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Background: Desmoplasia or rich fibrotic stroma is a typical property of pancreatic
cancer (PC), with a significant impact on tumor progression, metastasis, and
chemotherapy response. Unusual inflammatory responses are considered to induce
fibrosis of tissue, but the expression and clinical significance of inflammatory response-
related genes in PC have not been clearly elucidated.

Methods: Prognosis-related differentially expressed genes (DEGs) between tumor and
normal tissues were identified by comparing the transcriptome data of PC samples based
on The Cancer Genome Atlas (TCGA) portal and the Genotype Tissue Expression (GTEx)
databases. Samples from the ArrayExpress database were used as an external validation
cohort.

Results: A total of 27 inflammatory response-related DEGs in PC were identified. Least
absolute shrinkage and selection operator (LASSO) analysis revealed three core genes that
served as an inflammatory response gene signature (IRGS), and a risk score was
calculated. The diagnostic accuracy of the IRGS was validated in the training (n = 176)
and validation (n = 288) cohorts, which reliably predicted the overall survival (OS) and
disease-free survival (DFS) of patients with PC. Furthermore, multivariate analysis identified
the risk score as an independent risk factor for OS and DFS. The comprehensive results
suggested that a high IRGS score was correlated with decreased CD8+ T-cell infiltration,
increased M2 macrophage infiltration, increased occurrence of stroma-activated
molecular subtype and hypoxia, enriched myofibroblast-related signaling pathways,
and greater benefit from gemcitabine.

Conclusion: The IRGS was able to promisingly distinguish the prognosis, the tumor
microenvironment characteristics, and the benefit from chemotherapy for PC.
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INTRODUCTION

Death from pancreatic cancer (PC) is ranked fourth among
cancer-related deaths in Western countries, with a low 5-year
overall survival (OS) rate (below 10%) (Madurantakam Royam
et al., 2019). Presently, surgical resection remains the only chance
for cure (Springfeld et al., 2019; Sunami and Kleeff, 2019), but
because patients typically present with locally advanced or
metastatic disease, less than 20% of newly diagnosed patients
are eligible for radical pancreatoduodenectomy due to incurable-
stage diagnoses (Mizrahi et al., 2020). Among patients at the
unresectable stage, chemotherapy is important for improving
survival (Springfeld et al., 2019). Poor prognosis in PC
correlates with non-specific symptoms in the early stage, an
immunosuppressive tumor microenvironment (TME), and
chemotherapy resistance or inefficient screening measures for
early detection.

Although recent improvements have been made in
chemotherapy and molecular targeted therapies, extensive
toxicity and limited survival benefit remain in unselected
populations (Cheng et al., 2019). A large body of evidence
demonstrates that personalized treatment of this aggressive
disease is associated with increased survival and an improved
quality of life (Cheng et al., 2019;Wu et al., 2019). For this reason,
there is a desperate need for validated models to assess prognosis,
with the goal of providing individualized treatments for patients.
Furthermore, comprehensive analysis as opposed to targeting a
single factor is necessary to discover reliable prognostic
biomarkers that can assist in guiding treatment strategies for
PC patients.

Accurate staging of PC is essential for prognostic assessment
to guide treatment, but frustratingly, the current tumor, node,
and metastasis (TNM) staging system is insufficient due to
extensive intra-staging heterogeneity (Raman et al., 2018; van
Roessel et al., 2018). Recent studies have indicated the diversity
and complexity of genetic variation in human PC, which can
account for different disease behaviors in clinical settings. To
date, a large number of studies have focused on biomarkers in
blood and PC tissue for survival prediction. However, most
studies have only focused on disparate genes, and this is not
sufficiently valid for patient diagnosis or prognosis. Additionally,
few screening biomarkers have been validated for clinical
application (Harsha et al., 2009; Yachida et al., 2010).
Therefore, there may be increased efficacy in the use of a
combination of different biomarkers as prognostic indices.

Dense fibrotic stroma comprising most of the neoplastic mass
is a remarkable feature of PC, and it is responsible for tumor
progression, metastasis, and chemotherapy resistance
(Mortezaee, 2021). Therefore, the exploration of targeting the
pro-oncogenic stroma in combination with conventional
treatments has currently been an emerging strategy. It is
believed that a desmoplastic reaction results from an
unsupervised injury repair process and abnormal
inflammatory responses (Wynn, 2007; Erkan et al., 2012; Kota
et al., 2017). Researchers have been interested in the link between
inflammatory responses and cancers of different origins for
nearly 100 years. It has been shown that an increased

inflammation-related prognostic score, the modified Glasgow
prognostic score (mGPS) that grades serum albumin and
C-reactive protein, is correlated with poor prognosis in
cancers (McMillan, 2013). In addition, high systemic
inflammatory response indexes, such as the
neutrophil–lymphocyte ratio, platelet–lymphocyte ratio, and
monocyte–lymphocyte ratio, have been categorically
demonstrated to contribute to poor prognosis and
chemotherapeutic sensitivity in cancers, including PC (Steele
et al., 2016). In addition to the systemic inflammatory
response, a local inflammatory response in the TME can
promote tumor growth and metastasis by promoting non-
normalized angiogenesis and tissue remodeling, presenting an
immunosuppressive phenotype in PC (Vonderheide and Bayne,
2013). A recent study has also shown that the combination of
local inflammatory cells and systemic inflammatory response
analysis can greatly assist in the prognostic estimation and
tailor treatment plans for patients with colon cancer (Turner
et al., 2016). Nevertheless, comprehensive analysis of
inflammatory response-related genes connected to prognosis
and TME characteristics of PC has been rarely reported and
remains to be elucidated.

To fully understand the function of inflammatory response-
related genes in PC, the present study identified differentially
expressed genes (DEGs) using a deep bioinformatics analysis
based on publicly available databases. Subsequently, OS-related
DEGs were identified via Cox regression analyses, and an
inflammatory response gene signature (IRGS) was constructed
by the least absolute shrinkage and selection operator (LASSO)-
Cox method. Enrolled samples from an independent cohort
originating from ArrayExpress microarray datasets validated
the signature. Independent prognostic factors concerning OS
and disease-free survival (DFS) were investigated by
multivariate Cox survival analysis. Then, DEGs between
different risk groups were tested by pathway enrichment
analysis. We also performed a comprehensive exploration of
the clinical role, gemcitabine sensitivity prediction, and TME
characterization of the IRGS. Overall, this novel inflammatory
response gene signature for the prediction of prognosis in PC
might serve as a meaningful complement to the traditional TNM
staging system for improving prognostic stratification and
tailoring individual therapy.

MATERIALS AND METHODS

Acquisition of Raw Data
Transcriptome sequencing data for 178 PC samples and 4 normal
pancreas samples and corresponding matched clinical
information were downloaded from TCGA PanCancer Atlas.
One sample with tumor recurrence and one sample with
0 follow-up days were excluded, and thus, we finally obtained
176 samples in TCGA cohort. The gene expression information
for 328 normal pancreas samples was extracted from the
Genotype Tissue Expression (GTEx) project for further analysis.

Regarded as an external validation group, the E-MTAB-6134
cohort containing clinical and microarray gene expression data
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for 309 PC patients was retrieved from ArrayExpress, which is the
most commonly used genomic data repository, of which there
was complete survival status information for 288 cases. The lists
of inflammatory response-related genes were obtained from the
Molecular Signatures (https://www.gsea-msigdb.org/gsea/
msigdb/cards/HALLMARK_INFLAMMATORY_RESPONSE.
html) database.

Differential Gene Expression Analysis
To accurately obtain DEGs, the DEGs in PC were determined
from TCGA and GTEx datasets. RNA sequencing data were
calculated as transcripts per million (TPM) values and were
log2 (TPM + 1) transformed. Then, the R package “limma” was
applied, and the adjusted p value (p.adj) was calculated in
TCGA and GTEx to reduce false-positive discoveries. Genes
with p.adj < 0.05 and log2 |fold change (FC)| > 2
calculated through gene expression values were
considered DEGs.

Pathway Enrichment Analyses
We performed Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis and gene set enrichment analysis
(GSEA) for pathway enrichment analyses. GSEA was carried
out between high- and low-risk PC samples to more accurately
describe overall changes (Subramanian et al., 2005). Additionally,
Gene Ontology (GO) terms and KEGG pathways concentrated in
candidate gene lists were identified based on the R package
“ClusterProfiler” to conduct the exploration of biological
processes, cellular components, and molecular functions (Yu
et al., 2012). p.adj < 0.05 was considered to be meaningful
enrichment.

Identification of Core Genes and
Construction of the Prognosis-Associated
Inflammatory Response Gene Signature
Prognosis-related DEGs identified by differential analysis and
Cox regression univariate analysis were integrated for LASSO
analysis, an extensively used machine learning technique that can
optimize the selection of genes and avoid overfitting (Jiang et al.,
2018), to construct the IRGS in TCGA cohort. In this analysis, the
optimal LASSO tuning parameter (Lambda) was selected as
lambda.1se (namely, the value of lambda would result in the
lowest partial likelihood deviance value with less than one
standard error), and 10-fold cross-validation was performed to
obtain a more stable coefficient. The IRGS-related risk score was
calculated as follows:

Risk score � ∑
n

k�1(Expk p βk),

where Expk denotes the expression level of the kth gene and β
denotes a regression coefficient. Prognosis-related DEGs filtered
by LASSO-Cox regression were considered core genes.

To verify the reproducibility of our model, we used the same
cutoff value in the subsequent validation analysis. The prognostic
power of IRGS for survival was assessed in TCGA and E-MTAB
cohorts utilizing receiver-operating characteristic (ROC) curves.

Evaluation of the TME
We used the CIBERSORT deconvolution algorithm to assess the
characteristics of tumor-infiltrating immune cells (TIICs) in
tissues according to the gene expression data (Newman et al.,
2015). The eligible data (p < 0.05) were considered accurate for
further analysis. The ESTIMATE score was used to estimate the
TME according to a previous study (Chen et al., 2018). We
investigated the relationship between the TME and the IRGS.

Prediction of the Sensitivity of
Chemotherapy Drugs
We assessed the response of samples to gemcitabine, a widely
used chemotherapy agent in PC, utilizing the “pRRophetic” R
package in which the half-maximal inhibitory concentration
(IC50) of a sample was predicted by ridge regression
according to a previous investigation (Geeleher et al., 2014).
All default parameters were used, and duplicate gene
expression was summarized as a mean value.

Data Analysis
The Kruskal–Wallis, Wilcoxon rank-sum, or chi-square tests
were applied to determine the statistical relevance between
groups. The Kaplan–Meier method and log-rank test were
conducted to analyze the correlation between variables and OS
and DFS. Cox regression univariate and multivariate analyses
were also performed to analyze independent prognostic factors
with hazard ratios (HRs). Statistical analysis was performed in R
software v3.6.3. p less than 0.05 was considered statistically
significant.

RESULTS

Profile of Prognostic Inflammation-Related
Gene Expression in Normal and PCSamples
The limma algorithm identified 115 DEGs related to
inflammatory response in PC between TCGA and GTEx, of
which 27 were relevant to OS by single-factor Cox analysis
(Figures 1A,B). From this collection of genes, the F3 gene
possessed a maximum hazard ratio of 2.147 (95% CI =
1.395–3.305, p = 0.00, Figure 1C); the correlation of the 27
genes is shown in Figure 1D. The above results demonstrated a
different profile of inflammation-related gene expression between
PC and normal samples.

Screening of Core Inflammation-Related
Genes and Construction of Prognostic
Signature in TCGA
Due to an extremely low 5-year survival rate in PC, we selected
OS as the clinical outcome. The IRGS consisting of three core
genes for prognostication was constructed in TCGA cohort using
LASSO-Cox regression analysis (Figure 2A), and for each
patient, an IRGS-related risk score was measured by the
following formula: Risk score = [(0.2755) × Expression level of
MET] + [0.0287 × Expression level of TNFSF10] + [(0.0235) ×
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Expression level of CXCL10]. Based on the total points for the risk
score, 176 PC patients without repeat clinical information from
TCGAwere stratified into two groups using the median risk score
value as a cutoff value (cutoff value = 1.89328062). The
corresponding risk score, live status, and distribution of TCGA
cohort are presented in Figure 2B.

For measuring the prognostic accuracy of the novel IRGS, the
area under the ROC curve (AUC) was generated, as well as the
Kaplan–Meier survival curve. The results showed that the OS of
patients in the high-risk group was significantly shorter than that
in the low-risk group (p < 0.001; Figure 2C). Additionally, the 1-,
3-, and 5-year OS AUC of IRGS was 0.723, 0.757, 0.841,
respectively (Figure 2D), and patients in the high-risk group
exhibited a remarkably shorter DFS (Figure 2E). Subsequently, to
confirm whether the IRGS was an independent risk feature
connected with patients’ OS and DFS, univariate and
multivariate Cox regression analyses were performed. The
regression results suggested that the tumor site and
chemotherapy, as well as the IRGS, were robust independent
predictors for OS (IRGS: p < 0.001; tumor site: p = 0.038;
chemotherapy: p < 0.001; Table 1). The IRGS remained an
independent prediction factor for DFS after adjusting for

clinicopathological variables (age, T-staging, tumor site, lymph
node metastasis, and chemotherapy) (p < 0.001; Table 2).
Similarly, our results confirmed the independent predictive
role of IRGS for OS and DFS in the E-MTAB cohort
(Supplementary Tables 1, 2).

Validation of the IRGS in the External Cohort
To validate the predictive capacity of the IRGS, the same formula
was applied in the E-MTAB external validation cohort that
included 288 PC patients with full survival information.
Patients were divided into high-risk (n = 114) and low-risk
groups (n = 174) by the same cutoff value derived from
TCGA cohort, and the risk score distribution and live status
are presented in Figure 3A. Expectedly, the Kaplan–Meier
survival curves were significantly different in OS and DFS
between the high- and low-risk groups, with worse outcomes
for high-risk patients than low-risk patients (Figures 3B,D). The
prognostic capacity of OS and DFS was subsequently evaluated by
time-dependent ROC curves. For the validation cohort, the three-
gene signature exhibited an acceptable performance for
predicting 1-, 3- and 5-year OS, with an AUC value of 0.680,
0.539, and 0.566, respectively (Figure 3C). Comparable

FIGURE 1 | Identification of candidate inflammatory response-related genes in PC. (A) Venn diagram of DEGs between TCGA and GTEx. (B) Heatmap of
prognosis-related DEGs. (C) Forest plots of the association between 27 prognosis-related DEGs and OS. (D) Cross correlogram between the 27 candidate genes.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8766074

Xie et al. Inflammatory Response in PC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


prediction performance in terms of 1-, 3- and 5-year DFS is
shown in Figure 3E.

Association Between the IRGS and Clinical
Factors
In clinical practice, the American Joint Committee on Cancer
(AJCC) TNM staging system is used to assess the disease
prognosis of patients, which, despite identification as a
classification, still provides variable clinical outcomes
because of the high molecular heterogeneity in PC.
Accordingly, we tried to evaluate whether this novel IRGS
could identify a subgroup of patients with an identical clinical

parameter. For example, for patients with the same T-staging
status, it was shown that the high-risk patients exhibited a
worse OS than those in the low-risk group (p < 0.05 for both;
Figures 4A,B).

Similar results were also observed in high-risk patients when
stratified by lymph node metastasis status and tumor
differentiation grade (Figures 4C–F). In the validation cohort,
we also observed a similar result in patients when classified by
different clinicopathological features (Supplementary Figure 1).
The aforementioned results revealed that the IRGS-based
stratification could further distinguish the prognosis, which
might be a meaningful complement to the traditional TNM
staging system.

FIGURE 2 | Development of signature genes in TCGA cohort. (A) LASSO regression model for selecting the number of parameters and developing the prognosis
prediction signature. (B) IRGS distribution, live status, and expression heatmap for the three core genes. (C) Kaplan–Meier (KM) survival curves for OS for PC patients.
(D) ROC curve analysis of the IRGS for OS. (E) KM survival curves for DFS for PC patients.
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Relationship Between the IRGS and Drug
Response in PC
There is no standard tool that can identify patients who are sensitive
to chemotherapy. Accordingly, we tried to evaluate whether this
novel IRGS could identify the subgroup of patients that are sensitive
to chemotherapy. Considering the wide application of gemcitabine
as chemotherapy for PC, we used the “pRRophetic” algorithm to
assess the IC50 of samples based on the transcriptome data.

After analyzing the IC50 for samples in TCGA and E-MTAB
cohorts, the results revealed that there were conspicuous response
sensitivities for high-risk patients as compared to low-risk
patients (p < 0.01; Figures 5A,D). Moreover, compared with
the low-risk group with no significant differences in OS, the
Kaplan–Meier curves revealed higher survival in the high-risk
group when stratified by chemotherapy use in TCGA cohort (p <
0.001; HR, 0.33; 95% CI, 0.18–0.61; Figures 5B,C). This indicated
that the IRGS could act as a prognostic predictor and also
potentially predict the benefit of chemotherapy for PC patients.

Correlation Between the IRGS and Immune
Infiltration
Due to the crucial role of the TME components in
immunotherapy response and survival prognosis, we analyzed

the TME between the high- and low-risk sets based on the
CIBERSORT and ESTIMATE algorithms. To confirm the
correlation between the IRGS and the TME, we found that
there was a significantly higher immune score, stromal score,
and ESTIMATE score by box plot (p < 0.01; Figure 6A) for the
low-risk set. Consistently, the results also revealed that low-risk
patients were characterized by greater CD8+ T-cell infiltration,
while there was greater M2 macrophage infiltration in high-risk
patients (p < 0.05; Figure 6B).

Afterward, to clarify the association between the IRGS and the
five molecular subtypes in PC (Puleo et al., 2018), the chi-square
test was performed. The result suggested that patients in the high-
risk group were more likely to possess a stroma-activated subtype
as compared to those in the low-risk group (Table 3), which had
been proved to have higher numbers of fibroblasts and lower
immune cell infiltration in the TME. These results may assist in
explaining why shorter survival times occurred in the high-
risk group.

Functional Enrichment Analysis of DEGs
Between Different Risk Groups
We found 307 DEGs between the high- and low-risk patients, of
which 194 were upregulated and 113 were downregulated
(Figure 7A and Supplementary Table 3). The functions of

TABLE 1 | Independent prognostic factors for OS in TCGA dataset.

Characteristic Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Risk score 176 7.076 (3.493–14.334) <0.001a 4.874 (2.439–9.742) <0.001a

Age (years) 176
<65 81 Reference
≥65 95 1.415 (0.931–2.150) 0.104

Sex 176
Male 96 Reference
Female 80 1.219 (0.809–1.837) 0.343

N 171
N0 49 Reference
N+ 122 2.106 (1.254–3.539) 0.005a 1.732 (0.164–18.240) 0.648

T 174
T1+T2 31 Reference
T3+T4 143 2.040 (1.082–3.850) 0.028a 1.443 (0.534–3.902) 0.470

AJCC stage 173
Stage I 21 Reference
Stage IIA 28 1.429 (0.551–3.707) 0.462 0.535 (0.128–2.239) 0.392
Stage IIB 117 2.603 (1.186–5.711) 0.017a 0.666 (0.051–8.737) 0.757
Stage III + IV 7 1.734 (0.442–6.799) 0.430 0.861 (0.139–5.347) 0.873

Grade 174
G1+G2 124 Reference
G3+G4 50 1.523 (0.986–2.352) 0.058

Alcohol drinking history 164
No 64 Reference
Yes 100 1.125 (0.724–1.749) 0.601

Site 176
Body + tail + others 39 Reference
Head 137 2.332 (1.291–4.213) 0.005a 1.955 (1.037–3.686) 0.038a

Tumor diameter 163 1.006 (0.899–1.126) 0.916
Chemotherapy 176
No 60 Reference
Yes 116 0.582 (0.382–0.888) 0.012a 0.395 (0.247–0.632) <0.001a

ap-value is less than 0.05.
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these genes were explored using GO and KEGG pathway
enrichment analyses. Significantly enriched pathways were
myofibroblast-related signaling pathways, such as extracellular
structure, extracellular matrix structural constituent, and
extracellular matrix organization (Figure 7B). This finding was
consistent with the former observation that high-risk patients
tended to be a stroma-activated molecular subtype.

The KEGG results demonstrated that the DEGs were involved
in pathways (extracellular matrix (ECM)–receptor interaction,
protein digestion) related to cellular dissociation in situ
(Figure 7C; Supplementary Table 4). For H: hallmark gene
collection defined by MSigDB, ten pathways, such as
“HALLMARK_MYC_TARGETS_V1” and “HALLMARK_
HYPOXIA,” were significantly enriched in the high-risk group.
However, only one pathway was enriched in the low-risk group
(Figure 7D). Our results suggested that molecular alteration in
the high-risk PC patients might be closely correlated with dense
stroma reaction and a harsh TME, ultimately underlying a poorer
clinical outcome.

DISCUSSION

Among common malignancies, pancreatic cancer (PC) bears
the worst 5-year survival with remarkably dismal outcomes.

Targeted therapies and immunotherapy are not yet available
to improve clinical outcomes in unselected subjects, thus
allowing chemotherapy to be the first-line therapeutic
option for systemic therapy associated with superior long-
term survival (Nicolle et al., 2021). Nevertheless, evidence
from current practice suggests that some resectable patients
have experienced disease progression during neoadjuvant
chemotherapy and thus have lost the opportunity for
consequential surgery, and there are no
validated biomarkers that can be used to predict
the clinical response to chemotherapy (Springfeld et al.,
2019).

Although the AJCC staging system is now widely used for
prognostic estimation of cancer, it often provides useful but
inadequate prognostic information due to the high
heterogeneity among PC. Additionally, despite efforts to
identify many diagnostic and prognostic molecular markers,
they have rarely been shown to have clinical application
(Harsha et al., 2009; Yachida et al., 2010). Therefore,
additional prognostic biomarkers are necessary to enhance
the effectiveness of prognostic prediction. The current study
attempted to develop a new signature that can be used to
reliably identify patients that will benefit from
chemotherapy and assess the prognosis to optimize
personalized treatment.

TABLE 2 | Independent prognostic factors for DFS in TCGA dataset.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Risk score 69 35.806 (6.384–200.838) <0.001a 28.492 (3.902–208.069) <0.001a

Age (years) 69
<65 31 Reference
≥65 38 1.025 (0.447–2.349) 0.954

Sex 69
Male 37 Reference
Female 32 2.372 (1.001–5.623) 0.050 2.055 (0.834–5.062) 0.118

N 66
N0 23 Reference
N+ 43 3.881 (1.301–11.576) 0.015a 1.160 (0.360–3.744) 0.803

T 68
T1+T2 17 Reference
T3+T4 51 2.379 (0.789–7.174) 0.124

Stage 68
Stage I 12 Reference
Stage IIA 12 1.440 (0.197–10.498) 0.719
Stage IIB 43 4.474 (1.010–19.821) 0.049a

Stage III+IV 1 0.000 (0.000-Inf) 0.998
Grade 68
G1+G2 51 Reference
G3+G4 17 1.446 (0.593–3.521) 0.417

Alcohol drinking history 64
No 25 Reference
Yes 39 1.116 (0.461–2.701) 0.808

Site 69
Body + tail + others 20 Reference
Head 49 3.799 (1.259–11.463) 0.018a 2.381 (0.799–7.095) 0.119

Tumor diameter 61 0.896 (0.643–1.249) 0.517
Chemotherapy 69
No 19 Reference
Yes 50 2.111 (0.625–7.131) 0.229

ap-value is less than 0.05.
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The dense desmoplastic stroma in PC is believed to serve as
a barrier for immune cell infiltration, and thus, it subsequently
promotes cancer progression. The fibrotic process in the
pancreas itself consists of several factors, such as tissue
damage, chronic pancreatitis, and abnormal cell death. Such
tissue damage activates the inflammation response at sites of
damage, which is accompanied by cell multiplication and
tissue remodeling (Barcellos-Hoff et al., 2013).
Inflammatory response activates pancreatic stellate cells,
which are responsible for the excess accumulation of the
ECM, and ultimately promotes the metastasis and
progression of PC (Pang et al., 2017).

Inflammatory response-related serum biomarkers such as
neutrophils, platelets, lymphocytes, and monocytes have
also shown satisfactory performance in predicting the

prognosis of PC (Lu et al., 2020). Nevertheless, the
inflammation response-related gene signature as a
prognostic indicator for PC had rarely been studied. To
this end, the focus was on inflammatory response-related
genes because it was reported that they were related to cancer
prognosis and TME characteristics, which have also been
associated with chemotherapy effect in PC (Springfeld et al.,
2019; Liu et al., 2020). Subsequently, we obtained a total of 27
candidate DEGs from 200 inflammatory response-related
genes between PC and normal samples
through differential expression analysis for further
exploration.

To overcome the instability caused by tumor heterogeneity,
a combination of biomarkers may be more stable in estimating
PC prognosis than a single marker. Therefore, a novel three-

FIGURE 3 | External validation of the three-gene signature in the E-MTAB cohort. (A) Distribution of the risk score, related survival status, and heatmap in the
E-MTAB cohort. (B,D) KM survival curves for (B) OS and (D) DFS in the E-MTAB cohort. (C,E) Time ROC curves for forecasting 1-, 3-, and 5-year (C) OS and (E) DFS.
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gene signature (IRGS) produced by the LASSO-Cox method
for survival prediction of PC was established. To the best of our
knowledge, the three-gene prognostic signature described
herein has not been previously reported. Previous studies
reported that a nine-gene signature, hypoxia gene signature,
and ferroptosis-related gene signature were used to estimate 1-
year OS for PC with an AUC at 0.544, 0.602, and 0.7 (Wu et al.,
2019; Ding et al., 2021; Jiang et al., 2021), respectively, which
resembled the results of our study. In addition to the
satisfactory survival prediction ability and construction
using a small number of genes, this inflammatory response-
associated gene signature we developed exhibits additional
advantages over the above signature. For instance, it can
distinguish immune microenvironment characteristics and
chemotherapeutic agent sensitivity for high-risk and low-
risk groups, and the risk score has been shown to correlate
with gemcitabine sensitivity. The IRGS can also be used to
stratify patients into subgroups with significantly different OS

and DFS even with the same T- and N-staging or other
clinicopathological features. The prognostic value of the
three-gene signature was verified in the external E-MTAB
cohort, and this signature was an independent risk factor
for OS and DFS of PC.

The LASSO-Cox regression algorithm for the 27 DEGs
identified a total of three core prognostic-related genes
(CXCL10, TNFSF10, and MET) by integrative analysis of the
openly accessible dataset. Of note, all the DEGs we identified were
observed to be dramatically upregulated in PC samples, which
was consistent with previous findings (Lin et al., 2021). CXCL10
is a chemokine that was initially identified as belonging to a
cytokine subfamily that is primarily involved in the response of
immune cells. It has been elucidated that chemokine expression
in tumors plays a role in aggressiveness, immunosuppression of
the TME, and drug resistance (Goto and Liu, 2020).

For example, recent studies have shown that the
overexpression of CXCL10 can migrate tumor cells through

FIGURE 4 | Association between the signature and clinical parameters in TCGA cohort. (A,B) KM curves for T-staging subgroups in high- and low-risk patients,
respectively. (C,D) KM curves for lymph node metastasis status subgroups in high- and low-risk patients, respectively. (E,F) KM curves for tumor grade subgroups in
high- and low-risk patients, respectively.
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the AKT and MEK signaling pathways to neurons, resulting in
PC-associated neural invasion, and that chemokine blockers
diminish this effect in an animal model (Hirth et al., 2020).
Previous studies have also reported that CXCL10 exhibits anti-
neoplasm activity by inhibiting angiogenesis and increasing
the fraction of TIICs. Nonetheless, CXCL10 can also recruit
tumor-associated macrophages in colon cancer, which
enhanced the progression of cancer and led to a poor
outcome (Chen et al., 2020). Thus, CXCL10 may exert dual
actions on various cancers.

Because of the multifaceted effect of CXCL10 on the
biological behavior of various cancers, it is challenging to
utilize CXCL10 as a therapy target. TNFSF10, the
superfamily member 10 of tumor necrosis factor (TNF),
acts in an antitumor capacity by inducing cancer cell
apoptosis while interacting with the corresponding receptor
(Qu et al., 2019). However, De Looff et al. noted that complex
TME–tumor biological interactions would impede the tumor
reduction effect of therapeutic TNFSF10 receptor agonists (de
Looff et al., 2019). It is, therefore, necessary to gain insight into
the effect of different TME components on TNFSF10
activation before formal clinical application.

The mesenchymal–epithelial transitional tyrosine kinase
receptor (Met) is encoded by the MET oncogene located on
human chromosome 7 and is a member of the receptor tyrosine
kinase (RTK) family. The binding of MET and its ligand causes
the appearance of the characteristic hallmarks of cancer,
including cell proliferation, inhibition of apoptosis, and
invasion and metastasis, by activating downstream signaling

pathways (Van Der Steen et al., 2016). However, targeted
therapies for MET yield variable results with different tumor
types, and clinical trials with different cancer types have shown
variable anti-cancer effects (Spigel et al., 2017; Wakelee et al.,
2017; Bradley et al., 2018). These results suggest that the
paradoxical role of core genes in cancer progression warrants
further exploration of the underlying mechanisms. Unlike most
previous reports that focused on one inflammatory response-
related gene, the present study explored the uncertain roles of
these genes in PC utilizing integrative analysis.

To further understand the relationship between the risk score
and the TME, we investigated the contribution of risk score to
immune cell infiltration. We found that there were a greater
amount of M2 macrophage infiltration and less CD8+ T-cell
infiltration in the high-risk group, as well as a lower immune
score. We also found that, for patients in the high-risk group, a
stroma-activated molecular type was found with greater
frequency, and it served as a barrier against antitumor
immune cell infiltration and was associated with a worse
prognosis (Erkan et al., 2012). These results suggest that
immune surveillance is dysregulated in the high-risk group
and that this may be an important reason for its poor prognosis.

Functional enrichment analysis revealed that DEGs
between different groups were mainly enriched in the
extracellular matrix and might perform biological functions
through the interaction of the TME and tumor cells. According
to the results of GSEA, the p53 pathway and several energy
metabolism-related signaling pathways such as glycolysis,
hypoxia, and oxidative phosphorylation were significantly

FIGURE 5 | Evaluating the response to gemcitabine between high- and low-risk patients. (A) Box plot of the IC50 in TCGA. (B,C) KM curves for chemotherapy use
subgroups in low- and high-risk patients in TCGA, respectively. (D) Box plot of the IC50 in E-MTAB.
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enriched in the high-risk group. Sustained activation of these
pathways in tissue was associated with PC, and thus, that
might be a potential therapeutic target.

Nonetheless, there are a few shortcomings associated with this
study. First, this research was retrospectively analyzed, and thus,
additional prospective studies are required to examine the
prognostic value of the gene signature in PC before clinical
application. Second, additional experiments are required to
elucidate the underlying mechanisms of the hub genes in TME
regulation and progression of PC.

FIGURE 6 | Associations between the IRGS and the tumor microenvironment. (A) Relationship between the risk score and the ESTIMATE score, stromal
score, and immune score. (B) Distribution level of 22 tumor-infiltrating immune cells in the high- and low-risk groups. ns, no significance, *p < 0.05, **p < 0.01,
***p < 0.001.

TABLE 3 | Association between the IRGS and five molecular subtypes.

Molecular subtypes Group p value

High risk Low risk

Desmoplastic 16 64 <0.0001
ImmuneClassical 4 31 0.0006215
PureBasal-like 28 6 <0.0001
PureClassical 33 57 0.6024
StromaActivated 41 29 0.0003487
Total 122 187 <0.0001

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 87660711

Xie et al. Inflammatory Response in PC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


CONCLUSION

Through systematical bioinformatics analyses, we constructed
a novel inflammatory response gene signature with powerful
predictive performance of survival and therapy response in
PC, which may serve as an important supplement to the
current AJCC staging and improve individualized treatment
in the era of precision medicine. The three-gene signature was
closely associated with regulation of immune cell infiltration,
and the desmoplastic stroma of PC and its constituents could
be candidates for therapeutic targets.
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