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AlphaFold is a neural network–based tool for the prediction of 3D structures of proteins. In
CASP14, a blind structure prediction challenge, it performed significantly better than other
competitors, making it the best available structure prediction tool. One of the outputs of
AlphaFold is the probability profile of residue–residue distances. This makes it possible to
score any conformation of the studied protein to express its compliance with the AlphaFold
model. Here, we show how this score can be used to drive protein folding simulation by
metadynamics and parallel tempering metadynamics. Using parallel tempering
metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and
predicted their folding equilibria. We observe the potential of the AlphaFold-based
collective variable in applications beyond structure prediction, such as in structure
refinement or prediction of the outcome of a mutation.

Keywords: AlphaFold, protein folding, protein structure prediction, metadynamics, deep learning, free-energy
simulation, collective variable

1 INTRODUCTION

The introduction of the AlphaFold tool, and especially its second version (Jumper et al., 2021), represents
a significant improvement in the prediction of 3D structures of proteins. In CASP14 structure prediction
competition, it outperformed other competitors, both in overall and local accuracy of predicted structures.
It is very likely that AlphaFold will change the field of experimental structural biology, and this field will in
the future focus on the function of proteins rather than the 3D structure itself.

Nevertheless, there are still limitations of AlphaFold such as limited capacity to predict the
outcome of a point mutation, to predict structures of complexes with small-molecule ligands, to
model an induced fit, and other limitations. This provides an opportunity for biomolecular
simulations and their hybrid applications together with AlphaFold data.

AlphaFold 1 (Senior et al., 2020) was introduced in CASP13 blind structure prediction
competition in 2018. One of the key premises in structure prediction by AlphaFold 1 is that
coevolving residues are likely to be located close to each other in a 3D structure of a protein Sanchez-
Pulido and Ponting (2021). The input of AlphaFold 1 is an amino acid sequence of the modeled
protein. Next, homologous sequences are found in a database of sequenced proteins and aligned to
yield a multiple sequence alignment. This alignment is converted to various coevolution features.
Distributions of distances between residues are predicted from these features using an artificial
neural network. This neural network is trained on proteins with known 3D structures from the
Protein Data Bank (PDB) (Bernstein et al., 1977) and multiple sequence alignments with their
sequenced homologs. Finally, the resulting distance distribution is used to predict the 3D structure of
the modeled protein.

AlphaFold 2 has significantly improved accuracy compared to AlphaFold 1 by the introduction of
novel neural network architectures and the integration of separated parts into a more compact neural
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network pipeline. Coevolution is modeled rather implicitly in this
version. Both versions work with inter-residue distance maps.
That is, AlphaFold 2 produces a tensor with dimension NxNxM,
where N is the number of residues and M is the number of
distance bins. This tensor stores the probabilities (expressed as
logits) of a given residue pair being found at a given distance. The
tensor makes it possible to evaluate any conformation of the
modeled protein to estimate how much it fits the AlphaFold
prediction. The level of this fitness was used in this work to drive a
simulation of the protein, explore various conformations, and
predict their equilibrium probabilities. For this purpose, we used
the metadynamics method (Laio and Parrinello, 2002) and its
combination with parallel tempering (Bussi et al., 2006) in
explicitly modeled water. The concept was tested on two
artificial fast-folding mini-protein tryptophan cage (Trp-cage)
and β hairpin.

2 MATERIALS AND METHODS

2.1 AlphaFold
The structure of the Trp-cage mini-protein (the construct TC5b)
was predicted by AlphaFold 2 (initial release) (Jumper et al.,
2021). The structure of β hairpin (the 16-residue C-terminal
fragment of the G-B1 protein sequence
GEWTYDDATKTFTVTE) was predicted by AlphaFold 2
(version 2.1.1). Both models were in excellent agreement with
the experimentally determined structures (PDB ID 1L2Y
(Neidigh et al., 2002) and 2GB1 (Gronenborn et al., 1991)),
even if all homologous structures were excluded from the
experimentally determined set of structures used by the
program (by the option––max_template_date=1969-12-31).

2.2 Molecular Dynamics Simulation
All simulations were performed by using Gromacs 2021
(Abraham et al., 2015) patched with Plumed 2.7.2 (Tribello
et al., 2014) modified to introduce the AlphaFold collective
variable. The source code of those extensions is publicly
available, and it will be added to Plumed in the near future. A
Docker image of Gromacs built with this Plumed extension is
available as ljocha/GROMACS: 2021-3.3 at Dockerhub. The
image supports both single- and double-precision, SSE2/
AVX2_265/AVX_512 instruction sets and GPU acceleration. It
can be converted to singularity for use in HPC computing centers
in a straightforward way.

In Trp-cage simulations, the system contained the mini-protein,
11,112 or 1,602 TIP3P water molecules (Jorgensen et al., 1973) (for
metadynamics and parallel tempering metadynamics, respectively)
and one chloride anion to neutralize the charge. In β hairpin
simulations, the system contained the mini-protein, 11,136 or
1,625 TIP3P water molecules (for metadynamics and parallel
tempering metadynamics, respectively) and three sodium cations
to neutralize the charge.

The mini-proteins were modeled using Amber99SB-ILDN
force field (Lindorff-Larsen et al., 2010). The time step was set
to 2 fs, and all bonds involving hydrogen atoms were constrained
by the LINCS algorithm (Hess et al., 1997). Electrostatic

interactions were evaluated using the particle mesh Ewald
method (Darden et al., 1993). Parrinello–Bussi thermostat
(Bussi et al., 2007) and Parrinello–Rahman barostat (Parrinello
and Rahman, 1981) were used to maintain constant temperature
and pressure, respectively.

For metadynamics, the system was first optimized by the
steepest descent method followed by 100-ps simulation in the
NPT ensemble (constant number of particles, pressure, and
temperature) at 300 K. For parallel tempering metadynamics,
the system was equilibrated by 100-ps simulation in the NPT
ensemble at 300 K, followed by 100-ps simulation in the NVT
ensemble (constant number of particles, volume, and
temperature) at each temperature used in parallel
tempering metadynamics (278, 287, 295, 303, 312, 321,
329, 338, 346, 355, 365, 375, 385, 396, 406, 416, 427, 437,
448, 459, 470, 482, 493, 505, 517, 528, 539, 551, 562, 573, 584,
and 595 K).

2.3 Metadynamics With the AlphaFold
Collective Variable
Molecular dynamics simulation makes it possible to realistically
model the evolution of a molecular system. Due to its high
computational cost, it can sample relatively short time scales,
typically nanoseconds or microseconds for explicitly solvated
proteins. This is usually not enough to accurately predict the
long-term distribution of states of the system studied.

Multiple methods have been introduced to address this
problem. One group of methods involves artificial forces or
potentials to help the system cross energy barriers (Spiwok
et al., 2015). The system, instead of being stuck in a single
local energy minimum, explores multiple energy minima.
Metadynamics (Laio and Parrinello, 2002) achieves this by
“flooding” energy minima by a history-dependent bias potential.

Another group of methods involves elevated temperatures to
cross energy barriers. This is the basis of parallel tempering
(Sugita and Okamoto, 1999). The system is simulated in
multiple replicas at different temperatures. These replicas can
occasionally swap their coordinates based on predefined criteria.
As a result, sampling of states at the temperature of interest is

FIGURE 1 | Schematic representation of AlphaFold-based CV
(AlphaFold logo - credit to Deepmind).
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more efficient than conventional simulation. Parallel tempering
and metadynamics have been successfully combined into parallel
tempering metadynamics (Bussi et al., 2006).

This bias potential in metadynamics and parallel tempering
metadynamics is defined as a function of collective variables
(CVs). A collective variable is a descriptor of the molecular
system studied predefined by the user. It must be a
differentiable function of the atomic coordinates. Furthermore,
its value should reflect the state of the simulated system, including
metastable states. In this work, we introduce a novel AlphaFold-
based CV, and we use it as a sole CV or together with α-RMDS
CV (Pietrucci and Laio, 2009).

Calculation of AlphaFold-based CV is presented in Figure 1.
One of the outputs of AlphaFold 2 is a tensor D of distance
probabilities with dimension N × N × M, where N is the number
of residues and M is the number of distance bins (by default 64).
For each residue pair, this tensor was converted from logits to
probabilities D [i, j, k] (where i, j are the indexes of residues and k
is an index of a bin) and scaled to yield the sum of probabilities
along the k axis equal to 1.

Given a fixed conformation C of the molecule, we can denote
d̂i,j the index of the distance bin where the distance of the residues
i, j reduces. Then, the random variable Ri,jwith discrete values 0, 1
and the meaning “for a randomly chosen conformation, the
distance between i and j falls into the bin d̂i,j” yields an
expected value ERi,j � D[i, j, d̂i,j]. Hence, by linearity of
expectation, the random variable R with the meaning “number
of inter-residual distances of a randomly chosen conformation
that fall into the same bin as with C” yields the expected value:

ER � ∑
N

i�1
∑
i−1

j�1
D i, j, d̂i,j[ ]. (1)

Therefore, the sum can be interpreted as a probabilistically based
measure to assess how AlphaFold would favor the
conformation C.

In order to be used in metadynamics, the CV is desired to be
smooth and must be differentiable with respect to atomic
coordinates. There are many interpolation techniques to
choose from, and we use an approach derived from path
collective variable definitions (path CV) (Branduardi et al.,
2007; Spiwok and Králová, 2011), simplified to the one-
dimensional case. Assuming d to be an inter-residue distance
between i, j in our conformation C, we calculate

Pi,j d( ) � ∑M
k�1D i, j, k[ ]e−λ d−dk( )2

ϵ + ∑M
k�1e−λ d−dk( )2 , (2)

where dk is the inter-residue distance of the kth bin in D. Other
techniques (polynomial spline interpolation, etc.) could appear
less complicated. However, when considering the required
differentiation, our approach is computationally efficient (the
exponential terms are reused) and less error-prone for
implementation.

The value of λ must be determined empirically–low values
make the curve smoother and high values favor Pis more
strictly. We used λ = 1,000 nm−2 in our calculations. The

constant ϵ (pseudocount, not used in the original path CVs)
was introduced to improve numerical stability when d falls out
of the dks range and Eq. 2 approaches 0/0. Finally, the values of
Pi,j(d) were calculated for all Cα–Cα distances measured
during the simulation and summed according to Eq. 1. The
result was used as a collective variable in metadynamics
simulations.

The AlphaFold output (the final model and the corresponding
pickle file) was converted by a Python script provided at GitHub
(https://github.com/spiwokv/af2cv). It converts the 3D structure
(in Gromacs format) and the pickle file into a Plumed input by
the following command:

python af2cv.py model.gro model.pkl > plumed.dat

The resulting output (plumed.dat) must be modified for the
given type of calculation, for example, for monitoring of the CV,
for metadynamics, or for other free-energy modeling methods
available in Plumed.

In metadynamics, we used either AlphaFold-based CV or its
combination with α-RMSD.Metadynamics floods the free-energy
minima by bias potential comprising Gaussian hills. The widths
of these hills were 0.1 (Trp-cage) or 0.04 (β hairpin) in the
direction of AlphaFold-based CV and 0.1 in the direction of α-
RMSD. Well-tempered metadynamics (Barducci et al., 2008),
which reduces the heights of hills with the progress of the
simulation, was used. The height of the hills was set to 0.5 kJ/
mol, and the bias factor was set to 8.

Parallel tempering metadynamics (Bussi et al., 2006) also used
either AlphaFold-based CV or its combination with α-RMSD.
The widths and heights of the hills and the bias factor were the
same as in metadynamics. Replica exchange attempts were made
every 1 ps. Free-energy surfaces were calculated using
Metadynminer (Trapl and Spiwok, 2020). 3D structures were
visualized by UCSF Chimera (Pettersen et al., 2004).

3 RESULTS

3.1 Trp-Cage
First, 200-ns metadynamics was performed only with AlphaFold-
based CV (Figure 2). The simulation started from the folded
state. The folded state corresponds to AlphaFold-based CV values
between 4.9 and 5. After approximately 600 ps, it partially
unfolded and AlphaFold-based CV dropped to approximately
3. This unfolding consisted of detachment of the C-terminal tail
from the N-terminal α-helix. The C-terminal tail returned at time
2.6 ns, and the structure returned to the folded state. It stayed
there up to 11 ns. This is represented in Figure 2 by snapshots at
0, 2, and 4 ns.

At approximately 80 ns, the system returned to a near-native
state with the AlphaFold-based CV between 4.80 and 4.85. It
differed from the native state by unwinding of the three
N-terminal residues from the α-helix and a slightly different
position of the C-terminus. From the start to time 80 ns, some
content of α-helix was present in the structure. After that, the
protein lost any helix content and was not able to fold.
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Unfortunately, the free-energy surface calculated by this
metadynamics simulation was not realistic (data not shown)
because the unfolded state was calculated as significantly more
stable than the folded state. This was due to lack of folding events.

The simulation with one AlphaFold-based CV indicated
that the formation of α-helix is critical and that AlphaFold-
based CV itself cannot efficiently accelerate it. For this reason,
we added a second CV (α-RMSD) to accelerate helix

FIGURE 2 | Evolution of AlphaFold-based CV in metadynamics simulation of Trp-cage with AlphaFold-based CV with selected frames. RMSD is depicted in the
color scale.

FIGURE 3 | Evolution of AlphaFold-based CV and α-RMSD in metadynamics simulation of Trp-cage with both CVs with selected frames. RMSD is depicted in the
color scale.
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formation. The results of this 150 ns simulation are depicted in
Figure 3.

Similar to the previous simulation, there was relatively fast
unfolding. The system explored structures with high values of
AlphaFold-based CV between 60 and 100 ns. The value of
AlphaFold-based CV was fluctuating between 4.4 and 4.96 at
this stage. These structures were very similar to those of the native
state in overall shape, but the N-terminal α-helix was not formed.

The simulation also explored states with higher α-RMSD CV,
which is depicted in Figure 3 at 148 ns. This structure is
characterized by a helix-like structure of residues 6–13
(Figure 3 shows residues 6–9 as the helix because the
remaining residues do not meet the definition of α-helix used
by UCSF Chimera).

Again, the predicted free-energy surface was not realistic (the
unfolded state was significantly more favored than the folded one;
data not shown). This can be explained by the lack of folding
events.

Since it was not possible to observe enough folding events to
accurately predict the folding free-energy surface, we replaced
metadynamics with parallel tempering metadynamics. The
combination of metadynamics with parallel tempering makes
it possible to accelerate degrees of freedom that are not covered
by CVs.

The first parallel tempering metadynamic simulation started
from the native structure of the protein. Before the parallel
tempering metadynamics simulation, each replica was
equilibrated by 100-ps molecular dynamics simulation at the
corresponding temperature. This was usually not long enough to
unfold the protein, so most simulations started from the native or
near-native structure. The predicted free-energy surfaces at
different temperatures are depicted in Figure 4A.

The folded state is modeled as the global minimum for lower
temperatures (up to 375 K, 102°C). Above this, the unfolded state
was more favored. The conversion of the free-energy surface to
probability (as exp(−G/kT)) and integration of the probability of
AlphaFold score higher and lower than 4.75 (estimated border

between the unfolded and folded state) revealed that the protein is
stable in its native structure up to 329 K (56°C). This was in good
agreement with the experimentally determined melting
temperature (42°C).

The fact that the simulation started mostly from the folded
state may bias the free-energy surface toward the folded state. To
rule out this possibility, we performed another simulation
(second run) starting from the first run after 10 ns. At this
point, all replicas were unfolded (only replica 18 was in a state
similar to the structure at 2 ns in Figure 2). All other settings were
the same as in the first run. The free-energy surface is depicted in
Figure 4B. Free-energy surfaces from the first and the second run
are very similar. The only notable difference was in the lower
barrier between the folded and unfolded states.

Free-energy surfaces calculated by parallel tempering
metadynamics may be stable owing not only to transitions
between different states of the system but also as an artifact of
replica exchanges. Let us imagine a parallel tempering (or parallel
tempering metadynamics) with just two replicas, one starting
from a folded and one from an unfolded protein. High number of
replica exchanges causes the single temperature trajectory
switches between the folded and unfolded states, even in the
absence of any real folding and unfolding events. The results of
such simulations may be wrongly interpreted as an equilibrium
between the folded and unfolded state.

To avoid this artifact, we performed demultiplexing
(“demuxing”) of replicas to obtain continuous trajectories,
regardless of the evolution of temperature. The evolution of
root-mean-square deviation (RMSD) from the native structure
in demuxed trajectories is depicted in Figure 5. In the first and
second runs, we observed four and three folding events,
respectively. In general, there were typically two replicas in the
folded state. This indicates that the folding free-energy surfaces in
Figure 4 are stable and not affected by either the starting state or
the number of folding events.

Finally, we tested parallel tempering metadynamics with two
collective variables, AlphaFold-based CV and α-RMSD. It was

FIGURE 4 | Free-energy surfaces of Trp-cage (as functions of AlphaFold-based CV) calculated at different temperatures in the run stared from the folded ((A), the
first run) and unfolded ((B), the second run) state.
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necessary to prolong the simulation from 50 to 100 ns. The results
are depicted in Figure 6. Figures 6A,B compare the free-energy
surface at 303 and 595 K. The former is characterized by twomain

minima. The minimum corresponding to the folded structure is
located at AlphaFold-based CV ~ 5 and α-RMSD ~ 6. The
unfolded minimum is at the bottom of the plot. There are

FIGURE 5 | Profiles of RMSD of Trp-cage as a function of time calculated for demultiplexed trajectories from the run stared from the folded ((A), the first run) and
unfolded ((B), the second run) state. The folded state is highlighted by a purple frame.

FIGURE 6 |Results of parallel temperingmetadynamics simulation of Trp-cagewith AlphaFold-based CV and α-RMSD collective variables. (A) Free-energy surface
at 303 K, (B) free-energy surface at 595 K, (C) free-energy surfaces calculated at different temperatures and (D) profiles of RMSD as a function of time calculated for
demultiplexed trajectories.
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several other notable local minima, namely, at high values of α-
RMSD, which corresponds to a structure with a long helix, or at
AlphaFold-based CV ~ 4 and α-RMSD ~ 4, which corresponds to
the structure with the N-terminal helix formed but the
C-terminal tail detached from the helix. At 595 K, the
unfolded minimum was the only minimum of the system.
Figures 6C,D are in good agreement with the results of
parallel tempering simulations with AlphaFold-based CV as
the only collective variable. A reasonable number of folding
events were observed.

In order to compare the performance of AlphaFold-based CV
and its combination with α-RMSD, we carried out a parallel
tempering simulation with α-RMSD as the only CV. Other
parameters were the same as in the simulations with the
AlphaFold-based CV. Surprisingly, we observed multiple
folding events (Figure 7A). However, it is apparent that
unfolded structures in these simulations do not significantly
divert from the native structure. In other words, the sampling
of various conformation states is much more intensive in the
simulation with AlphaFold-based CV in combination of
AlphaFold and α-RMSD CVs, compared to α-RMSD CVs.

This was further demonstrated by assessment of the number of
conformational clusters explored in the simulation. The
structures sampled in each parallel tempering simulation at
303 K were analyzed by the clustering method by Daura et al.
(1999) (cutoff set to 0.1 nm). Figure 7B shows the evolution of
the cumulative number of clusters. Clearly, the number of clusters
sampled by α-RMSD CV is significantly lower than for
AlphaFold-based CV. The combination of AlphaFold and α-
RMSD CVs gives little extra sampling.

3.2 β Hairpin
Formation of β-sheet is in general slower than the formation of α-
helix Zimm et al. (1959). Furthermore, it is more difficult to
accelerate it. To evaluate the performance of AlphaFold-based CV
on the formation of β-sheet structures, we studied folding of a

model β hairpin mini-protein, which comprises a single
antiparallel β-sheet. Similar to Trp-cage metadynamics
simulation, after complete unfolding at the beginning of 200-
ns metadynamics simulation, the system explored structures with
high AlphaFold-based CV (at time 66 or 85 ns, Figure 8). These
structures were spatially similar to the native structure; however,
the secondary structure was formed incorrectly.

Similarly to Trp-cage, the combination of parallel tempering
with metadynamics made it possible to accurately predict its free-
energy surface at different temperatures and observe multiple
folding events (Figure 9). β Hairpin was predicted to prefer the
folded state at low temperatures and the unfolded state at higher
temperatures. The melting temperature was estimated to be
287 K. This is in good agreement with the experimentally
determined fraction of the native structure at 278 K, which is
40% Blanco et al. (1994).

4 DISCUSSION

The performance of metadynamics driven by AlphaFold-based
CV can be assessed by comparison with unbiased simulations,
parallel tempering simulations, and metadynamics using other
CVs. One of the model mini-proteins used in this study–Trp-
cage–folds with the mean folding time equal to 14 μs in a
simulation with a similar setup (Lindorff-Larsen et al., 2011).
In a parallel tempering simulation (without metadynamics) with
a similar setup and the same duration (200 ns) as in our previous
study, we did not observe any folding events (Trapl et al., 2019).
With the neural network–approximated solvent-accessible
surface area as a CV, we observed more folding events than in
this study (eight compared to four or three in this study). Both
studies used 200-ns parallel tempering metadynamics. However,
for approximation of the solvent-accessible surface area by a
neural network, it is necessary to have a series of folded and
unfolded structures of the system. We obtained these from the

FIGURE 7 | Comparison of parallel tempering metadynamics simulation of Trp-cage with α-RMSD CV with other CVs. (A) Profiles of RMSD in parallel tempering
metadynamics with α-RMSD CV as a function of time calculated for demultiplexed trajectories and (B) comparison of the cumulative number of conformational clusters
explored by parallel tempering metadynamics with different CVs.
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208-μs trajectory kindly provided by D.E. Shaw Research. In
contrast, AlphaFold-based CV can be built just using the
sequence of a protein. Therefore, it does not suffer from the
“chicken and egg” problem of the necessity of using folding
trajectories to simulate folding.

Our results have shown that the critical process in the folding
of Trp-cage accelerated by AlphaFold-based CV is the formation
of the secondary structure. Without this, metadynamics can force
formation of structures similar to the native one, but it is wrong in
terms of the secondary structure. This cannot be easily solved by
the α-RMSD CV. Replacement of metadynamics by parallel
tempering metadynamics helped solve this problem. α-RMSD
CV itself makes it possible to fold and unfold Trp-cage in a
reasonable time scale; however, a significantly lower number of
conformations is sampled.

AlphaFold-based CV was also tested on β hairpin, which was
used as a representative of β-sheet mini-protein. Similar to the
Trp-cage, AlphaFold-based CV could not fold the mini-protein in
200-ns metadynamics but was able to fold it and predict the
temperature-dependent free-energy surface by parallel tempering
metadynamics.

We used the concept of path CVs (Equation 2) (Branduardi
et al., 2007) to convert the discrete distance probability profile
into a continuous one. The path CV includes a prefactor λ that
must be set prior to the application of the CV. Here, we set λ equal
to 1,000 nm −2. This value was chosen based on the plot of the
sample probability profiles (data not shown). We believe that the
same value of λ can be used in studies of other proteins because
the distance values, for which these profiles are constructed, are
the same or very similar (the Supplementary Information of the

FIGURE 8 | Results of metadynamics simulation of β-hairpin with the AlphaFold collective variable with selected structures. RMSD is depicted in the color scale.

FIGURE 9 | Results of parallel tempering metadynamics simulation of β-hairpin with AlphaFold collective variables. (A) Free-energy surfaces calculated at different
temperatures and (B) profiles of RMSD as a function of time calculated for demultiplexed trajectories.
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reference (Jumper et al., 2021) states “The bins cover the range
from 2 Å to 22 Å”).

The parameter ϵ used in Eq. 2 has not been used, to our
knowledge, in the context of path CV. It can be used to make the
simulationmore stable by elimination of a high gradient when the
numerator and the denominator of Eq. 2 are close to zero. In this
study, we used this equation to approximate a probability. In
general applications of path CVs, this coefficient may cause
artifacts and must be used carefully.

In parallel tempering and parallel tempering metadynamics, it
is necessary to keep the size of a simulation box small. This is
because the potential energy distribution in large systems (large
boxes with large numbers of water molecules) is relatively narrow
as a result of an averaging effect. This causes the overlap of
potential energy histograms of two neighboring replicas to be
small, which causes a low probability of coordinate exchange and
thus poor performance of parallel tempering. On the other hand,
small box size increases the risk of artifacts caused by interactions
of the simulated protein with its replicas from the neighboring
periodic boxes. The trajectories from parallel tempering
metadynamics simulations were visually inspected (data not
shown). This revealed that self-interactions are relatively rare
and are limited to head-to-tail interactions of fully unfolded
proteins. Therefore, we believe that self-interactions do not
cause any significant artifacts.

A similar approach as presented here was applied by Nassar
et al. (2022). Using the output from other machine
learning–based protein structure modeling tools, they folded
multiple significantly larger proteins, however, in substantially
longer simulations.

In principle, it is possible to use AlphaFold to predict the native
structure of the studied protein and then use RMSD from the
predicted native structure as a collective variable (here R2 of
RMSD from the native structure and the AlphaFold CV is 0.83
for Trp-cage).We see twomajor differences between the RMSD from
the native structure and AlphaFold CV. First, bell-shaped distance
probability profiles have different widths for different residue pairs.
Narrow profiles give rise to higher energy gradients; thus, they have
higher priority than wide profiles. We believe that this prioritization
of residue pairs may play a role in CV performance.

Second, AlphaFold-based CV is an example of a “soft” collective
variable. It is to be recalled that the AlphaFold-based CV represents
the expected number of pairs of residues whose distance matches
that of the current structure. Thus, it seems very likely that the local
minima in a fixed basis of attraction could have similar AlphaFold-
based CV values. If true, the AlphaFold-based CV would change
only if the simulation left the initial basis of attraction. On the
contrary, the RMSDof the native structure is a variable that increases
continuously with divergence from the native structure. Hence, it
can vary much even when restricted to minima on a fixed basis of
attraction. This could cause AlphaFold-based CV to provide faster
divergence from the initial structure.

A similar behavior could be expected from other collective
variables that do not utilize the native structure, such as α-RMSD.

As our experimental comparison shows, α-RMSD was capable of
guiding the simulations into several folding events; however, it
could not lead it into a very divergent basis of attraction. In
contrast, the AlphaFold-based CV seems to have similar values
on similar bases of attraction, causing the simulation to move
faster toward very different configurations. The very same
property, of course, prevents it from convergence to minima
in different bases of attraction; hence, a second CV is needed to
ensure the convergence.

In the future, we can imagine a more focused version of
AlphaFold-based CV. Since it is not the purpose of an
AlphaFold CV–driven simulation to predict the structure of a
protein, which can be carried out much more efficiently by
AlphaFold itself, we see its application in refinement focused
on protein loops, domains, and pockets, for example, to accelerate
induced fit in docking simulations. Instead of calculating the sum
of P(d) across all residues, the sum can be calculated on a
predefined set of residues. This would make it possible to
focus AlphaFold-based CV to a certain part of the protein.
Analogously, it would be possible to split the AlphaFold-based
CV into two CVs, one focused locally (that is, on the secondary
structure) and one globally.
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