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Recent findings have highlighted potential diagnostic and prognostic values of extracellular
vesicles (EVs) that contain mitochondrial derived components for neurological disorders.
Furthermore, functional influences of vesicles carrying mitochondrial components have
been reported. In particular, this includes indications of crosstalk with mitophagy to
influence progression of various CNS disorders. In this mini-review, we discuss the
current state of knowledge about this intriguing class of vesicles in neurological
disorders of the CNS, and outline the lacunae and thus scope of further development
in this fascinating field of study.

Keywords: mitochondria, mitochondria-derived vesicles, extracellular vesicles, mitophagy, CNS disorders,
mitochondrial dysfunction, oxidative stress

INTRODUCTION

During the past decade, investigations into the CNS functions of extracellular vesicles (EVs) has
opened a new window into our mechanistic understanding of the neurological disorders of the brain.
However, much still remains to be deciphered and explained. More recently, functional studies of
vesicles that contain mitochondrial components, which include EVs, have expanded this new
frontier of understanding and added to the excitement surrounding EV studies. In this mini-review,
we provide a synthesis of what is currently known about vesicles that carry mitochondrial cargo, with
a focus on several neurological disorders of the CNS. As part of this, we will also discuss current
findings that highlight cross talk between mitophagy and the EVs that carry mitochondrial cargo. At
the end of the review, we identify several existing gaps of knowledge and suggest fruitful future
directions to pursue.

EV Properties and Subpopulations
EVs are secreted membrane-enclosed “packages” that carry various components including proteins,
RNA and DNA (Colombo et al., 2014; Fleming et al., 2014; Takahashi et al., 2017). EVs can directly
transfer bioactive material between cells, initiate signaling events at the cell surface (Colombo et al.,
2014; Olanrewaju and Hakami, 2020), regulate the molecular composition of the extracellular milieu
(Iraci et al., 2017), and be involved in cellular homeostasis of EV-secreting cells (Melentijevic et al.,
2017; Takahashi et al., 2017). Based on mechanisms of biogenesis, release pathways, size, and
content, EVs are grouped into three main types; microvesicles (MVs), exosomes, and apoptotic
bodies (Raposo and Stoorvogel, 2013). Exosomes are approximately 30–150 nm in diameter and are
derived from the endosomal pathway, while microvesicles (MVs) or ectosomes are formed directly
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through plasma membrane budding. Apoptotic bodies, which are
typically >1,000 nm in diameter are formed by cells that are
undergoing cell death (Battistelli and Falcieri, 2020). EVs can
cross the blood-brain-barrier (BBB) easily, facilitating material
exchange between the CNS and blood circulation (Banks et al.,
2020). They carry messages involved in the physiology of CNS,
such as regulation of neuronal firing, synaptic plasticity, and
myelin formation (Bátiz et al., 2015; Gassama and Favereaux,
2021). Upon crossing the BBB, EVs can regulate
neuroinflammation that results in systemic pathology of the
CNS (Upadhya and Shetty, 2019; Upadhya and Shetty, 2021).
EVs also influence the aggregation and clearance of toxic proteins
in neurodegenerative diseases (Holm et al., 2018).

The differentiation of whether the CNS effects are mediated by
exosomes or MVs can be challenging due to their close
biophysical characteristics and overlapping molecular markers
(Phinney et al., 2015; Hurwitz et al., 2016). Although there are
guidelines proposed to aid in the identification of different EV
subpopulations (Théry et al., 2018), the specific criteria for
characterization of the mitochondria-derived vesicles (MDV)
is still lacking. The guidelines propose that EVs can be broadly
sub-divided based on their physical and biochemical
characteristics and conditions/sources of their production.
Accordingly, categorization of EVs has been proposed based
on the following parameters: 1) Centrifugation speed - EVs
derived from medium speed centrifugation can be categorized
as oncosomes (Minciacchi et al., 2015), ectosomes (Keerthikumar
et al., 2015; Haraszti et al., 2016), microvesicles (Haraszti et al.,
2016), cell debris (Keerthikumar et al., 2015), or large/medium
vesicles (Kowal et al., 2016; Durcin et al., 2017), whereas EVs that
are obtained by ultracentrifugation at 100,000 xg are commonly
referred to as exosomes; 2) Specific protein markers- The
presence of proteins such as transmembrane or GPI-anchored
proteins indicate the lipid bilayer structure specificity of EVs, and
also whether these EVs bud off directly from the plasma
membrane or following transit through the endosomal
pathway. The presence of cytosolic proteins (eukaryotic cells
and Gram-positive bacteria) or periplasmic proteins (Gram-
negative bacteria) demonstrate that the analyzed preparation
displays the structure of lipid bilayers enclosing the
intracellular material; 3) Phospholipid content of lipid bilayers -
Although proteins are emphasized in the literature as the keymarkers
to differentiate between various EV subtypes, the nature of
phospholipids present in the EV lipid bilayer can also serve as
markers for differentiating EV sub-populations (Record et al.,
2014; Skotland et al., 2017). However, the ratios of various lipids
such as cholesterol, sphingomyelin, ceramide, and phosphatidyl-
choline/ethanolamine/inositol in the EVs, and how these ratios
differ in sub-populations, have not yet been established, and
additional comparative lipidomic studies of separated EVs and
lipoprotein subtypes are warranted in the field (Théry et al.,
2018); 4) Functional properties of EVs- Based on their
functionality, EVs can be further categorized, comparing
quantitatively the effects of EV fraction(s), EV-depleted fraction(s),
and the initial unfractionated fluid, to identify the relative
contributions of each to total activity; 5) Origination source of
EVs - Identifying the source of EV production is another means

of categorizing EVs. For example, mesenchymal stromal cell (MSC)
EVs function differently thanmilk EVs, urine EVs, or cancer cell EVs.
As MISEV 2018 recommends, for analysis of certain EV-associated
functions, the topology of EV-associated components may also need
to be assessed; in other words, whether a component is luminal or on/
at the surface of EVs. A determination of topology could be
particularly important for certain classes of biomolecules. Protease
and nuclease digestions, detergent permeabilization, and targeting
antibodies to outer epitopes (should bind) or inner epitopes (should
not bind) could be used to probe topology.

Mitochondria and MDVs
Mitochondria are double membraned organelles that regulate
several physiological processes, such as calcium signaling,
apoptosis, and cell metabolism (Friedman and Nunnari, 2014;
Gustafsson et al., 2016). The mitochondrial genome may exhibit
homoplasmy or heteroplasmy and the latter can be either
maternally inherited or arise from somatic mutations that
occur during tissue development and aging (Taylor and
Turnbull, 2005). Somatic mutations in mitochondrial DNA
(mtDNA) are associated with pathologies such as cancer,
cardiovascular diseases, neurodegenerative disorders, and aging
(Wallace, 2013). The integrity of mitochondrial genome is
controlled by continuous cycles of fusion and fission that
distribute mitochondrial proteins, lipids, and DNA between
these cell organelles (Mishra and Chan, 2014). MtDNA can
behave as damage-associated molecular patterns (DAMPs) and
activate an innate immune inflammatory response in
macrophages or neutrophils (Nakahira et al., 2015), and
neuroinflammation in the CNS (Madsen et al., 2017). In
addition, mitochondria produce reactive oxygen species (ROS)
via the electron transport chain during ATP production and are
also susceptible to it (Barja, 2013). When mitochondrial
homeostasis is severely compromised, for example due to an
imbalance in the cellular redox system, mitochondrial
permeability transition pore (mPTP) opens to transfer
mitochondrial components, including mtDNA, into the cytosol
to trigger mitochondrial fission and mitophagy that clears
damaged mitochondria from the cell (Picca et al., 2020a).
Different studies have shown that multiple cell types also
secrete mitochondrial components into the culture media
(Puhm et al., 2019). Interestingly, entire mitochondria can also
be transferred between cells (Hayakawa et al., 2016).
Mitochondrial stress stimulates the release of specific
molecules, including mtDNA and DAMPs, that have strong
proinflammatory activity (Sliter et al., 2018). Furthermore,
slightly damaged mitochondria and other mitochondrial
constituents can be shuttled outside the cell via EVs, in effect
outsourcing mitophagy in addition to allowing intercellular
signaling crosstalk (Phinney et al., 2015; Hayakawa et al.,
2016). For instance, in stem cells, EVs translocate
mitochondrial genes that impact cellular functions in the
receiving cells, such as translation, differentiation, cellular
reprogramming, and inflammatory signaling pathway
activation (Phinney et al., 2015). Therefore, studies that can
deconvolute the relationship between mitochondrial
hemostasis and mitophagy hold the promise of discovering
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novel therapeutic targets for treatment of neurodegenerative
diseases.

Mitochondria-derived vesicles (MDVs) are small vesicles with
a diameter of 70–150 nm that are known to facilitate
communication between mitochondria and other organelles
(Sugiura et al., 2014). MDVs can originate either from the
outer membrane or from both the outer and inner membranes
of mitochondria (Neuspiel et al., 2008). They can carry specific
mitochondrial contents to the late endosome/multivesicular
bodies for packaging into EVs (Soubannier et al., 2012b;
Pérez-Treviño et al., 2020). Alternatively, MDVs containing
oxidized mitochondrial cargo can be transported to lysosomes
for degradation (Pérez-Treviño et al., 2020; Riley and Tait, 2020).
Furthermore, MDVs carrying mitochondrial-anchored protein
ligase (MAPL) are transported to peroxisomes (Neuspiel et al.,
2008). Using confocal and electron microscopy studies and
analyzing various cell types, Soubannier et al. have shown that
during stressed-induced conditions there is increased levels of
transport of MDVs carrying oxidized cargo to lysosomes for
degradation, and that this process occurs without triggering
mitophagy (Soubannier et al., 2012a). For instance, ATG+/+

and ATG5−/− mouse embryonic fibroblasts (MEFs) transfected
with the mitochondria matrix marker OCT-DsRed, and infected
with a dominant negative mutant of DRP1 to block mitophagy
[DRP1 (K38E)], generated the same numbers of MDVs following
treatment with stress-inducing glucose oxidase (GO). Also,
Tom20+ (outer mitochondrial membrane protein) or PDH+
(matrix enzyme) MDVs that were generated within stressed
COS7 cells grown on galactose (to induce mitochondrial
respiration) and in the presence of DRP1(K38E), lacked LC3
protein (Soubannier et al., 2012a). Therefore, MDV formation
and trafficking of their oxidized cargo to lysosomes is distinct
from DRP1-dependent mitophagy. Consistent with these
findings, Caielli et al. have reported that neutrophils show
steady state production of mtDNA that is positive for 8-
hydroxy-2-deoxyguanosine (8OHdG), a marker of DNA
oxidation, and is sorted to lysosomes based on colocalization
with LAMP(+) compartments in the presence of Bafilomycin-A
(Caielli et al., 2016). The authors suggest that this sorting
mechanism could likely be mediated by MDVs. Furthermore,
the analysis of 8OHdG (+) vesicles demonstrated that similar to
the lysosome-targeting MDVs reported by Soubannier et al. these
vesicles also contain the IMM proteins, PDH, and mtDNA
(Caielli et al., 2016).

The mtDNA released from damaged mitochondria, which
can be packaged into MDVs carrying cargo destined for
extracellular release, can stimulate pro-inflammatory
pathways through interaction with TLR and the Stimulator
of Interferon Genes (STING) that lead to activation of NFκB
and type I Interferon (Picca et al., 2018). However, following
mitochondrial stress, stabilization of STING through
interaction with Tollip may be compromised, resulting in a
dampening of the innate immune response (Ryan and
Tumbarello, 2021). Collectively, these results indicate that
MDV formation or trafficking must be regulated during
pathological conditions, particularly those with high
dependence on mitochondrial function such as CNS

diseases. To understand these regulatory processes,
isolation and characterization of various MDV subtypes
and the EVs that derive from them are important to
achieve. Recently, using a novel high-resolution density
gradient method to isolate brain EVs, D’Acunzo et al.
achieved purification of a new subtype of EVs that carry
multiple mitochondrial proteins and were named
mitovesicles (D’Acunzo et al., 2021). Mitovesicles differ by
morphology and content from MDVs (D’Acunzo et al., 2021),
and further investigations of their functions and utility should
provide important information. In the following sections, we
will provide a synthesis of the current knowledge of
contributions of MDVs and EVs carrying mitochondrial
cargo to various CNS disorders and the implications of
these findings.

Parkinson’s Disease
Mitochondrial dysfunction (MD) is associated with
neurodegenerative illnesses, including Parkinson’s disease (PD)
(Chen et al., 2019). PD symptoms include motor impairments
such as resting tremor, bradykinesia, rigidity, postural instability,
and non-motor symptoms such as sleep perturbations,
constipation, cognitive impairment, and depression
(Alexander, 2004; Krüger et al., 2017). Progressive damage of
dopaminergic neurons of the substantia nigra pars compacta and
dopamine exhaustion in the striatum is the chief cause of PD
(Alexander, 2004). In PD, MD can impair mitochondrial
biogenesis, increase ROS production, compromise trafficking
of cellular material, impair electron transport chain (ETC)
function, alter mitochondrial dynamics, cause calcium
imbalance, and disrupt mitophagy (Picca et al., 2020a).
Therefore, cells tightly regulate mitochondrial homeostasis
through processes such as mitophagy and MDVs that are
functionally linked together. Mitophagy is initiated by the
depolarization of the mitochondrial membrane via the
PINK1–Parkin pathway (Whitworth and Pallanck, 2017), the
mutations in which are responsible for the early onset recessive
form of PD. PINK1 is a mitochondrially targeted kinase and
Parkin serves as a cytosolic ubiquitin ligase. Mitochondria import
and degrade PINK1 under normal conditions (Matsuda et al.,
2010; Narendra et al., 2010); however, during MD, its import is
halted and PINK1 accumulates on the outer membrane of the
mitochondria and attracts Parkin to the mitochondrial surface
(Narendra et al., 2008) via the phospho-ubiquitin chains
(Kondapalli et al., 2012). PINK1 then phosphorylates Parkin
and repeated phosphorylation-ubiquitination reactions
promote ubiquitination of many outer membrane proteins
(Pickrell and Youle, 2015), which are engulfed by
autophagosomes for mitophagy (Pickrell and Youle, 2015;
Yamano et al., 2016). Although the exact mechanisms that
lead to MDV biogenesis is unclear, PINK1 and Parkin regulate
this process as well, providing a mechanistic link between
mitophagy and MDVs (Sugiura et al., 2014). PINK1 and
Parkin can repress MDV formation by inhibiting the
recruitment of Rab9 and Sorting nexin 9 to mitochondria,
hence inhibiting a mitochondrial antigen presentation pathway
that relies on MDVs instead of mitophagy and preventing the
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ensuing inflammatory responses that contribute to PD pathology
(Matheoud et al., 2016).

In mammalian cells, unbalanced fission leads to mitochondrial
fragmentation (Chan, 2006). Increased mitochondria
fragmentation results in high levels of circulating cell free-
DNA (ccf-DNA) that increases inflammation, and is regulated
by Dynamin-like protein 1 (DLP1) and Fis1 (Chan, 2006). DLP1
is a cytosolic protein that is localized to the mitochondrial outer-
membrane, which are sites of fission activity (Smirnova et al.,
2001). The mitochondrial DLP1 complex turnover is mediated by
VPS35, a key component of the retromer complex, and its
dysregulation causes MD that is critical to PD pathogenesis
(Chan, 2006). VPS35 is also linked to the production of
MDVs (Hanss et al., 2021), which can traffic cargo from
mitochondria to peroxisome or lysosome (Sugiura et al.,
2014). Wang et al. demonstrated that the retromer complex
interacts with VPS35-DLP1 and mediates the removal of
DLP1 complexes from mitochondria via trafficking of MDVs
to lysosomes, hence allowing for efficient mitochondrial fission
(Wang et al., 2016). They also showed that PD-associated VPS35
mutations in persons with sporadic PD results in an elevated
VPS35-DLP1 interaction that improves the retromer-dependent
turnover of mitochondrial DLP1 complexes via MDV trafficking,
leading to excessive fission and therefore MD (Wang et al., 2016).
Additionally, increased ROS augments the VPS35-DLP1
interaction, which could explain the improved VPS35-DLP1
interaction seen in the sporadic PD brains (Wang et al., 2016).
In summary, accumulated evidence shows the critical role of
MDVs that involves mitophagy crosstalk in regulation of
mitochondrial dynamics and quality control that are essential
for PD progression and pathogenesis. It should also be noted that
analyzing the cargo of circulating small EVs (sEVs)/exosomes,
which can function to release mitochondrial components into
circulation, could also contribute to a deeper mechanistic
understanding of PD, as well as help identify candidate PD
biomarkers. The EXosomes in PArkiNson disease (EXPAND)
study has addressed this by characterizing the cargo of sEVs/
exosomes from sera of PD patients and comparing them with
those from healthy individuals (Picca et al., 2019; Picca et al.,
2020b).

Down Syndrome
The Down syndrome (DS) is the most common aneuploidy and
cause of intellectual inability of genetic origin, and exhibits
Alzheimer’s disease (AD) pathology at a young age (Capone
et al., 2018). Presence of a third copy of a portion of chromosome
21 (Hsa21) in DS results in overexpression of several genes,
including the amyloid precursor protein (APP), which causes AD
pathologies such as neuroinflammation, neuronal cell loss,
amyloid plaques, and neurofibrillary tangles (NFTs) (Hartley
et al., 2015; Delabar et al., 2016). DS is associated with the
absence of mitophagy, causing the buildup of toxic
mitochondrial components in the brain cells (Bordi et al.,
2019) and consequently inflammation and neurodegeneration.
Using both normal and DS human fibroblasts, Bordi et al. showed
that macroautophagy, mitophagy, and the clearance of damaged
mitochondria by mitophagy, can be rescued by inhibiting

mTORC1 and mTORC2, suggesting a possible strategy for
treatment of DS (Bordi et al., 2019). In addition, mutations in
mtDNA and impaired mtDNA repair systems have been reported
in fibroblasts within DS brain tissues (Druzhyna et al., 1998;
Coskun and Busciglio, 2012).

It has been shown that in trisomic mouse model Ts [Rb
(12.1716)]2Cje (Ts2) (Villar et al., 2005) the levels of brain-
derived EVs named mitovesicles are increased in brains from Ts2
compared to diploid (2N) littermates (D’Acunzo et al., 2021). The
levels of proteins such as cytochrome c oxidase subunit 4 (COX-
IV) and the pyruvate dehydrogenase E1 component subunit
alpha (PDH-E1α), associated with mitochondrial matrix, are
increased in the Ts2 brain mitovesicles, as well as in the
in vitro mitochondrial stress model produced by treatment
with antimycin-A, a mitochondrial respiratory-chain inhibitor
that leads to production and accumulation of ROS without
inducing mitophagy (D’Acunzo et al., 2021). These results
suggest a dysfunction in oxidative phosphorylation similar to
that observed in DS, and provide evidence that mitovesicles may
serve as a biomarker to evaluate brain MD in neurological
disorders. Related to this, during oxidative stress, brain cells
increase the transfer of damaged mitochondria encapsulated
into EVs from astrocytes to neurons (Hayakawa et al., 2016).
Although mitovesicle levels are increased in DS brains, their
composition shows reduced levels of proteins involved in ATP
production such as UQCRC2 and SDH-B, suggesting impaired
ATP synthesis (D’Acunzo et al., 2021). Increased levels of
mitovesicles, which lack external membranes, in DS brains
could be in response to ATP demands to counteract the
oxidative phosphorylation impairment (D’Acunzo et al., 2021).
In support of this, deficiency of proteins involved in ATP
production such as ATP synthase and ADP/ATP translocator
were reported in human skin fibroblasts with trisomic karyotype
under mitochondrial stress (Valenti et al., 2010, Valenti et al.,
2011). As it was mentioned earlier, DS is associated with lack of
mitophagy, which causes accumulation of damage-associated
molecular patterns (DAMPs) due to mitochondrial stress and
can lead to an inflammatory response by innate immunity (West
et al., 2011; Mills et al., 2017). Although the mechanisms of
release of DAMPs into the extracellular space is not clearly
known, it was recently shown that the cellular decision of
whether damaged mitochondrial content is packaged into EVs
is dependent on selective targeting to one of two distinct MDV
pathways (Todkar et al., 2021). Specifically, mitochondrial
proteins are packaged into the inner membrane/matrix MDVs
whose formation depends on the function of Optic Atrophy 1
(OPA1) and sorting nexin 9 (Snx9) (Todkar et al., 2021). Further
studies are required to investigate whether MDVs are intensifying
the disease or are extracting damaged mitochondrial components
to restore the redox system in DS brains.

Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disease, with
dementia-like symptoms. There are two forms of Alzheimer
disease (AD); a late-onset sporadic form (SAD) and an early-
onset familial form (FAD). AD is characterized by amyloid β (Aβ)
plaques, tau-containing neurofibrillary tangles, and neuronal
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inflammation/loss leading to brain atrophy (Weller and Budson,
2018; DeTure and Dickson, 2019). The toxicity associated with
Aβ aggregates can trigger mitochondria damage, causing
oxidative injury and consequently MD in AD (Kim et al.,
2020). EVs isolated from astrocytes, microglia, and neurons
exposed to Aβ aggregates and H2O2 show the presence of
mitochondrial structures and mitochondrial RNA (mt-RNA)
and proteins (Kim et al., 2020), supporting the role of MD in
AD and indicating MDV involvement. One interpretation of
these findings is that EVs export toxic mitochondrial components
from damaged mitochondria, contributing to cellular pathologies
and AD.

Current diagnosis of AD relies on biomarkers obtained
through invasive procedures to obtain cerebrospinal fluid
(CSF) (Jack et al., 2016). Furthermore, the diagnosis is limited
to the adverse stages of the disease, which complicates treatment
regimens. Therefore, a search for novel diagnostic markers and
therapeutic strategies is warranted. EVs have shown great
promise for use as AD biomarkers (Kapogiannis et al., 2019;
Pulliam et al., 2019; Kim et al., 2020). Villar-Vesga et al.
characterized systemic EVs from postmortem samples of
sporadic Alzheimer’s disease (SAD) and Familial Alzheimer’s
disease (FAD) patients, and observed increased levels and size of
systemic EVs in both groups of patients (Villar-Vesga et al.,
2020). They also found that SAD patients showed an increase in
endothelial- and leukocyte-derived EVs containing
mitochondrial markers whereas FAD patients showed an
increase in platelet-derived EVs. The increased expression of
the mitochondrial markers such as DIOC6 in SAD-EVs could

be due to high levels of mitochondrial components from
dysfunctional mitochondria (Villar-Vesga et al., 2020).
Furthermore, using RNA-Seq analysis, Kim et al. (2020)
reported increased mitochondrial (mt)-RNAs, such as MT-
ND1-6 mRNAs and other protein-coding and non-coding mt-
RNAs, in plasma EVs of mild cognitive impairment (MCI) and
AD individuals as compared with healthy controls. EV contents
such as proteins, mRNAs, andmicroRNAs can serve as diagnostic
or prognostic biomarkers in various pathologies such as cancer,
kidney disease, and cardiovascular disease (Dickhout and
Koenen, 2018; Ståhl et al., 2019). In line with this, the studies
discussed here highlight the potential of EV-based biomarkers in
plasma for diagnostic and/or prognostic studies of MCI and AD.

Aging
Aging occurs due to the progressive decline of biological
functions and failure of the organism’s ability to adapt to
metabolic stress over time, increasing the risk of various
adverse health conditions and diseases (Cesari et al., 2016).
Studies to elucidate the process of aging are vital for
developing strategies that can delay its onset and prevent
associated diseases. Proposed causes of aging include loss of
proteostasis, genomic instability, telomere attrition, deregulated
nutrient sensing, epigenetic alterations, altered intercellular
communication, stem cell exhaustion, cellular senescence, and
MD (López-Otín et al., 2013). During aging, impairment of
autophagy and other cellular-degradation mechanisms in
removing damaged cytosolic materials such as dysfunctional
mitochondria disrupts cellular homeostasis and leads

FIGURE 1 |Model of mitochondrial EV involvement in CNS disorders. Dysregulated mitophagy and induction of oxidative stress are associated with mitochondrial
dysfunction (MD), which leads to generation of mitochondria-derived vesicles (MDVs) that contain cargo from the damaged mitochondria, including mitochondrial DNA
(mitDNA) and mitochondrial proteins (mitProteins). The MDV cargo can be transferred to vesicles that are released extracellularly as a part of the disease pathogenesis
and lead to further disease progression. Alternatively, the MDVs may contribute to a protective mechanism by being shuttled to lysosomes for destruction of their
cargo.
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to accumulation of intracellular “waste” (Terman et al., 2010; Yin
et al., 2016). MD has long been connected to the aging process
and related diseases (Park and Larsson, 2011; Ross et al., 2013). In
this connection, mutations of mtDNA cause early aging in
murine models (Park and Larsson, 2011) and increase with
human age (Zhang et al., 2017). In peripheral blood
mononuclear cells, mtDNA copy numbers reduce with human
age (Mengel-From et al., 2014). Also, ccf-mtDNA from cellular
damage or stress increase progressively past the age of 50 (Pinti
et al., 2014; Picca et al., 2017). A recent European study has shown
a slight decline in ccf-mtDNA levels comparing children to
middle-aged individuals, followed by a gradual increase in the
elderly (Pinti et al., 2014). Consistent with this study, Lazo et al.
reported that ccf-mtDNA in plasma EVs decreased with human
age in both cross-sectional and longitudinal studies of a middle-
aged cohort (~30–69 years) (Lazo et al., 2021). Also, maximal
mitochondrial respiration of cultured cells exposed to EVs from
old donors versus EVs from young donors showed differential
affects, suggesting that EVs affect mitochondrial energetics in an
age-dependent manner (Lazo et al., 2021). Together, the data
suggest that EV-associated ccf-mtDNA may indicate and/or
contribute to various physiological and pathological conditions
related to aging, and that age-dependent packaging of EVs (which
might also affect ccf-mtDNA levels) could play an important role
in these processes.

CONCLUSION AND FUTURE
PERSPECTIVE

There is a growing interest in understanding the physiological
effects and utility of the mitochondrial cargo that gets packaged
into EVs following mitochondrial damage during various CNS
disorders (Figure 1). The ability to separate and characterize
mitovesicles as a new brain-derived EV subtype, which has been
recently achieved as part of DS studies, ushers in a new area of
investigation. Future work on understanding the various CNS
functions of mitovesicles and how they influence CNS
pathologies other than DS should prove highly rewarding, and
as part of this effort the purification and analysis of mitovesicles
from other tissue types will be very informative as well. Such
studies will enable a deeper understanding of the specific roles of
EV subtypes in the CNS, as carriers of either neuroprotective,
anti-inflammatory, or proinflammatory cargos. As an intriguing
possibility, this knowledge might allow development of
approaches to alter EV cargo in order to limit inflammation,
improve regeneration, or halt degeneration in target cells.

As we have discussed here, mitochondrial EVs have a strong
potential for use as biomarkers or development of therapeutic
interventions for CNS disorders. However, given their
heterogeneity, there is still a need for significant additional
basic research into their various functions, and also technical
advances to isolate and study the various EV subtypes, before they
could be applied for detection or treatment of CNS diseases. One
fascinating and seldom-studied aspect for future investigation is
the role of the lipid cargo in EVs, using both in vitro and in vivo
systems. In addition, although redox imbalance has been

implicated as a trigger of mitochondrial EV production
in vitro, other mechanisms governing their production and
release in vitro and in vivo remain to be investigated. Another
important aspect to be delineated in future work is the functional
similarities and differences that exist between MDVs, which
directly derive from the mitochondrial membrane, and EVs
that carry mitochondrial components.

Although some limited studies related to mitochondrial
EVs have been performed for several CNS disorders, there is
even less work done in this area for additional CNS
pathologies. For instance, it has been shown that EVs
extracted from serum of children with autism spectrum
disorder (ASD) contain higher protein content compared
to normal children and that these EVs stimulate cultured
human microglia to secrete significantly more IL-1β as
compared to the control, probably due to high levels of
mtDNA (mtDNA7S) (Tsilioni and Theoharides, 2018).
However, so far, this is the only study of these EVs and
much further work is needed to develop an in-depth
knowledge of their functions during ASD. Similar to the
ASD findings, analysis of EVs extracted from serum of
subjects with non-penetrating traumatic brain injury (TBI)
showed a significant increase in mtDNA in TBI patients
compared to the control group (Marcatti et al., 2021), and
this also needs to be followed up with extensive functional
studies.

While the current information on the role of EVs and MDVs
in CNS disorders is still very limited, it is nevertheless highly
intriguing and highlights exciting areas of investigation that
remain to be explored. We strongly believe that the next
decade will witness an explosion of research in the field of
mitochondrial EVs and their roles in disease pathogenesis.
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