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It has been evident that N6-methyladenosine (m6A)-modified long noncoding RNAs (m6A-
lncRNAs) involves regulating tumorigenesis, invasion, and metastasis for various cancer
types. In this study, we sought to pick computationally up a set of 13 hub m6A-lncRNAs in
light of three state-of-the-art tools WGCNA, iWGCNA, and oCEM, and interrogated their
prognostic values in brain low-grade gliomas (LGG). Of the 13 hub m6A-lncRNAs, we
further detected three hubm6A-lncRNAs as independent prognostic risk factors, including
HOXB-AS1, ELOA-AS1, and FLG-AS1. Then, the m6ALncSig model was built based on
these three hubm6A-lncRNAs. Patients with LGG next were divided into two groups, high-
and low-risk, based on the median m6ALncSig score. As predicted, the high-risk group
was more significantly related to mortality. The prognostic signature of m6ALncSig was
validated using internal and external cohorts. In summary, our work introduces a high-
confidence prognostic prediction signature and paves the way for using m6A-lncRNAs in
the signature as new targets for treatment of LGG.
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INTRODUCTION

Gliomas are an umbrella term that includes the most common primary brain tumors of the central
nervous system (CNS). According to their histopathological features, they are graded on a scale of I
(the least malignant) to IV (the most malignant) by the World Health Organization (WHO) (Louis
et al., 2007). Accordingly, patients with brain low-grade gliomas (LGG) are assigned to the WHO
grade II-III gliomas and said to have a rare cancer type of CNS. Indeed, LGG is only held accountable
for about 15% of all brain and CNS tumors (Lu et al., 2020). Histologically, unlike higher grade
gliomas, LGG develops locally and slowly into the normal brain tissue instead of going outside the
brain. Although LGG in terms of their biological behaviour is benign and good prognosis, they are
most likely to transform into high-grade gliomas regardless of the traditional treatment approaches
of LGG applied, such as surgical treatment and postoperative radiotherapy (Duffau and Taillandier,
2015). Therefore, it is a pressing need to detect LGG-related biomarkers for early recognition and
diagnosis, and for development of individualized treatment approaches.

The heterogeneity of tumors is said to be caused by the accumulation of epigenetic alteration
(Yang et al., 2019). Aberrant expression of long non-coding RNAs (lncRNAs) in cancers has been
demonstrated being significant epigenetic regulatory molecules and effective biomarkers as well for
early diagnosis and therapy (Bach and Lee, 2018; Camacho et al., 2018). LncRNAs represent the RNA
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molecules whose size is greater than 200 nucleotides and which
are inability to be translated into a protein. Although lncRNAs are
among one of the poorest understood molecules, several previous
studies have investigated various lncRNAs and realized their roles
in a wide range of biological processes, such as eluding immune
destruction and surveillance, capacitating replicative immortality,
and activating invasion and metastasis (Gutschner and
Diederichs, 2012; Bach and Lee, 2018). For example, lncRNA
CCDC26 contributes significantly to higher mortality of LGG
patients (Enciso-Mora et al., 2013). Also in LGG, genetic
variation of lncRNA CDKN2B-AS1 exerts as a LGG-promoting
factor and influences susceptibility (Shi et al., 2013). Moreover,
previous studies have paid too many attentions to the
classification of high-grade gliomas or glioblastomas.
Therefore, biomarkers for prognostic differentiation of patients
with LGG have still left ambiguous. The goal of this study is to
discover the central role of lncRNAs with N6-methyladenosine
(m6A) modification in LGG.

m6A refers to DNA methylation at the N6 position of
adenosine and its modification has been demonstrated being
the post-transcriptional regulatory markers in various types of
RNAs, including lncRNAs. Functionally, lots of evidence have
reported that m6A modification of RNA was implicated in
affecting hub gene expressions, thereby resulting in a series of
malignant biological behaviors, such as tumorigenesis, invasion,
and metastasis (Jia et al., 2013; Roignant and Soller, 2017).
Importantly, there also exists m6A modification in lncRNAs.
For example, in prostate cancer, its bone metastasis is associated
largely with the regulation of lncRNA NEAT1-1 with m6A
modification on the Pol II ser2 phosphorylation, causing the
initiation of the complex CYCLINL1/CDK19/NEAT1-1 (Wen
et al., 2020). In the development of colorectal cancer by stabilizing
IGF2BP2, it is related to the regulation of lncRNA LINRIS on the
expression ofMYC to affect the process of glycolysis (Wang et al.,
2019). Therefore, studying m6A modification will give us further
biological insight into the interplay between lncRNAs versus
cancers.

This study discovered m6A-modified lncRNAs (m6A-
lncRNAs) in LGG. Specifically, we identified hub m6A-
lncRNAs signature and prognostic values, potentially giving
rise to novel targets for future investigations.

MATERIALS AND METHODS

Acquisition and Preprocessing of LGG Data
The lncRNA-seq expression profile and corresponding clinical
features of LGG patients, including age, histological diagnosis,
grade, gender, race, seizure history, first presenting symptom, first
presenting symptom longest duration, and radiation therapy,
were accessed from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/). Especially, we divided the
patient age into two groups using a threshold of 35 years of
age, as the age distribution of LGG patients reached a peak at this
number (Supplementary Figure S1). External cohort CGGA
mRNA-seq-693 (Wang et al., 2015; Liu et al., 2018) was
gained from Chinese Glioma Genome Atlas (http://www.cgga.

org.cn/download.jsp) to validate the prognostic value of screened
m6A-lncRNAs.

A total of 478 eligible patients with LGG were kept after using
hierarchical clustering to exclude four potential outliers
(Supplementary Figure S2), consisting of TCGA-HT-A5RA,
TCGA-QH-A6CX, TCGA-S9-A6WM, and TCGA-TM-A7C3,
and excluding the patients TCGA-P5-A5ET, TCGA-P5-A5EU,
and TCGA-TQ-A7RS whose overall survival (OS) ≤ 0. We used
the R tool biomaRt (version 2.46.1) (Durinck et al., 2005; Durinck
et al., 2009) for accessing Ensembl annotation. All missing genes,
being not in the biomaRt database, were removed. The identified
genes with m6A modification were retrieved from the RMVar
database (http://rmvar.renlab.org/index.html) (Luo et al., 2021).
Then, we randomly split the parental TCGA cohort into two sub-
cohorts, training set and test set, with the ratio of 7:3. We did not
see any statistically significant differences between them
(Table 1). As a result, the training set comprised 308 LGG
samples, which were used for analysis of m6A-lncRNA
signatures and generation of a prognostic risk model. A test
set of 170 LGG samples was used for independent validation of
the performance of the prognostic risk model.

Identification of the Hub m6A-lncRNAs
in LGG
In the training set, after intersecting lncRNAs with m6A-
mediated genes, we picked computationally up a list of hub
m6A-lncRNAs based on three state-of-the-art tools, including
the weighted gene co-expression network analysis (WGCNA), an
improved version of WGCNA (iWGCNA), and oCEM.

WGCNA (Langfelder and Horvath, 2008) first computed the
Pearson’s correlation coefficient of the pairwise m6A-lncRNAs
for constructing the similarity matrix. The similarity matrix was
transformed into a weighted adjacency matrix after a soft
threshold of β (Langfelder and Horvath, 2008) was identified.
Next, the adjacency matrix was transformed into topological
overlap matrix (TOM) measuring the connectivity between
genes. Then, in terms of dissimilarity measure (1-TOM),
average linkage hierarchical clustering was performed to
cluster the genes with similar expression profiles for producing
gene modules. The dissimilarity of module eigengenes (MEs) was
calculated. We constructed the unsigned m6A-lncRNA co-
expression network using the blockwiseModules function
(v1.69). All tuning parameters were left as default. The
minimum number of genes was set to 10 to ensure reliability
of the results. Genes with a high intramodular connectivity were
considered intramodular hub genes.

iWGCNA (Nguyen and Le, 2020) being an improved version
of WGCNA was proposed previously by us. Its improvement was
instead of hierarchically clustering the genes to detect co-
expressed modules with default agglomeration method, we
sought to determine the optimal method based on
agglomerative coefficients. Consequently, Ward’s hierarchical
clustering method was the best and the optimal soft-
thresholding β was 7 (signed R2 of 0.537, Supplementary
Figure S3) in this study. All remaining parameters were kept
as above.
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oCEM (Nguyen and Le, 2022) was very recently developed by
us to serve for the same task as the two tools above. The tool first
detected principal components using either the independent
component analysis (ICA) (Comon, 1994; Hyvärinen and Oja,
2000; Liebermeister, 2002) or the independent principal
component analysis (IPCA) (Yao et al., 2012). Then, it turned
the identified components into co-expressed modules by three
optional post-processing steps attached with ICA and IPCA,
including “ICA-FDR”, “IPCA-FDR”, and “ICA-Zscore”. For
the two first options “ICA-FDR” and “IPCA-FDR”, we chose
the probability threshold, called tail area-based false discovery
rate (FDR), of 0.05, whereas the Z-score theshold of 0.5 was
chosen for the last option “ICA-Zscore”. The m6A-lncRNAs at
both extremes of the distribution of a certain co-expressed
module over samples were considered hub ones.

Identification of the Hub m6A-lncRNAs
Prognostic Signature for LGG
A univariate Cox regression with a proportional hazards model
(Andersen and Gill, 1982) was used to determine the correlation
among expression levels of m6A-lncRNAs and patient outcome
as follows:

λ(t) � λo(t)exTi β (1)
where λ(t) is the hazard for patient i at the time t, λ(t) is a shared
basedline hazard, x is an n x pmatrix of covariate values (i.e., each
row corresponds to a patient and each column a covariate), and ß
is a fixed, length p vector. To do so, we first divided the expression
levels of each hub m6A-lncRNAs into two groups, high
expression and low expression, across LGG patients using a

TABLE 1 | Clinical features of LGG patients in each dataset, including the TCGA data, training set, and test set. Statistical test used to compare all the clinical features
between the training and test cohorts was Pearson’s chi-squared test.

Covariates Overall TCGA cohort (n = 478) Training set (n = 308) Test set (n = 170) p-value

Histological diagnosis 0.138
Astrocytoma 176 (36.8%) 123 (39.9%) 53 (31.2%)
Oligoastrocytoma 125 (26.2%) 79 (25.6%) 46 (27.1%)
Oligodendroglioma 177 (37.0%) 106 (34.4%) 71 (41.8%)
Grade 0.295
G2 232 (48.5%) 146 (47.4%) 86 (50.6%)
G3 245 (51.3%) 162 (52.6%) 83 (48.8%)
unknown 1 (0.2%) 0 (0.00%) 1 (0.59%)
Gender 0.607
Female 216 (45.2%) 136 (44.2%) 80 (47.1%)
Male 262 (54.8%) 172 (55.8%) 90 (52.9%)
Race 0.817
American indian or Alaska native 1 (0.2%) 0 (0.00%) 1 (0.59%)
Asian 6 (1.3%) 4 (1.30%) 2 (1.18%)
Black or African American 21 (4.4%) 14 (4.55%) 7 (4.12%)
White 441 (92.3%) 284 (92.2%) 157 (92.4%)
unknown 9 (1.9%) 6 (1.95%) 3 (1.76%)
Seizure history 0.848
No 160 (33.5%) 102 (33.1%) 58 (34.1%)
Yes 285 (59.6%) 186 (60.4%) 99 (58.2%)
unknown 33 (6.9%) 20 (6.49%) 13 (7.65%)
First presenting symptom 0.227
Headaches 94 (19.7%) 67 (21.8%) 27 (15.9%)
Mental Status Changes 36 (7.5%) 18 (5.84%) 18 (10.6%)
Motor/Movement Changes 34 (7.1%) 24 (7.79%) 10 (5.88%)
Seizures 234 (49.0%) 152 (49.4%) 82 (48.2%)
Sensory Changes 17 (3.6%) 9 (2.92%) 8 (4.71%)
Visual Changes 11 (2.2%) 7 (2.27%) 4 (2.35%)
unknown 52 (10.9%) 31 (10.1%) 21 (12.4%)
First presenting symptom longest duration 0.311
>181 Days 101 (21.1%) 74 (24.0%) 27 (15.9%)
0–30 Days 203 (42.5%) 124 (40.3%) 79 (46.5%)
31–90 Days 71 (14.9%) 46 (14.9%) 25 (14.7%)
91–180 Days 35 (7.3%) 21 (6.82%) 14 (8.24%)
unknown 68 (14.2%) 43 (14.0%) 25 (14.7%)
Radiation therapy 0.062
No 104 (21.8%) 58 (18.8%) 46 (27.1%)
Yes 126 (26.3%) 89 (28.9%) 37 (21.8%)
unknown 248 (51.9%) 161 (52.3%) 87 (51.2%)
Age 0.960
≤35 168 (35.1%) 109 (35.4%) 59 (34.7%)
>35 310 (64.9%) 199 (64.6%) 111 (65.3%)

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 8019313

Nguyen et al. lncRNAs With m6A in LGG

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


cut-off of median expression. Hub m6A-lncRNAs were then
inputted into the R package “geneSA” (Nguyen and Le, 2020).
The hub m6A-lncRNA was considered as an independent
prognostic risk factor if adjusted p-value < 0.05 (Benjamini-
Hochberg (Benjamini and Hochberg, 1995), two-sided). To
avoid overfitting, we continued to recruit the Cox regression
model with lasso penalty, which combats problems with p >> n by
the use of an L1 (lasso) penalty in the Cox model (Tibshirani,
1997), to further select the best hub prognostic m6A-lncRNAs for
construction of risk models. To do so, we split the training set (n =
308) by the ratio of 7:3 again, rendering the two parts of the
parental training set including the training set (n = 198) and
validation set (n = 110), respectively. 10-fold cross-validations
were performed with the Harrell’s concordance index (C-index)
as a measure to validate prediction performance. C-index ranges
from 0.5 indicating absence of discrimination to 1.0 indicating
perfect discrimination. Multivariate Cox regression analysis was
then developed to determine the risk coefficients of prognostic
markers for m6A-lncRNAs.

Hub m6A-lncRNAs signature (m6ALncSig) was constructed
based on the multiple regression analysis of coefficients and
expression levels of m6A-lncRNAs over the patients for
prognosis prediction using the following equation:

m6ALncSig risk score � ∑
n

i�1
coef m6ALncSigi × EXPm6ALncSigi

(2)
where m6ALncSig risk score was the prognostic risk score of each
LGG patients. coef m6ALncSigi represented the ith hub m6A-
lncRNA multivariate Cox regression coefficient, whereas
EXPm6ALncSigi represented the expression levels of
corresponding hub m6A-lncRNA over the LGG patients.

Identification and Verification of the Hub
m6A-lncRNAs Survival Analysis for LGG
Patients were grouped into m6ALncSig low- and high-risk groups
on the training set using the median risk score. Kaplan-Meier
survival curve analysis was performed to compare differences in
OS between the low- and high-groups. Hazard ratios (HR) and
95% confidence interval (CI) were used to analyze whether the
prognoses of the two groups were significantly different. Cox log-
rank and Gehan-Breslow-Wilcoxon p-values < 0.05 (two-sided)
were used to validate statistical significance. A time-dependent
subject receiver operating characteristic curve (ROC) analysis was
utilized to compare the specificity and sensitivity of m6ALncSig
risk score for prognosis of LGG patients. The above results were
then validated using both test set and parental TCGA data.

Construction of a Nomogram Based on the
Hub Prognostic m6A-lncRNAs
Clinical variables showing significant associations with OS in
multivariable analysis, combined with the m6ALncSig risk
groups, were used to construct the one-, three-, and five-year
nomograms for predictions of OS of patients. The nomograms

were subjected to internal and external validations using the
training and test cohorts, respectively. Bias-corrected internal
validation was performed by evaluating discrimination and
calibration under 250 bootstrap resamples. Discrimination,
which is a measure of the probability of concordance between
observed and predicted outcomes, was evaluated using C-index
based on censored survival at one, three, and 5 years. The
calibration curve was plotted to assess the relationship
between the predicted probabilities and the actual probabilities
of patient OS at one, three, and 5 years. The predictions should
fall on a diagonal 45o line of the plot in a perfectly calibrated
model. The same methods were performed on the test cohort for
external validation.

RESULTS

Identification of 13 Hub m6A-lncRNAs
for LGG
We received a list of 4,214 lncRNAs from the TCGA lncRNAs
expression profile after clearing invalid lncRNAs (as described in
the section “Materials and Methods” above) and a list of
850 m6A-lncRNAs from the RMVar database. Intersecting
these lists, a total of 18 m6A-lncRNAs were kept for the hub
lncRNAs identification process.

In the TCGA training cohort, 308 LGG patients alongside the
18 m6A-lncRNAs became the input of the three co-expressed
module identification tools, including WGCNA, iWGCNA, and
variations of oCEM. Table 2 shows a set of hub m6A-lncRNAs
predicted by each method. Unfortunately, WGCNA did not
identify any hub lncRNAs. In contrast, iWGCNA, oCEM with
ICA-FDR, oCEM with ICA-Zscore and oCEM with IPCA-FDR
indicated five, two, nine, and two hub m6A-lncRNAs,
respectively. Taken together, we obtained a set of 13 hub
m6A-lncRNAs in total.

Identification of the Three Hub
m6A-lncRNAs Prognostic Signature
for LGG
A univariate Cox risk regression profiling was first performed on
the 13 hub candidates to screen for independent prognostic risk
factors, rendering three hub m6A-lncRNAs HOXB-AS1, ELOA-
AS1, and FLG-AS1. Interestingly, the Cox regression model with
lasso penalty using these three hub m6A-lncRNAs verified that
they were related to patient outcome with the C-index of 0.739.
Then, they were fed into a multivariate Cox risk regression model
to construct the hub m6A-LncRNAs prognostic signature,
m6ALncSig. Table 3 shows the outcome of the analyses.
Accordingly, lower expression of FLG-AS1 and higher
expression of ELOA-AS1 and HOXB-AS1 were significantly
associated with shorter survival. The m6ALncSig risk score
was calculated based on the three independent prognosis-
associated LncRNAs using the formula: m6ALncSig risk score
= [0.604 x EXP HOXB-AS1] + [0.461 x EXP ELOA-AS1] +
[−0.646 x EXP FLG-AS1]. The median m6ALncSig risk score was
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0.276. This median value was used as the threshold to stratify
LGG samples into low-risk group (n = 154) and high-risk group
(n = 154). It was not surprised to see that tumors in the low-risk

group had significantly better OS than tumors in the high-risk
group (Figure 1A; Cox log-rank test: p-value < 0.01 and Gehan-
Breslow-Wilcoxon test: p < 0.01; two-sided), implying that the

TABLE 2 | A set of 13 hub m6A-lncRNAs predicted by the three co-expressed module identification tools, including WGCNA, iWGCNA, and the three variations of oCEM.

WGCNA iWGCNA oCEM with ICA-FDR oCEM with ICA-Zscore oCEM with IPCA-FDR

hub m6A-lncRNAs - ELOA-AS1 FLG-AS1 ZNF761 KRT73-AS1
- ZNF518A HMGN3-AS1 HMGN3-AS1 ZNF761
- BCAR3-AS1 - PABPC4-AS1 -
- ZNF571-AS1 - OR51B5 -
- HMGN3-AS1 - FLG-AS1 -
- - - BCAR3-AS1 -
- - - LINC00571 -
- - - KRT73-AS1 -
- - - HOXB-AS1 -

TABLE 3 | Results of univariate and multivariate Cox regression model. Down regulation was the reference state. p-values were adjusted by the Benjamini-Hochberg
procedure and called Q.values. Abbreviation: HR, Hazard ratio; 95% CI, 95% confidence intervals; Coef, multivariate Cox regression coefficient.

Gene Univariate cox regression Multivariate cox regression

HR 95% CI p.value Q.value Coef HR 95% CI p.value

FLG-AS1 0.51 0.322–0.808 <0.01 0.042 −0.646 0.524 0.330–0.833 0.010
HOXB-AS1 1.92 1.215–3.035 <0.01 0.028 0.604 1.829 1.154–2.900 0.049
ELOA-AS1 1.734 1.100–2.733 0.016 0.049 0.461 1.585 1.002–2.507 <0.01

FIGURE 1 | LncRNAs signature of them6Amodification used to predict outcomes in the training set. (A)Kaplan-Meier curve of m6ALncSig-predicted OS of low- or
high-risk patients in the training set. (B) Time-dependent ROC curves of m6ALncSig at one, three, and 5 years. (C) Variations in expression levels of the three hub m6A-
LncRNAs between the two risk groups.
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prognostic lncRNAs signature used for risk score prediction
was effective. Survival analyses also reported that the 1-year
survival rate among high-risk LGG patients was
approximately 0.898 with its 95% CI of 0.849–0.950,
whereas the 1-year survival rate for low-risk LGG patients
was approximately 0.986 with its 95% CI of 0.966–1.000.
Besides, the 3-year survival rate for high-risk LGG patients
was approximately 0.635 with its 95% CI of 0.545–0.740, while
those numbers for patients with low-risk LGG was
approximately 0.932 with its 95% CI of 0.883–0.984.
Finally, the 5-year survival rate for high-risk LGG patients

was approximately 0.442 with its 95% CI of 0.329–0.593,
whereas the low-risk LGG patients had a 5-year survival
rate of approximately 0.818 with its 95% CI of 0.727–0.922.
Figure 1B illustrates time-dependent ROC curves of
m6ALncSig over time for one, three, and 5 years reporting
an AUC of 0.777, 0.814, and 0.754, respectively.

We further drew a heat map to show the differences in
expression levels of the four hub m6A-LncRNAs between the
two risk groups (Figure 1C). Interestingly, the two m6A-
lncRNAs FLG-AS1 and HOXB-AS1 were steeply lowly
expressed in the high- and low-risk group, respectively. Also,

FIGURE 2 | Validation of the m6A-lncRNA signature used to predict outcomes in the test and TCGA sets. (A,D) Validation of OS in low- or high-risk patients
predicted by m6ALncSig with Kaplan-Meier estimates on the test set (A) and the parental TCGA data (D). (B,E) Time-dependent ROC curves of GILncSig at one, three
and 5 years on the test set (B) and the parental TCGA data (E). (C,F) Variations in expression levels of the three hub m6A-LncRNAs between the two risk groups on the
test set (C) and the parental TCGA data (F).
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high-expression levels of the leftover lncRNA, ELOA-AS1, was
more frequent in the high-risk group than in the low-risk group.

Validation of the Three Hub lncRNAs
Signature for Prognosis Using the Test Set
and TCGA Data
We validated the m6ALncSig model on the test set including 170
LGG samples to test its prognostic performance. In order to do so,
we took the same m6ALncSig and risk score threshold above to
this case, rendering the low-risk group (n = 88) and high-risk
group (n = 82). Kaplan-Meier curves showed that patients in the
low-risk group displayed significantly higher OS compared with
their counterparts in the high-risk group again (Figure 2A; Cox
log-rank test: p-value < 0.01 and Gehan-Breslow-Wilcoxon test:
p < 0.01; two-sided). Survival analyses showed that the one-,

three-, and five-year survival rates of LGG patients in the high-
risk group were approximately 0.919, 0.651, 0.505 with their 95%
CIs of 0.859–0.983, 0.525–0.807, and 0.351–0.727, respectively.
The one-, three-, and five-year survival rates of LGG patients in
the low-risk LGG group were approximately 0.974, 0.899, and
0.750 with their 95% CIs of 0.940–1.000, 0.822–0.983, and
0.614–0.917, respectively. Besides, the time-dependent ROC
curves of m6ALncSig over time for one, three, and 5 years on
the test set showed AUC values of 0.758, 0.726, and 0.707,
respectively (Figure 2B). Figure 2C illustrates the heatmap
showing the same phenomena as the above results on the
training set (Figure 1C).

We did the same things on the parental TCGA data (478
patients) as on the test set. As a result, we first received the low-
risk group (n = 271) and high-risk group (n = 207). Then, OS
analysis showed that showed that patients in the high-risk group

FIGURE 3 | Nomogram development and validation. (A) Forest plot for identification of risk covariates. (B,C) One-, three-, five-year nomogram plots on the
trainning set (B) and the test set (C). (D,E) Evaluation of nomograms using calibration curves on the training set (D) and the test set (E). Abbreviation: rsfp, First
presenting symptom; fsld, First presenting symptom longest duration; radio, radiation therapy; rs, m6ALncSig risk group.
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was significantly poorer survival than their counterparts in the
low-risk group (Figure 2D; Cox log-rank test: p-value < 0.01
and Gehan-Breslow-Wilcoxon test: p < 0.01; two-sided). The
survival rates at one, three, and 5 years for patients with high-
risk LGG were approximately 0.893, 0.624, 0.423 with their
95% CIs of 0.849–0.938, 0.545–0.716, and 0.322–0.555,
respectively. The survival rates at one, three, and 5 years
for patients with low-risk LGG were approximately 0.983,
0.902, and 0.788 with their 95% CIs of 0.967–1.000,
0.856–0.949, and 0.714–0.870, respectively. The one-, three-
, and five-year time-dependent ROC curves of the TCGA data
showed AUC values at 0.778, 0.788, and 0.744, respectively
(Figure 2E). Frequency of expression levels of the four hub
m6A-lncRNAs reported the same results in the heatmap
(Figure 2F).

Nomogram Development and Validation
Three prognostic factors, including the age group, grade and
m6ALncSig risk group, that witnessed significant associations
with OS in the training cohort were included in the final
predictive model (Figure 3A) for the construction of the one-,
three-, and five-year nomogram plots. The discriminative
ability of these nomogram plots on the training cohort
(Figure 3B) was evaluated using C-index, which resulted in
C-indices of 0.768, 0.766, and 0.765 with their 95% CIs of
0.711–0.820, 0.707–0.802, and 0.712–0.814, respectively.
Similarly, for the test cohort, the nomogram plots
(Figure 3C) rendered C-indices were 0.753, 0.751, and
0.753 with their 95% CIs of 0.659–0.832, 0.652–0.830, and
0.674–0.843, respectively. The calibration plots for internal
and external validation displayed good agreement between the
predicted one-, three-, and five-year OS probabilities and
actual observations, with all the observed probabilities
within 95% CI of the predicted probabilities (Figures
3D,E). The calibration plots illustrated that the nomograms
were well calibrated.

Verification of the Survival Signature for the
Three Hub m6A-lncRNAs Using the CGGA
Dataset
There were only two out of the three m6A-lncRNAs in
m6ALncSig (HOXB-AS1 and FLG-AS1) included in CGGA.
Therefore, we only explored the relationship between these
two lncRNAs and the OS of LGG patients using the CGGA
dataset. No related external data were found to validate the
prognostic value of ELOA-AS1. Consistently, lower expression
of FLG-AS1 and higher expression of HOXB-AS1 were

significantly correlated with patient outcome (Table 4)
independent of patient cohort and data platforms.

DISCUSSIONS AND CONCLUSION

Higher grade gliomas is one of the major cause of poor clinical
outcome and higher mortality for patients with brain cancer in
general. Irrespective of the traditional treatment approaches of
LGGwe apply, LGG patients are still most likely to transform into
this dangerous stage (Duffau and Taillandier, 2015). Therefore,
detection of LGG-related biomarkers is extremely necessary for
early recognition and diagnosis, and for development of
individualized treatment approaches. Moreover, aberrant
expression of lncRNAs with m6A have been implicated in a
series of malignant biological behaviors, such as tumorigenesis,
invasion, and metastasis (Jia et al., 2013; Roignant and Soller,
2017; Bach and Lee, 2018; Camacho et al., 2018). However, only a
few studies have explored the role of m6A-lncRNAs on prognosis
of patients with LGG. Additionally, hub m6A-lncRNAs can be
regarded as central factors for investigating the complex
biological mechanism of cancer in general and LGG in particular.

In this study, by using the three advanced co-expression
identification tools, including WGCNA, iWGCNA, and oCEM,
we first computationally discover a total of 13 hub m6A-
lncRNAs. Then the Cox regression analysis is performed to
identify the three hub m6A-lncRNAs correlated closely with
the prognosis of LGG patients, including ELOA-AS1, HOXB-
AS1, and FLG-AS1. We continue to confirm this result by the
Lasso-Cox model in order to prevent overfitting and gain the
same result. To the best of our knowledge, with the exception of
the lncRNA FLG-AS1, two out of the remainer lncRNAs (ELOA-
AS1 and HOXB-AS1) are identified newly, related to OS of LGG
patients. Accordingly, lower expression of FLG-AS1 and higher
expression of ELOA-AS1 and HOXB-AS1 were significantly
associated with shorter survival. The prognosis of HOXB-AS1
and FLG-AS1 are validated externally in the CGGA dataset. Next,
m6ALncSig containing these three hub m6A-lncRNAs is
constructed. Based on the m6ALncSig model, we cluster LGG
patients into low- and high-risk groups, in which the high-risk
patients experience significantly shortened life expectancy on the
training set which was validated using the independent testing set.
On the one hand, the risk-risk model was validated by Kaplan-
Meier curve and ROC curve. One the other hand, one-, three- and
five-year nomogram plots report that the model is a good
predictor of prognosis for OS of LGG patients. The C-index
and calibration curve further confirm that the model is accurate.

However, we acknowledge that this study still manifests
several restrictions. Firstly, despite inclusion of internal and
external validations, it is required to have more independent
datasets to validate m6ALncSig ensuring its reproducibility and
robustness. Especially, the prognostic values of ELOA-AS1
cannot be valdiated due to lack of the external cohorts.
Secondly, deeper understandings of roles of the three
identified m6A-lncRNAs will benefit a lot from using flow
cytometry, PCR, or IHC. Thirdly, we do not conduct further
animal studies and cellular experiments to test the predictive

TABLE 4 | Validation of the survival signature for HOXB-AS1 and FLG-AS1 within
the CGGA dataset. Down regulation was the reference state.

lncRNA genes HR 95% CI pP.value Q.value

HOXB-AS1 1.569 1.285–1.916 <0.01 <0.01
FLG-AS1 0.687 0.563–0.838 <0.01 <0.01
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accuracy of our signature as well as to discover the molecular
mechanisms of m6A-lncRNAs.

In summary, through this study, many exciting results have
been identified, from identifying 13 hub m6A-lncRNAs in LGG
based onWGCNA, iWGCNA, and oCEM, then constructing and
validating the m6ALncSig model according to the three hub
m6A-lncRNAs linked with prognosis, to exploring their
biological signatures and prognostic values. Hopefully, the
findings of the present work can help improve the power of
existing diagnosis and prognosis prediction for LGG patients.
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