality (Lord and Ashworth, 2017). This

approach has medical implications, establishing PARPi as

potential drugs in BRCA1/2-mutated (BRCA1/2m) cancers, as

has been validated both in vitro and in vivo (Bryant et al., 2005)

(Farmer et al., 2005). Later on, PARPi were successfully

translated into clinical treatment of BRCA1/2m cancers such

as breast (Robson et al., 2017) and ovarian cancer (Coleman et al.,

2019). To date, a large number of research studies, trying to apply

PARPi in other cancers, is in progress (Table 2).

The antitumor potential of PARPi—which has been widely

observed and confirmed in multiple studies—is an intensively

explored area today, so numerous hypotheses are emerging, but

the exact mechanism of action of PARPi is still not fully

understood.

The first described mechanism of PARPi action was

associated with the well-known role of PARP1 in SSBR. It

linked PARP1 inhibition with blocking this pathway and

therefore triggering a process known as synthetic lethality

(Bryant et al., 2005). It occurs when the combination of at

least two genetic or molecular events results in a death of a

cell or an organism (Nijman, 2011). PARP1 hyperactivation was

noted in HR-defective cells, making them more sensitive to

PARPi (Gottipati et al., 2010). However, later studies

investigating the genetic knockout (Horton et al., 2014), or

molecular silencing with siRNA (Patel et al., 2011) of a

marker molecule of PARP1 activity—XRCC1, showed

confounding results depending on whether it was genetic or

molecular context of depletion. Disfunctional SSBR could lead to

accumulation of DSBs, which, ultimately, can only be repaired by

HR or NHEJ pathways, with NHEJ being much more error-

prone, while HR needs BRCA1/2 genes to proceed (Isono et al.,

2017) (Holloman, 2011) (Lieber, 2008) (Ashworth, 2008). In

BRCA1/2-deficient tumors, the only way to repair the DSB upon

PARP1 inhibition is NHEJ, which, due to its potency to generate

mutations, leads to a genomic catastrophe. In addition to the

SSBR connection, the synthetic lethality between PARPi and HR

deficiencies could also be explained by the roles of both

PARP1 and BRCA1/2 in replication fork stability and restart

(Bryant et al., 2009) (Koppensteiner et al., 2014) or DDR.

Besides the fact that PARP1 inhibition favours the NHEJ

pathway by blocking the alternative HR, the interactions between

PARP1 and NHEJ are much more complex. It was suggested that

PARPi treatment increases the phosphorylation of DNA-

dependent protein kinase (DNA-PK) substrates and therefore

increases NHEJ activity (Patel et al., 2011). Indeed, inhibition of

PARP1 ultimately blocks its interactions with Ku70 and Ku80,

which are negative regulators of this pathway, therefore leading

to increase in NHEJ activity (Wang et al., 2006) (Hochegger et al.,

2006) (Paddock et al., 2011) (Yang et al., 2018).

Recent studies suggest that PARP inhibition-associated effects

may be the result of DSBs occurring as a result of high-speed

replication (Maya-Mendoza et al., 2018) (Quinet and Vindigni,

2018). This might in turn cause the accumulation of cytotoxic

replication-associated single stranded DNA (ssDNA) gaps (Cong

et al., 2021), subsequently leading to reversal of stalled replication

forks. This theory is relatively unexplored and new; however, there is

existing evidence supporting this mechanism of action of PARPi

(Cong et al., 2021). If PARPi function solely by blocking the action of

PARP1, then their effect should not be greater than that of the genetic
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deletion of the PARP1 gene. However, several authors have reported

that inhibiting PARP1 is more cytotoxic than deleting it, even in

chicken cells, which lack the PARP2 orthologue that PARPi inhibit in

addition to PARP1 in human cells (Murai et al., 2012) (Patel et al.,

2012) (Pettitt et al., 2013). This implies that PARP1 that is blocked by

PARPi not only fails to perform its physiological role(s) but also

acquires a new, toxic function. This line of reasoning—together with

the observed accumulation of PARP1 on chromatin upon PARPi

treatment—led to the hypothesis of PARP trapping proposed by

Murai et al. (2012), whereby inhibited PARP1 persists on DNA

damage and actively interferes with vital cellular processes. In

general, PARP1 is thought to undergo a cycle whereby it associates

with DNA breaks, becomes catalytically activated, and then modifies

both other substrates and itself. Automodification of PARP1 prevents

PARP1’s association with a DNA break, so PARP1 dissociates from

DNAand eventually becomes dePARylated byPARG, terminating the

TABLE 1 History of PARPi in the clinic–European Medicines Agency (EMA) and Food and Drug Administration (FDA) approvals. Full access to the
research studies description is available on ClinicalTrials.gov.

PARP
inhibitor

Year of
approval

Approving
organization

Indication Mutational requirement Relevant studies

Olaparib 2014 FDA, EMA Advanced ovarian carcinoma Germline BRCA1/2m NCT0107662 (Kaufman
et al., 2015)

2017 FDA, EMA Recurring ovarian, fallopian tube and primary
peritoneal carcinoma

independent of BRCA1/2
mutational status

SOLO-2 and Study 19
(Pujade-Lauraine et al.,
2017)

2018 FDA HER2 negative breast cancer BRCA1/2m OlympiAD (Robson et al.,
2017)

2019 EMA HER2 negative breast cancer BRCA1/2m OlympiAD (Robson et al.,
2017)

2018 FDA First-line treatment of advanced ovarian,
fallopian and primary peritoneal carcinoma

Germline BRCA1/2m SOLO-1 (Moore et al., 2018)

2019 EMA First-line treatment of advanced ovarian,
fallopian and primary peritoneal carcinoma

Germline BRCA1/2m SOLO-1 (Moore et al., 2018)

2019 FDA Metastatic pancreatic cancer BRCA1/2m POLO (Golan et al., 2019)

2020 FDA First-line treatment of advanced ovarian,
fallopian and primary peritoneal carcinoma
in combination with bevacizumab

HRD-positive, complete or
partial chemotherapy response

PAOLA-1 (Ray-Coquard
et al., 2019)

2020 FDA Metastatic castration-resistant prostate
cancer

HRD-positive PROfound (de Bono et al.,
2020)

2022 FDA Deleterious or suspected deleterious high-risk
early breast cancer that have been treated with
adjuvant or neoadjuvant chemotherapy

Germline BRCA1/2m, HER2-
negative

OlympiaA (Tutt et al., 2021)

Rucaparib 2016 FDA Advanced ovarian carcinoma, following
multiple chemotherapy treatments

BRCA1/2m ARIEL2 and Study 10 (Oza
et al., 2017)

2018 EMA Advanced ovarian carcinoma, following
multiple chemotherapy treatments

BRCA1/2m ARIEL2 and Study 10 (Oza
et al., 2017)

2018 FDA Recurring ovarian, fallopian tube and primary
peritoneal carcinoma

independent of BRCA1/2
mutational status

ARIEL3 (Coleman et al.,
2017)

2019 EMA Recurring ovarian, fallopian tube and primary
peritoneal carcinoma

independent of BRCA1/2
mutational status

ARIEL3 (Coleman et al.,
2017)

2020 FDA Metastatic castration-resistant prostate
cancer

BRCA1/2m TRITON2 (Abida et al.,
2019)

Niraparib 2017 FDA, EMA Recurring ovarian, fallopian tube and primary
peritoneal carcinoma

complete or partial
chemotherapy response

ENGOT-OV16/NOVA
(Mirza et al., 2016)

2019 FDA Recurring ovarian, fallopian tube and primary
peritoneal carcinoma

HRD-positive, independent of
chemotherapy response

QUADRA (Moore et al.,
2019)

2020 FDA, EMA Advanced ovarian carcinoma and primary
peritoneal carcinoma

independent of biomarker status,
complete or partial
chemotherapy response

PRIMA (González-Martín
et al., 2019)

Talazoparib 2018 FDA, EMA Advanced or metastatic HER2-negative
breast cancer

Germline BRCA1/2m EMBRACA (Ettl et al.,
2018)
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cycle. This cycle was elaborated early on in publications by Ferro and

Olivera (Ferro and Olivera, 1982), Zahradka and Ebisuzaki. (1982)

and, especially, Satoh and Lindahl. (1992). Murai et al. proposed that

interference with PARP1’s ability to automodify could explain the

trapping effect of PARPi (Murai et al., 2012). Additionally, these

authors hypothesized that some PARPi might have an allosteric effect,

making PARP1 more tightly associated with DNA independent of

automodification inhibition, but this has not been confirmed for the

current clinical PARPi in recent publications (Zandarashvili et al.,

2020) (Rudolph et al., 2022) (Hopkins et al., 2015) (Xue et al., 2022).

Another revision to Murai et al.‘s model was recently offered by Shao

et al. (Shao et al., 2020), who showed that PARP1, even in the “trapped

state,” is not physically stalled on DNA but rather undergoes constant

exchange. Nonetheless, PARP1 molecules that are exchanging on

DNAmight, considered as a population, could effectively outcompete

other factors from binding to DNA, e.g., those required for an efficient

replication fork restart or those engaged in DNA repair progression

etc., explaining in part the particularly toxic effect of PARP inhibition.

Although in cancer therapies PARP trapping is a desired

mechanism, it is an obstacle in conditions characterized by PARP

hyperactivation, i.e. neurodegenerative diseases or ischemia-

reperfusion injury. An interesting solution might be group of

PROTAC PARP degraders, which are able to inhibit

PARP1 without trapping, mimicking PARP1 depletion and

protecting the cell from genotoxic stress-induced cell death

(Wang et al., 2019a).

Finally, the role of PARP1 in histone modification and

chromatin structure regulation is widely discussed and

briefly reviewed here. Discovering these actions of

PARP1 naturally leads to formation of a new hypothesis

encompassing the epigenetic aspect of PARP1. Inhibition of

PARP1 could also lead to inhibition of important oncogenes

that are controlled by PARP1-dependent histone modification.

This theory was already explored in Ewing sarcoma (Brenner

et al., 2012) and BRCA1/2-deficient breast cancer patients (Kim

et al., 2019).

PARP inhibitors—In clinical use

Based on their presumed mechanism of action, PARP inhibitors

are currently approved for the treatment of breast, ovarian, pancreatic,

and prostate cancers carrying BRCA1/2 mutations. However, their

application is limited by the relatively low percentage of BRCA1/2m

occurring in 10%–15% of breast and ovarian, 4%–7% of pancreatic

and 1.5% of prostate tumors (Bryant et al., 2005) (Iqbal et al., 2012).

On the other hand, recent studies showed PARPi might be effective in

tumors which do not carry any BRCA1/2m, but have different

alternative HR deficiencies or other DDR gene alterations (Bryant

et al., 2005) (Turner et al., 2008) (Jonsson et al., 2019). Moreover,

tumor cells face both oxidative and replicative stress, which, as studies

suggest, makes themmore sensitive to blocking DNA repair pathways

i.e. using PARPi monotherapy (Majuelos-Melguizo et al., 2015)

(Schoonen et al., 2017) (Michelena et al., 2018). These studies

broaden the possible application of PARPi in tumor therapies.

All four PARPi approved for treatment (olaparib,

talazoparib, niraparib, and rucaparib) share similarities on

the molecular level. The common element of their chemical

structure is an aromatic system that mimics nicotinamide (a

part of NAD+), allowing PARPi to compete with NAD+ for

PARP binding. The precise way in which a given PARPi

engages with the NAD+-binding pocket determines how

efficient it is at outcompeting NAD+ and thus blocking the

catalytic activity (including automodification). Additionally,

PARPi extend to a varying degree towards the HD domain and

can affect the position and folding of HD helices. Since the HD

is allosterically coupled—via the WGR—with DNA breaks,

PARPi can in principle allosterically modulate DNA binding,

in addition to affecting it indirectly via PARP

automodification inhibition. In terms of the allosteric

effects, PARPi can be divided into threegroups: 1)

promoting allosteric retention on DNA (including several

PARPi not yet used in the clinic), 2) allostery-neutral drugs

(olaparib, talazoparib), and 3) drugs having an allosteric pro-

release effect (rucaparib, niraparib, veliparib), as proposed

(Zandarashvili et al., 2020). However, later studies of Lunger’s

group (Rudolph et al., 2022) (Rudolph et al., 2021b) showed

the affinity of PARPi depends rather on known trapping

properties than the allosteric effect, which is additional and

either neutral or negative in all existing clinical PARPi. By

determining both the affinity for the NAD+ pocket and any

potential allosteric effects, the molecular structure of PARPi is

key to determining their molecular properties including

trapping potential. Here, we briefly introduce the quartette

of PARPi, more detailed description covering the FDA/EMA

recommendations can be found in Table 1.

Olaparib (Lynparza) was the first drug to be approved in

2014 by EMA and FDA in clinical use as monotherapy for the

treatment of advanced germline BRCA1/2m ovarian cancer

(Wiggans et al., 2015) (Deeks, 2015).

Since the first approval of olaparib in clinic, several next-

generation PARPi (i.e. talazoparib, niraparib, and rucaparib)

have been tested in clinical trials (Murai et al., 2012).

Talazoparib (Talzenna), a drug targeting both PARP1 and

PARP2 (Shen et al., 2013), was approved in 2018 for the

treatment of the germline BRCA1/2m-advanced or metastatic

HER2-negative breast cance (Ettl et al., 2018) (Hoy, 2018).

Talazoparib has an exceptionally high affinity for PARP1 (up

to 100 fold higher trapping efficiency than olaparib) and

therefore requires very low concentration to produce an effect

that would require a considerably higher concentration of

olaparib. Nevertheless, since 2018, talazoparib has not been

approved for any further treatment. The most selective

PARP1 and PARP2 inhibitor in clinical use is considered to

be niraparib (Thorsell et al., 2017). Niraparib (Zejula) was

approved in 2017 in the US and the EU for maintenance
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treatment of reoccurring ovarian, fallopian, and primary

peritoneal carcinomas, regardless of their BRCA1/2m status, in

patients that show complete or partial response to chemotherapy

(Mirza et al., 2016) (Del Campo et al., 2019) (Scott, 2017).

Unlike olaparib and niraparib, rucaparib (Rubraca) inhibits

PARP3 in addition to PARP1 and PARP2. As PARP3 has been

suggested to activate the enzymatic activity of PARP1 in the

absence of DNA, rucaparib’s ability to inhibit PARP3 may

potentiate its effects compared to olaparib or niraparib

(Loseva et al., 2010). It was first approved by FDA in 2016 for

somatic and germline BRCA1/2m advanced ovarian carcinomas

in patients following multiple chemotherapy trials (Oza et al.,

2017) (Syed, 2017).

To date, all four clinically-approved PARPi have been tested

in various clinical trials to broaden their application into different

cancers (Table 2). The highly specific mechanism of action of

PARPi does not exclude their toxicity, especially considering

PARPs comprehensive role and its omnipresence in the cell.

PARPi show side effects that are characteristic for the class and

for each drug separately that should be considered while making

clinical decisions (LaFargue et al., 2019). (Supplementary

Table S1).

PARP inhibitors—Resisitance

One of the biggest obstacles, whichmust be faced in the successful

translation of PARPi into the clinic as an anti-cancer therapy, is

frequently observed tumor resistance. The most well-known

mechanism of DNA repair developed by tumor cells is the

restoration of HR activity (Noordermeer and van Attikum, 2019).

The mechanisms responsible for this are: recreation of BRCA1/

2 activity, observed in clinical trials in patients with BRCA1/2m

cancers (Kondrashova et al., 2017) (reverse mutations (Domchek,

2017) or gene fusion under the transcriptional control of heterologous

promoter (Ter Brugge et al., 2016)) and suppression of NHEJ (caused

TABLE 2 List of selected PARP inhibitor monotherapy trials. Full access to the research studies description is available on ClinicalTrials.gov.

PARP
inhibitor

Tumor Phase Status Trial ID (NCT
number)

Olaparib Pancreatic acinar cell carcinoma 2 Recruiting NCT05286827

Castration-resistant prostate adenocarcinoma 2 Recruiting NCT04951492

Mesothelioma 2 Recruiting NCT04515836

BRCAwt platinum-sensitive recurrent ovarian cancer 2 Recruiting NCT04091204

Metastatic renal cell carcinoma 2 Recruiting NCT03786796

Oral squamous cell carcinoma 1, 2 Recruiting NCT03085147

Rucaparib Metastatic castration-resistant prostate cancer, epithelial ovarian cancer, fallopian tube
cancer, peritoneal cancer

3 Enrolling by
invitation

NCT04676334

Metastatic endometrial cancer 2 Recruiting NCT03617679

Niraparib Recurrent gliomas 2 Recruiting NCT05297864

Endometrial cancer Early 1 Not yet recruiting NCT05289648

Metastatic breast cancer in germline PALB2m carriers 2 Not yet recruiting NCT05232006

Leiomyosarcoma 2 Not yet recruiting NCT05174455

Advanced PALB2m tumors 2 Recruiting NCT05169437

Tumors metastatic to central nervous system 2 Recruiting NCT04992013

HPV-negative squamous cell carcinoma of head and neck 2 Recruiting NCT04681469

Ovarian cancer 2 Recruiting NCT04507841

Castration-resistant prostate adenocarcinoma 2 Recruiting NCT04288687

Metastatic melanoma with genetic HR mutation 2 Recruiting NCT03925350

Metastatic esophageal cancer, gastric cancer 2 Recruiting NCT03840967

Pancreatic cancer 2 Recruiting NCT03601923

Talazoparib Acute myeloid leukemia, myelodysplastic syndrome 1 Recruiting NCT03974217

Malignant solid neoplasms (breast carcinoma, gastric carcinoma, ovarian
carcinoma etc.)

2 Recruiting NCT04550494

Ovarian cancer, fallopian tube cancer 1 Recruiting NCT04598321
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by specific 53BP1 mutation in BRCA1 protein sequence) (Bouwman

et al., 2010) (Hurley et al., 2019).

Downregulation of poly (ADP-ribose) glycohydrolase

(PARG) protein levels is another hypothesized mechanism of

PARPi resistance. Some studies suggest that depletion of PARG

leads to PARPi resistance in BRCA2-deficient mouse mammary

tumor models, which results in increased PAR levels even when

PARP1 is largely or partially inhibited, thus counteracting

PARP1 trapping and promoting PARPi resistance (Miwa

et al., 1974) (Gogola et al., 2018). Moreover, miRNA

expression patterns (especially miRNA-622 level) and drug

efflux are also known to act as resistance mechanisms in

PARPi therapy (Choi et al., 2016) (Rottenberg et al., 2008)

(Vaidyanathan et al., 2016).

Immune checkpoint inhibitors—In
brief

The observed resistance toward PARPi triggered

development of strategies combining PARPi with other

therapies. The beforementioned mechanism of PARP trapping

is known to sensitize cells to an alkylating agent temozolomide,

while the catalytic inhibition enhances the effect of

topoisomerase inhibitors (Murai et al., 2012) (Murai et al.,

2014). The results of combining chemotherapy with PARPi

are confounding, as the dose-limiting tissue toxicity is often

reported. Also, due to the overlapping mechanisms of action, the

mechanisms of resistance can also be shared and become a

prominent limiting factor. This top of the iceberg of

mechanistic complexity of action of PARPi and chemotherapy

agents resulted in relatively slow development of combination

therapies (Dréan et al., 2016) (Lu et al., 2018). Despite this, a

recent meta-analysis shows a promising, yet cautious, view on

this topic (Ren et al., 2021).

An interesting direction of development of new combined

therapies seems to be combination of PARPi with

immunotherapies, one of the most promising being immune

checkpoint inhibitors (ICIs). ICIs block surface proteins: T

lymphocyte-associated antigen-4 (CTLA4) and programmed

cell death receptor-1 (PD1) expressed by activated T-cells, and

its ligand PD-L1 (Carlino et al., 2021). The mechanism of action

of ICIs is based on enhancement of the immune response against

cancer, namely the activation of T cells, which are stimulated by

their surface receptors TCR and a costimulatory signal provided

by CD28 (Lucas et al., 1995). PD-1 and CTLA4 are vital

transmembrane receptor proteins engaged in the

downregulation of T cells. PD1 binds to its PD-L1 ligand,

which is present on tumor cells and antigen-presenting

cells, causing a cascade of intracellular reactions leading to

inactivation of the CD28 protein and inhibition of T cell

activation (Walunas et al., 1996) (Brown et al., 2003) (Ishida

et al., 2002) (Freeman et al., 2000). The anti-stimulatory effect

of CTLA4 is slightly weaker. It is based on the competitive

binding of CD28 ligands—B7-1 (CD80) and B7-2 (CD86) -

located on antigen presenting cells (APC) with higher

affinity (Peeraphatdit et al., 2020) (Peyraud and Italiano,

2020) (Wu et al., 2021) (Walunas et al., 1994) (Schweitzer

and Sharpe, 1998). Malignant cells can create

immunosuppressive tumor microenvironment (TME).

TME arising relates to recruitment of regulatory T-cells (Treg)

(Li et al., 2020). In TME PD1 and CTLA4 on T-cells and PD-L1

on cancer cells expression is upregulated. That prevents the

effective anti-tumor immune response. Blocking these

molecules by ICIs allows eliminating local suppression and

inducing cancer-cell killing by CD8 positive T cells producing

interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α)
(Carlino et al., 2021) (Rameshbabu et al., 2021). The simplified

rationale for combination of PARPi and ICIs was shown in

Figure 3.

The application of ICIs into clinical cancer immunotherapy

has a huge impact on patients’ life and cancer response to

applied therapy. Since 2011, many ICIs have been approved by

FDA. Presently available ICIs are targeting CTLA4

(ipilimumab), PD1 (nivolumab, pembrolizumab,

camipilimab) and PD-L1 (atezolizumab, avelumab,

durvalumab). Their indications include melanoma (Carlino

et al., 2021) (Larkin et al., 2015), renal cell carcinoma, non-

small cell lung carcinoma (NSCLC), head and neck squamous

cell carcinoma (HNSCC), metastatic urothelial carcinoma,

gastric cancer, metastatic triple negative breast cancer,

hepatocellular carcinoma (HCC), solid tumors, Merkel cell

carcinoma, colorectal cancer, classical Hodgkin’s lymphoma.

Many clinical trials are currently underway, so the list of

approved drugs and their indications can be expected to

expand (Twomey and Zhang, 2021) (Lee et al., 2022).

(Supplementary Table S2)

Combining PARPi therapy with agents interacting with

PD1/PD-L1 pathways was based on observations that DNA-

damaging agents lead to the activation of interferon

pathways due to DNA damage (Bakhoum et al., 2018). It

has also been observed that the level of interferon expression

has an impact on levels of PD-L1 (Garcia-Diaz et al., 2017)

and that PARPi themselves cause upregulation of PD-L1

(Jiao et al., 2017). The combination of these three pieces of

information suggests the potential of combining PARP

inhibitors as a DNA-damaging agent and drugs

interacting with PD1/PD-L1 pathways. Moreover,

numerous mutations occurring in tumor cells, particularly

the non-synonymous single nucleotide variants (nsSNVs),

inevitably lead to the tumor mutation burden (TMB) and

may lead to the increase of immunogenic peptides, which are

known to be significantly correlated with the ICI response

(Snyder et al., 2014) (Rizvi et al., 2015) (Hellmann et al.,

2018). TMB is also thought to be correlated with the

neoantigen load on the tumor cells, being an important
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predictive factor of the therapeutic response of ICIs

(Schumacher and Schreiber, 2015) (Lee et al., 2018)

(McGranahan et al., 2016). Highly mutated tumors often

exhibit deficiencies in DDR pathways, which are also

suggested to be closely related to the TMB (Mouw et al.,

2017). Thus, a possible novel therapeutic approaches that

combine ICIs with DDR blocking agents have been

considered. Here we focus on the combination of ICIs

and PARPi, the latter being one of the most effective

agents in their field.

Combination of PARPi and anti-PD1/
PD-L1 ICIs—Clinical trials

Based on the promising results of various preclinical studies

providing a rationale for combining PARPi with immunotherapy

in cancer patients, (Jiao et al., 2017) (Wang et al., 2019b) (Ding

et al., 2018) (Pantelidou et al., 2019) (Shen et al., 2019), several

clinical trials have been conducted (Table 3). A significant group

of the available clinical trials focused on non-small cell lung

carcinoma (NSCLC). A study, evaluating dose and safety of

FIGURE 3
PARP inhibitors and immune checkpoint inhibitors–molecular rationale. (A) CTLA4 and PD1 are surface molecules present on T-cells.
CTLA4 binds with the B7 molecule and PD1 binds with PD-L1 present on antigen presenting cells (APCs) and tumor cells. This downregulates the
immunogenic response of both T-cells, allowing tumor cells to grow. (B) Immune checkpoint inhibitors (ICIs) by binding with CTLA4 and PD(L)
1 block the downregulation of T-cells allowing them to eliminate tumor cells with the immune response. Also tumor cells genome instability
makes them also more prone to the tumor mutation burden (TMB) and mutation overload leads to their death. (C) PARP role in DNA restoration
allows tumor cells to repair DNA lesions and mitigate the TMB, eventually enabling them to evade the immune response. (D) PARP inhibitors by
blocking the PARP DNA repair pathways in tumor cells stop the DNA restoration processes, exposing tumor cells to the immune response of T-cells
under the treatment of ICIs. Created with BioRender.com.
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TABLE 3 List of selected PARP inhibitors and immune checkpoint inhibitors combination therapies. Full access to the research studies description is
available on ClinicalTrials.gov.

PARP
inhibitor

Immune
checkpoint
inhibitor

Tumor Phase Status Trial ID (NCT
number)

Olaparib Tremelimumab Platinum-sensitive advanced epithelial ovarian, fallopian tube, or
primary peritoneal carcinoma

2 Active, not
recruiting

NCT04034927

Pembrolizumab Recurrent or metastatic squamous cell carcinoma of head and neck 2 Recruiting NCT04643379

Advanced pancreatic cancer patients with germline BRCA1/2m 2 Recruiting NCT04548752

Recurrent or metastatic cervical cancer patients who had disease
progression during or after platinum-based chemotherapy

2 Active, not
recruiting

NCT04641728

Advanced HER2-negative breast cancer with various DDR
mutations

2 Not yet
recruiting

NCT05033756

Advanced, metastatic melanoma with the genetic HR-mutation 2 Recruiting NCT04633902

Advanced BRCAm or homology-directed repair-defect breast cancer 2 Recruiting NCT03025035

Metastatic pancreatic adenocarcinoma with high tumor mutation
burden

2 Not yet
recruiting

NCT05093231

HR-mutated or HRD-positive advanced or metastatic solid tumors 2 Recruiting NCT04123366

Platinum-sensitive recurrent ovarian cancer 2 Recruiting NCT05158062

Recurrent/metastatic, platinum resistant nasopharyngeal cancer 2 Recruiting NCT04825990

Newly diagnosed treatment-naïve limited-stage small cell lung
cancer

3 Recruiting NCT04624204

Locally advanced or metastatic gastric carcinoma 2 Recruiting NCT04209686

Metastatic triple-negative breast cancers 2 Recruiting NCT04683679

BRCA non-mutated patients with platinum-sensitive recurrent
ovarian cancer

2 Enrolling by
invitation

NCT04361370

Locally advanced or metastatic cholangiocarcinoma 2 Recruiting NCT04306367

Advanced or recurrent cervical carcinoma after standard
chemotherapy

2 Recruiting NCT04483544

Unresectable, locally advanced, stage III NSCLC 3 Recruiting NCT04380636

Untreated metastatic pancreatic ductal adenocarcinoma 2 Recruiting NCT04753879

Atezolizumab Locally advanced unresectable and or metastatic HER-negative
breast cancer

2 Active, not
recruiting

NCT02849496

Durvalumab Prior to primary debulking surgery in high-grade epithelial ovarian
cancer

2 Recruiting NCT04644289

Maintenance therapy in BRCAwt recurrent ovarian cancer 2 Recruiting NCT04742075

IDH-mutated solid tumors (glioma, cholangiocarcinoma, and solid
tumors)

2 Recruiting NCT03991832

DDR-mutated castration sensitive biochemically recurrent non-
metastatic prostate cancer

2 Active, not
recruiting

NCT03810105

Biochemically recurrent prostate cancer in men predicted to have a
high neoantigen load

2 Recruiting NCT04336943

EGFR-mutated adenocarcinomas that transform to SCLC and other
neuroendocrine tumors

2 Recruiting NCT04538378

Advanced epithelial ovarian cancer in relapse 2 Active, not
recruiting

NCT04015739

Newly diagnosed advanced or recurrent endometrial carcinoma 3 Recruiting NCT04269200

Locally advanced or metastatic ER positive HER2 negative breast
cancer

2 Recruiting NCT04053322

Stage IV NSCLC 2 Active, not
recruiting

NCT03775486

Newly diagnosed advanced ovarian, fallopian tube or primary
peritoneal carcinoma or carcinosarcoma

3 Recruiting NCT03737643

Recurrent, persistent or metastatic endometrial cancer 2 Recruiting NCT03660826

Renal cell cancer 2 Recruiting NCT03741426

(Continued on following page)
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TABLE 3 (Continued) List of selected PARP inhibitors and immune checkpoint inhibitors combination therapies. Full access to the research studies
description is available on ClinicalTrials.gov.

PARP
inhibitor

Immune
checkpoint
inhibitor

Tumor Phase Status Trial ID (NCT
number)

Platinum-resistant recurrent epithelial ovarian cancer, primary
peritoneal or fallopian cancer with prior bevacizumab treatment

2 Recruiting NCT04739800

Platinum-resistant recurrent ovarian cancer 2 Recruiting NCT03699449

NSCLC patients who progressed on an anti-PD1/PD-L1 containing
therapy

2 Recruiting NCT03334617

Advanced soft tissue sarcoma 3 Recruiting NCT03784014

Breast cancer 2 Recruiting NCT01042379

Tremelimumab +
durvalumab

HR-mutated advanced or metastatic solid tumors (breast, lung, head
and neck, clear cell renal, endometrial, ovarian, urothelial and
prostate cancer

2 Recruiting NCT04169841

Niraparib Cetrelimab Aggressive variant prostate cancers 2 Recruiting NCT04592237

Dostralimab Metastatic, PD-L1-negative or immunotherapy-refractory triple-
negative breast cancer

2 Recruiting NCT04837209

Small cell lung cancer (SCLC) and other high-grade neuroendocrine
carcinomas

2 Recruiting NCT04701307

Recurrent or metastatic head and nead squamous carcinoma 2 Recruiting NCT04313504

Recurrent or progressive cervix cancer 2 Recruiting NCT04068753

Relapsed epithelial ovarian cancer after treatment with PARPi 2 Not yet
recruiting

NCT05126342

Advanced NSCLC and/or malignant pleural mesothelioma, and
positive for PD-L1 expression and germline or somatic mutations in
the HR genes

2 Recruiting NCT04940637

HPV-negative squamous cell carcinoma of head and neck 2 Recruiting NCT04681469

Recurrent or primary advanced endometrial cancer 3 Active, not
recruiting

NCT03981796

Metastatic or recurrent endometrial or ovarian carcinosarcoma 2,3 Recruiting NCT03651206

Relapsed malignant mesothelioma 2 Recruiting NCT03654833

Ovarian cancer progressing post-PARPi 2 Not yet
recruiting

NCT05065021

Pembrolizumab Advanced or metastatic NSCLC following completion of standard of
care first-line platinum-based induction chemotherapy with
pembrolizumab

3 Recruiting NCT04475939

Atezolizumab Recurrent ovarian, tubal or peritoneal cancer 3 Active, not
recruiting

NCT03598270

Sintilimab Rare tumors 2 Not yet
recruiting

NCT04423185

Talazoparib Nivolumab BRCA- or BRCAness-mutated resectable or metastatic melanoma 2 Recruiting NCT04187833

Atezolizumab Advanced cancer 2 Recruiting NCT02693535

Avelumab Locally advanced or metastatic clear-cell renal cell carcinoma 2 Recruiting NCT04068831

Locally advanced/metastatic urothelial carcinoma 2 Recruiting NCT04678362

Recurrent or persistent endometrial cancer 2 Recruiting NCT02912572

Epithelial ovarian cancer 3 Recruiting NCT05059522

Rucaparib Nivolumab Refractory leiomyosarcoma 2 Active, not
recruiting

NCT04624178

Advanced or metastatic cholangiocarcinoma 2 Recruiting NCT03639935

Relapsed ovarian, fallopian tube or peritoneal cancer 2 Recruiting NCT02873962

Platinum-sensitive SCLC 2 Recruiting NCT03958045

Atezolizumab DDR-deficient or platinum sensitive solid tumors 2 Recruiting NCT04276376
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veliparib combined with nivolumab and platinum doublet

chemotherapy (pemetrexed and paclitaxel) focused on patients

with metastatic and advanced NSCLC [NCT02944396]1. The

overall response rate (ORR) reached 27% for cohort with

pemetrexed and 17% for paclitaxel. This trial also confirmed

the anticipated safety signals with no additional toxicity upon

adding veliparib to these regimens (Clarke et al., 2021).

PD-L1 is known target for most of the ICIs in use as

monotherapies, therefore the impact of PD-L1 expression

differences between individuals on the trials involving ICIs and

PARPi was probed in an interventional JASPER phase II study

[NCT03308942]2 tested the combination of niraparib and

pembrolizumab or dostarlimab on a group of chemotherapy-naïve

patients with locally advanced ormetastatic NSCLCwith no prior PD-

(L1) chemotherapy. The groupwas divided into two cohorts regarding

the PD-L1 expression status of patients: PD-L1-rich (tumor

proportion score–TPS ≥ 50%) and PD-L1-poor (TPS <50%). The
ORR, duration of response (DOR), progression-free survival (PFS),

and safety were assessed as endpoints. The study demonstrated that

the combination of niraparib and pembrolizumab induces durable

responses in patients with NSCLC, with larger effects in the PD-L1-

rich cohort. Moreover, the combination showed no new safety signals

(Ramalingam et al., 2022). As this combinationwas shown to be active

and well tolerated, the ZEAL-1L phase III study [NCT04475939]3 was

launched to compare the efficacy and safety of maintenance of

niraparib + pembrolizumab versus pembrolizumab + placebo in

patients with NSCLC (Ramalingam et al., 2021).

Nonetheless, the combination of another PARPi, olaparib,

and durvalumab in a phase II study [NCT02484404]4 applied to

patients with relapsed SCLC did not meet the present bar for

efficiency. The tumor responses were predicted by the preexisting

TILs level, which suggests an immune-mediated response as a

predictive marker. Therefore, identification of patients with

inflamed phenotype at the baseline may help to identify those

most likely to respond to ICIs, although the predictive value of

the preexisting CD8+ T-cell infiltrates must be confirmed in

larger cohorts (Thomas et al., 2019).

Although in case of prostate cancer, ICIs have been shown to be

ineffective as single agents, the results from a cohort analysis of the

phase II CheckMate 9KD trial [NCT03338790]5 suggest that the

treatment with nivolumab plus rucaparib may produce positive

results in patients with HRD-positive chemotherapy naive

metastatic castration-resistant prostate cancer (mCRPC). However,

there was limited clinical activity of the combination therapy in

patients with HRD-negative tumors. The confirmed ORR among

the patients with HRD-positive tumors was 25% in comparison with

5.3% for the HRD-negative patients (Fizazi et al., 2022).

Moreover, the combination of olaparib (agent that

demonstrated an improvement in median PFS in patients

with prostate cancer) and durvalumab evaluated in the

castration-resistant prostate cancer in a phase I/II

MEDI4736 study [NCT02484404] showed eight out of

17 patients exhibited radiographic and/or PSA responses.

The efficacy was noted particularly in men with DDR

abnormalities (12-month PFS probability of DDR-

deficient reached 83,3%, vs. 36,4% in DDR-proficient

patients). Those with fewer peripheral myeloid-derived

suppressor cells (pMDSC) were also more likely to

respond. This suggests DDR deficiency and pMDSC level

as predictive markers of the response (Karzai et al., 2018).

In order to identify biomarkers of a promising response

to a combined PARPi and ICI, immunogenomic profiling

and single-cell imaging have been performed on tumor

samples subjected to such regimens. In a phase I/II trial

[NCT02657889]6 of niraparib and pembrolizumab in

ovarian cancer two determinants of response were

identified: mutational signature 3 (correlating with the

HR in DDR), and positive immune score as a function of

interferon-primed exhausted CD8+ T cells in the tumor

microenvironment. The interactions of exhausted CD8+

T-cells, PD-L1+ macrophages, and PD-L1 tumor cells

with each other were noted in the single-cell spatial

analysis, and PD-L1 tumor cells were shown to be the

mechanistic response determinants, confirming the

observations from previous studies (Färkkilä et al., 2020).

1 Phase 2, Multi-Arm Study of Niraparib Administered Alone and in
Combination With a PD-1 Inhibitor in Patients With Non-Small Cell
Lung Cancer. Available online at: https://clinicaltrials.gov/ct2/show/
NCT03308942 (accessed 17 October 2022).

2 Phase 2, Multi-Arm Study of Niraparib Administered Alone and in
Combination With a PD-1 Inhibitor in Patients With Non-Small Cell
Lung Cancer, Available online at: https://clinicaltrials.gov/ct2/show/
NCT03308942 (accessed 17 October 2022).

3 Phase 3, Randomized, Double-Blind, Placebo-Controlled, Multicenter
Study Comparing Niraparib Plus Pembrolizumab Versus Placebo Plus
Pembrolizumab as Maintenance Therapy in Participants Whose
Disease Has Remained Stable or Responded to First-Line Platinum
Based Chemotherapy With Pembrolizumab for Stage IIIB/IIIC or IV
Non-Small Cell Lung Cancer (ZEAL-1L). Available online at: https://
clinicaltrials.gov/ct2/show/NCT04475939 (accessed 17 October
2022).

4 Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody
Durvalumab (MEDI4736) in Combination With Olaparib and/or
Cediranib for Advanced Solid Tumors and Advanced or Recurrent
Ovarian, Triple Negative Breast, Lung, Prostate and Colorectal
Cancers, Available online at: https://www.clinicaltrials.gov/ct2/show/
NCT02484404 (accessed 17 October 2022).

5 A Phase 2 Study of Nivolumab in Combination With Either Rucaparib,
Docetaxel, or Enzalutamide in Men With Castration-resistant
Metastatic Prostate Cancer. Available online at: https://clinicaltrials.
gov/ct2/show/NCT03338790 (accessed 17 October 2022).

6 Phase 1/2 Clinical Study of Niraparib in Combination With
Pembrolizumab (MK-3475) in Patients With Advanced or Metastatic
Triple-Negative Breast Cancer and in Patients With Recurrent Ovarian
Cancer. Available online at: https://clinicaltrials.gov/ct2/show/
NCT02657889 (accessed 17 October 2022).
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Patients with various solid tumors, including ovarian, breast and

gastric cancer, were investigated in a phase I/II study MEDIOLA

[NCT02734004]7 evaluating the effect of the combination of olaparib

and durvalumab. In a germline BRCA1/2m metastatic breast cancer

group, 80% of patients had disease control at 12 weeks and 50% at

28 weeks.HigherORR and longer overall survival (OS)were observed

in patients who had no prior line of chemotherapy in comparison to

those with two prior lines (78% ORR and 21,3 months OS vs. 50%

ORR and 16,9 months OS respectively). The investigated

combination of agents exhibited promising activity and safety

consistent with the profiles of individual agents (Domchek et al.,

2020). In another cohort of this study enrolling patients with germline

BRCA1/2m platinum-sensitive relapsed ovarian cancer, showed ORR

of 63% and a 12-week DCR of 81%. The combination was well

tolerated and the tumor responses in this initial analysis were higher in

comparison with those reported for single-agent therapy with PARPi

(Drew et al., 2018). However the results of another cohort of this study

compassing patients with relapsed gastric cancer were less promising.

The ORR was 10% and the disease control rate (DCR) at 26%. The

combination was tolerable, with no unexpected adverse events. The

durable responses after the combination of olaparib and durvalumab

suggest synergistic treatment effect of the combination in some

patients. Nonetheless, DCR value did not meet the target because

of the high rate of early progressive diseases (PDs) occuring after the

olaparib run in. Therefore, due to the initial treatment failures, an

addition of newmore effective therapies to the combination should be

taken into account (Bang et al., 2019).

Besides this, several different phase I/II clinical trials were

performed to verify the safety, toxicity and tolerability of the

combination of PARPi and ICIs on patients with advanced

solid tumors. In phase Ib IOLite study [NCT03307785]8

dostarlimab in combination with niraparib and niraparib +

bevacizumab was shown to be well tolerated. Besides this, the

study also evaluated combination of chemotherapy with PARPi

and ICI, also with good tolerability. None of the combination

agents used in this study altered the pharmacokinetics of

dostarlimab nor niraparib. Moreover, no new safety signals

were noted (Gabrail et al., 2019). In another phase I/II

TOPACIO trial [NCT02657889]9 therapy combining niraparib

and pembrolizumab in patients with ovarian and triple negative

breast carcinoma showed general clinical improvement. However,

the ovarian carcinoma cohort did not meet the primary endpoint

with ORR of 18%, and the median duration of the response

was not reached as well (Konstantinopoulos et al., 2019).

The significantly higher response rates in patients with BRCA1/

2m tumors was observed only in the breast cancer arm, with

ORR of BRCA1/2m of 74% vs. wtBRCA1/2 11%. The PFS and

DCR were 8.3 months and 80% for BRCAm, and 2.1 month

with 33% for wtBRCA1/2, respectively (Vinayak et al., 2019).

Finally, an ongoing JAVELIN PARP Mendley phase Ib/II

study [NCT03330405]10 enrolled patients with advanced breast

cancer cohorts treated with avelumab plus talazoparib. It showed

preliminary antitumor activity and safety profile comparable to

that of these agents used as monotherapies (Yap et al., 2020).

The clinical trials regarding combined therapies of PARPi

and ICIs on patients with advanced solid tumors comprise also a

novel agents. Pamiparib is an experimental selective PARP1/2i

recently approved in China for the treatment of germline

BRCA1/2m-associated recurrent advanced ovarian, fallopian

tube or primary peritoneal cancer previously treated with two

or more lines of chemotherapy [NCT03333915]11 (Markham,

2021). The safety of combination of pamiparib and tiselizumab

was explored in a phase Ia/b trial [NCT02660034]12 on patients

with advanced solid tumor. The combination treatment achieved

an ORR of 20% and was well-tolerated, although the higher rate

of immune-related hepatitis was noted in 8% of patients

(Friedlander et al., 2019).

Even though the standard of care for muscle-invasive

bladder cancer (MIBC) remains the relatively curative radical

cystectomy, new non-surgery treatment approaches, including

PARPi and ICIs, are being developed. The preliminary data

from the phase II NEODURVARIB trial [NCT03534492]13

7 A Phase I/II Study of MEDI4736 (Anti-PD-L1 Antibody) in Combination
With Olaparib (PARP Inhibitor) in Patients With Advanced Solid Tumors.
Available online at: https://clinicaltrials.gov/ct2/show/NCT02734004
(accessed 17 October 2022).

8 Phase 1bDose-Finding Study of Niraparib, TSR-022, Bevacizumab, and
Platinum-Based Doublet Chemotherapy in Combination With TSR-
042 in Patients With Advanced or Metastatic Cancer. Available online
at: https://www.clinicaltrials.gov/ct2/show/NCT03307785 (accessed
17 October 2022).

9 Phase 1/2 Clinical Study of Niraparib in Combination With
Pembrolizumab (MK-3475) in Patients With Advanced or Metastatic
Triple-Negative Breast Cancer and in Patients With Recurrent Ovarian
Cancer. Available online at: https://clinicaltrials.gov/ct2/show/
NCT02657889 (accessed 17 October 2022).

10 Phase 1/2 Clinical Study of Niraparib in Combination With
Pembrolizumab (MK-3475) in Patients With Advanced or Metastatic
Triple-Negative Breast Cancer and in Patients With Recurrent Ovarian
Cancer. Available online at: https://clinicaltrials.gov/ct2/show/
NCT02657889 (accessed 17 October 2022).

11 An Open Label, Multi-Center Phase I/II Study to Evaluate Efficacy and
Safety of BGB-290 in Chinese Subjects With Advanced Ovarian
Cancer, Fallopian Cancer, and Primary Peritoneal Cancer or
Advanced Triple Negative Breast Cancer. Available online at:
https://clinicaltrials.gov/ct2/show/NCT03333915 (accessed
17 October 2022).

12 A Phase 1/1b, Open Label, Multiple Dose, Dose Escalation and
Expansion Study to Investigate the Safety, Pharmacokinetics and
Antitumor Activity of the Anti-PD-1 Monoclonal Antibody BGB-
A317 in Combination With the PARP Inhibitor BGB-290 in Subjects
With Advanced Solid Tumors. Available online at: https://clinicaltrials.
gov/ct2/show/NCT02660034 (accessed 17 October 2022).

13 Impact of the Combination of Durvalumab (MEDI4736) Plus Olaparib
(AZD2281) Administered Prior to Surgery in the Molecular Profile of
Resectable Urothelial Bladder Cancer. Available online at: https://
clinicaltrials.gov/ct2/show/NCT03534492 (accessed 17 October
2022).
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suggest that durvalumab in combination with olaparib

administered prior to the surgery could be active and

tolerated neoadjuvant treatment for MIBC, with the

pathological complete response rate of 44,5% (Rodriguez-

Moreno et al., 2020).

Numerous clinical trials are still ongoing in a vast range of

cancers that will help to probe the features of the PARPi plus

anti-PD-(L)1 combination therapy.

Combination of PARPi and
CTLA4 inhibitors—Clinical trials

In contrast to the anti-PD(-L)1 combination, which is

investigated with much attention, the combination therapies

of anti-CTLA4 and PARPi are largely unexplored. Despite the

fact that previous studies demonstrated that tumors harboring

BRCA1/2 dysfunction and treated with PARPi could increase

tumor immunogenicity, therefore sensitizing tumor cells to

anti-CTLA4 agents, the whole process remains understudied

(Snyder et al., 2014) (Clarke et al., 2009) (McAlpine et al., 2012)

(Wen and Leong, 2019) (Brown et al., 2016) (Higuchi et al.,

2015).

Nonetheless, few important trials are currently

conducted. The combination of olaparib and tremelimumab

was verified in a phase I/II study [NCT02571725]14

involving women with BRCA1/2-deficient recurrent ovarian

cancer. The preliminary results demonstrated a significant

therapeutic effect along with acceptable tolerability (Adams

et al., 2017).

This combination of olaparib plus tremelimumab is also

under investigation in an ongoing phase II trial for patients

with recurrent ovarian, fallopian tube or peritoneal cancer

[NCT04034927]15.

In an ongoing phase II study [NCT04169841]16 the efficacy of

olaparib combined with double immunotherapy of durvalumab

and tremelimumab is being evaluated on patients with solid

cancers, who were selected for this study based on their HR repair

mutation profile and response after a previous olaparib

treatment. This is the first clinical trial evaluating the

combination of PARPi with ICI double therapy. Nonetheless,

the combination of durvalumab plus tremelimumab itself has

been studied before. To date, it has not shown significant

advantages in comparison with the durvalumab monotherapy

but displayed certain advantages over the traditional

chemotherapies in some tumors, although more data of

higher quality is required in this area (Arru et al., 2021).

Despite a relative shortage of published results regarding the

combination of PARPi and anti-CTLA4 antibodies, the ongoing

clinical trials may help to revive the promising antitumor activity

of this approach.

PARP inhibitors—Diagnostic tools

The successful introduction of PARPi into current

oncology treatment methods causes an urgent need to

develop modern techniques, which can help to predict

tumor sensitivity to this type of therapy. A useful role in

the selection process could be played by some specific

biomarkers.

The most predictive marker at present are BRCA1/2m (Ganguly

et al., 2016). Latest research studies demonstrated that a general testing

of ovarian cancer patients for the presence of BRCA1/2m could be

useful in planning anticancer therapy (Vos et al., 2020). Prediction of

PARPi sensitivity is facilitated by several interesting approaches. One

of them is BRCAnalysis CDx, which offers the analysis of

germlineBRCA1/2m–unfortunately, this method does not measure

HR deficiency and might miss some of the patients who could have

benefited from PARPi treatment (Gunderson and Moore, 2015).

Another one is FoundationOne Liquid CDx, which offers tests of

324 genes including BRCA1 and BRCA2 (Woodhouse et al., 2020).

Unfortunately, the status of BRCA1/does not always correlate with

tumor sensitivity to PARPi therapy (Jonsson et al., 2019). Luckily,

some other mutations have been described as potential biomarkers to

predict therapeutic efficiency (Criscuolo et al., 2019). Also, a HR

deficiency score was presented as a possible biomarker of

chemotherapy efficacy in some tumors (Telli et al., 2016), and it

could conceivably be extended to predicting the possible cancer

response to PARPi therapy. Furthermore, specific methylation

patterns could also be helpful in prediction of therapy effectiveness.

Recent research studies presented hypermethylation of RAD51

(Kondrashova et al., 2018) or hypermetylation of HOXA9

(Montavon et al., 2012) as such promising markers.

Other potentially valuable approaches are focused on the

assessment of the expression levels and modulation of various

14 Phase 1-2 Study of the Combination of Olaparib and Tremelimumab,
in BRCA1 and BRCA2 Mutation Carriers With Recurrent Ovarian
Cancer. Available online at: https://clinicaltrials.gov/ct2/show/
NCT02571725 (accessed 17 October 2022).

15 A Phase II Randomized Trial of Olaparib Versus Olaparib Plus
Tremelimumab in Platinum-Sensitive Recurrent Ovarian Cancer.
Available online at: https://clinicaltrials.gov/ct2/show/
NCT04034927 (accessed 17 October 2022).

16 Precision Medicine Phase II Study Evaluating the Efficacy of a Double
Immunotherapy by Durvalumab and Tremelimumab Combined With
Olaparib in Patients With Solid Cancers and Carriers of Homologous
Recombination Repair Genes Mutation in Response or Stable After
Olaparib Treatment. Available online at: https://clinicaltrials.gov/ct2/
show/NCT04169841 (accessed 17 October 2022).
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PARP1 regulators. One of these proteins is HPF1. Depletion of this

proteinmakes PARPimore effective and induces tumor cell sensitivity

to treatment with PARPi and other DNA-interacting drugs (Gibbs-

Seymour et al., 2016). Another one is Y-box-binding protein (YB1),

which inhibits PAR degradation by PARG (Alemasova et al., 2016).

YB1 was presented as a protein playing a crucial role in tumor cell

chemoresistance and a beneficial role of combining therapy with

PARP inhibitors and DNA damaging agents was suggested as a

potential answer to YB1 activity (Alemasova et al., 2018). The

assessment of the YB1 level in patients with tumors could also be

used as a promising biomarker in PARPi treatment. Moreover,

depletion of PARP1-interacting Src-associated substrate during

mitosis 68 kDA (Sam68), leads to impaired PARP1 activation,

establishing Sam68 as a potential PARP1 activator (Fu et al., 2016).

Using Sam68 as a biomarker could boost potential cancer therapy

(Zhang et al., 2015) (Zhang et al., 2009). The other tested proteinswere

Barrier to Autointegration Factor 1 (Banf1)—a negative regulator of

PARP1 activity (Bolderson et al., 2019) and TRIP12—ubiquitin

E3 ligase, which regulates PARP1 stability (Gatti et al., 2020).

These two proteins could also play an important role in the

prediction of success in PARPi therapy and need to be studied further.

Future perspectives and limitations

Recent years have brought plethora of studies exploring the

combination of PARPi with other agents. The efficacy of the

combination therapy of PARPi and ICIs, which we discussed in

this review, is being tested in numerous clinical trials.

Nonetheless clinical trials themselves are not fully conclusive.

Most of them rely on ORR or DCR, the early endpoints, which

provide information only about the initial phase of therapy, while

the prolonged monitoring data are still mostly undetermined.

Moreover, all current clinical trials are non-randomized,

allowing only cross-trial comparison. Thus, PARPi and ICI

treatment strategies should be optimized by recruiting

randomized controlled multi arms phase III trials, which are

designed to enable the interpretation of the effect of each drug

alone or in combination.

Another blind spot of clinical studies involving PARPi and

ICIs is that most of the tumor types where the combination

strategy was tested already had demonstrated significant

improvement from PARPi monotherapy and limited benefit

from ICI addition. Therefore, it would be reasonable to

investigate the new combination of PARPi and ICIs in a

group of patients that have an unmet anticancer clinical need,

rather than in those with well-established therapies. Thus,

studies involving patients who do not respond well to

PARPi or ICI monotherapies should be taken into account.

Finally, the schedule and timing of these studies should be

optimized to preserve tolerability and the associated impact

on health care costs should also be considered in terms of the

therapy duration.

Although the mechanism of the combinatorial effect of PARPi

and ICIs is now intensively investigated and several mechanisms

have been proposed to be involved in this process in HR-deficient

patients, like those with BRCA1/2 dysfunction, the rationale for

using this therapy on patients with functional HRmechanisms is yet

to be determined. Uncovering the rationale of this combining

therapy in non-HRD patients and more preclinical in vivo trials

will be crucial to pick up the target group of patients that would

benefit most of the therapy.

The crucial factor in identifying the optimal target

population of patients are biomarkers. Although in tumors

with BRCA1/2m or HRD the effect is beneficial, HR-proficient

patient markers are yet to be determined. Elucidating the

molecular profile of this population will allow answering the

question whether the tumors could be sensitized to ICIs by

PARPi. The deeper understanding of molecular mechanisms

of PARPi and ICI pathways should result in a collection of

biomarkers that could help to understand the potential sensitivity

and resistance.

Conclusion

PARPi monotherapy has proved to be a milestone in the

treatment of many BRCA1/2m cancers, bringing patients hope of

an effective therapy. Throughout the years many therapies

combining PARPi with different agents were proposed, ICIs

being the promising among them, Currently, numerous

clinical trials are ongoing, validating the combined therapies

with PARPi and ICIs. Although the studies do not encompass the

whole complexity of these agents, the available data is promising.

The key to comprehend the true power of PARPi- ICI

combination is an in-depth understanding of their molecular

mechanism. Identifying such biomarkers might also facilitate the

search for adequate biomarkers that could help to guide the

doctor’s hand to treat the patients in the most effective way and

find the most suitable place for the combination of PARPi and

ICIs in the clinic.
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