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In the United States, colorectal cancer is the second largest cause of cancer death, and
accurate early detection and identification of high-risk patients is a high priority. Although
fecal screening tests are available, the close relationship between colorectal cancer and
the gut microbiome has generated considerable interest. We describe a machine learning
method for gut microbiome data to assist in diagnosing colorectal cancer. Our
methodology integrates feature engineering, mediation analysis, statistical modeling,
and network analysis into a novel unified pipeline. Simulation results illustrate the value
of the method in comparison to existing methods. For predicting colorectal cancer in two
real datasets, this pipeline showed an 8.7% higher prediction accuracy and 13% higher
area under the receiver operator characteristic curve than other published work.
Additionally, the approach highlights important colorectal cancer-related taxa for
prioritization, such as high levels of Bacteroides fragilis, which can help elucidate
disease pathology. Our algorithms and approach can be widely applied for Colorectal
cancer prediction using either 16 S rRNA or shotgun metagenomics data.
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1 INTRODUCTION

Colorectal cancer (CRC) is one of the most common and deadliest types of cancer, accounting for
over 10% of all cancer deaths globally Arnold et al. (2017). The microbiome is a collection of
microorganisms that reside alongside or directly on barrier surfaces, with the colony housing most of
the population in mammals Gilbert et al. (2018). The colonic microbiota significantly impacts
various aspects of host biology by digesting and altering nutrition and host-derived chemicals.

This study aims to find CRC at an early stage, when it is small and has not spread, often allowing for
more treatment options. Some early cancers may have signs and symptoms that can be noticed, but that is
not always the case. Individuals diagnosed early have a greater than 90% chance of survival Gloeckler Ries
et al. (2003). More than one-third of individuals do not adhere to screening recommendations partly
because of the standard diagnostics Baxter et al. (2016); colonoscopies are expensive and invasive.

Making individual-level predictions based on microbiome compositions can be very challenging.
One such type of predictive modeling is to utilize microbiome compositions to predict an individual
host’s phenotypes or responses, such as a health outcome or disease status, which is the most difficult.
Microbiome data are very different from one sample to the next, making it hard to compare them.
Many factors could change the composition of a person’s microbiome. In contrast, most of these
factors or “variance components” have little or nothing to do with the response of interest. This
complicated heterogeneity, combined with the high number of variables in the data, makes it very
difficult to make reliable predictions about individual responses based on “noisy” compositional
predictors. Making predictions with the microbiome compositions as inputs without careful pre-
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analysis is unlikely to succeed, no matter the prediction
algorithm. Our study provides evidence that effective
representation of the microbiome in terms of “features” that
characterize the underlying stable signatures can enhance the
predictive power. Careful generative modeling of microbiome
compositions and upstream constructed factors under our
control in the testbed and downstream functional profiles will
identify such compositional traits.

Colorectal cancer (CRC) has many risk factors, including
environmental and inherited. Fewer than 10% of patients have
an indeed inherited predisposition to CRC Bogaert and Prenen
(2014). There are less than 25% of patients who do not have
consistently inherited syndromes, such as Peutz-Jeghers
syndrome and MUTYH-associated polyposis, but with a
family history of CRC. Literature also shows that many
lifestyle-related factors associate with colorectal cancer Haggar
and Boushey (2009). Colorectal cancer (CRC) risk factors include
obesity, physical activity, smoking, alcohol intake, and certain
dietary variables Khan et al. (2010). Other risk factors, such as
being older, whether we have a history of adenomatous polyps
(adenomas), personal history of inflammatory bowel disease, and
family history of CRC or adenomas, are also risks that we cannot
change Ahsan et al. (1998). This information is potentially helpful
for early-stage CRC prediction. We build them into our pipeline.

In Section 2, we introduce the CRC status prediction pipeline,
utilizing the risks information provided by the patients (Section
2.1). This study uses a model-based approach for feature selection
(Section 2.2) instead of a fancy black box. We also use simulation
to confirm the feature engineering step (Section 3). Our analysis
method is rigorous, and the result has excellent potential for
future patient treatment (Section 4).

2 DATA ANALYSIS PIPELINE

Microbiome Host Trait Prediction (MHTP) pipeline combines
the feature engineering techniques, statistical modeling of the

microbiome compositions, mediation analysis, and network
analysis into one framework as shown in Figure 1.

2.1 Feature Engineering
We provide two options for feature engineering (FE).
Hierarchical feature engineering (HFE) is a feature
selection method that applies phylogenetic hierarchy
(i.e., an all-inclusive taxonomy) to feature engineering to
classify microbiota Oudah and Henschel (2018). The
algorithm combines multiple phases, which results in a set
of informative features, including OTUs and taxonomy
elements. Briefly, HFE uses a combination of phases: (i) an
initial feature engineering phase which combines results from
child taxa to synthetic “parent” taxa, (ii) a correction phase to
remove redundant taxa, and (iii) a feature selection phase to
keep only taxa with some minimal correlation with the
outcome, and (iv) a final filtering path to remove taxa with
incomplete taxonomies. We have applied it to various studies
Zhou and Gallins (2019); thus, using HFE can improve the
host trait prediction. However, the processed data from HFE
is no longer count-data. So the output from this type of feature
engineering can not align with count-based statistical
modeling in the second stage of MHTP. At the end of
Section 2.2, we suggest fast non-count-based statistical
modeling if the user chooses HFE.

Another good choice for FE is the AUCRF approach. The area
under the curve (AUC) of the random forest is calculated using all
predictor variables and the answer specified in the formula
argument. Then, using the specified relevance metric, we
construct a ranking of predictors. We further reduce the
importance of less critical variables based on their ranking.
We utilize the remaining variables to calculate the AUC of a
new random forest. This technique is repeated iteratively Calle
et al. (2011). Additionally, we define the best set of predictive
variables as the collection of variables that results in the highest
out-of-bag score for the Random Forest. In the subsequent stage,
we use these selected OTUs as input for statistical modeling.

FIGURE 1 | This is the Microbiome Host Trait Prediction (MHTP) pipeline to build the prediction of colorectal cancer.
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2.2 Statistical Modeling
To further improve the colorectal cancer status’s prediction
accuracy, this section introduces two statistical modeling
methods to accommodate the unique microbiome data structure.

2.2.1 Raw Count Data
Within each cross-validation, we apply the zero-inflated beta-
binomial modeling method (ZIBB) Hu et al. (2018) to the training
data. This model captures the distribution of microbiome count
data and establishes a relationship with the CRC status very well.
We designed ZIBB originally for discovery study, using the
strategy to increase power and account for confounders by
leveraging the mean-variance relationship. This statistical
method has two components: a zero model for accounting for
excess zeros and (ii) a count model for capturing the remaining
component via beta-binomial regression, accounting for
overdispersion effects. We use the OTUs highly correlated
with CRC status in the testing set inside cross-validation. The
selections are different in each fold.

2.2.2 Relative Abundances OTU Table
In Section 2.1, using the option of HFE outputs non-count data
format. In this scenario, we use the fast and robust moment-
corrected correlation (MCC) algorithm Zhou and Wright (2015)
in the statistical modeling stage. This approach is a fast
approximation to the exact associate test of the trend that is
accurate in high-throughput settings. The algorithms provide
accurate p-values for correlation testing when we have skewed
predictors and outcomes without relying on asymptotic
approximation. It is faster than permutation testing but
provides very similar p-values to permutation.

2.3 Mediation Analysis
Mediation analysis is a statistical procedure that employs a
mediator as an intermediary in the chain connecting the
independent and dependent variables. It can be used to
describe the interaction between host gene expression, the gut
microbiome, and clinical/health status (Carter et al., 2020).
Unlike the traditional host trait prediction Y using
microbiome count data X directly, causal mediation analysis
aims to examine the role of a mediator or a group of
mediators that lie in the pathway between an exposure and an
outcome. With the expanding of ‘omics data, joint analysis of
existing ‘omics data with epidemiological data through mediation
analysis becomes more common (Song Y. et al., 2020). Most of
the mediation methods are designed for discovery study (Wang
et al., 2020).

The upper right side of Figure 1 shows a basic mediation
model with a mediator variable Z. X directly influences disease
status Y (path c’). The alternative route is the indirect route,
consisting of a path from X to Z (path a) and a path from Z to Y
(path b). This connection between a and b is referred to as an
indirect impact or mediation effect. Both pathways illustrate the
influence of X on Y. However, they are not equal because of the
existence of the mediator, which has an indirect impact.

This study combines mediation analysis with our statistical
modeling method to improve CRC status prediction. We apply

mediation analysis for each training data and obtain the
mediators that contribute additional indirect effects to the
connection with CRC status. Then we stack these mediators
together with the selected features and generate new training
and testing data within each cross-validation. We repeat the
procedure and select relevant (not necessarily the same)
mediators each time.

2.4 Machine Learning
In the previous work, we reviewed many existing machine
learning methods, including K-Nearest Neighbor, Neural
Network, Elastic Net, Support Vector Machine, Lasso,
Gradient Boost, Random Forest Zhou and Gallins (2019).
Ensemble-of-trees methods are popular forecasting choices in
regression and classification problems. Algorithm such as
random forests Breiman (2001) is a well-established and
widely employed procedure. Random Forest gives consistently
better results than other existing popular machine learning
methods in several studies regardless of the continuous or
dichotomous host trait Song K. et al. (2020). Bayesian additive
regression trees (BART) is a nonparametric Bayesian regression
approach that uses dimensionally adaptive random basis
elements. Bart’s improvements in ensemble approaches differ
from predecessors in that they rely on an underlying Bayesian
probability model rather than a pure algorithm. BART has shown
considerable promise in a variety of simulations, and real-world
applications Chipman et al. (2010). We include both Random
Forest and BART in our MHTP pipeline.

3 DATA SIMULATION AND RESULT

Simulation studies are computer experiments that generate data
by sampling pseudo-randomly from probability distributions
with known parameters. They are essential for methodology
research, especially for evaluating new approaches and
comparing different methods. We assume the count data
arising from 16S rRNA gene profiling or other sequencing
strategy is denoted as an m × n matrix Xraw. After feature
engineering and stacking with mediators, we name the new
input dataset X. Let Sj � ∑m

i�1 xij be the sequencing depth of
the jth sample. Following the zero-inflated beta-binomial (ZIBB)
modeling Hu et al. (2018), we simulate data based on the cancer
1 Baxter et al. (2016) dataset. The description of this real data is in
Section 4. The sample sizes for the simulated CRC cases vs
controls are n1, n2 respectively. We randomly select CRC samples
according to our designed structure (50, 100, respectively, for
each setup). Using ZIBB modeling, the effect coefficient βi for ith
OTU is a vector with length 2, βi � (β0i, β1i)T, where β0i is the
intercept. Then we use them to simulate the count matrix, given
the beta-binomial distribution. We can also add the zero inflation
effect by fitting the probability of zero. We remove any OTUs
with complete zero counts of all samples within either group. For
a randomly chosen 10% of OTUs, we specify an effect size r �
eβ1i(1 + eβ0i )/(1 + eβ0i+β1i ) to determine β1i given β0i. The
remaining 90% of the OTUs has β1i’s to be zero. D is the
design matrix with n samples and two columns. The first
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column of D were 1’s, which correspond to intercept, and the
second column indicators for the two groups, of size ncrc=1
and ncrc=0. Using beta-binomial model, we first generate the
overdispersion parameters ψi for the ith OTU, based on
logit(ψi) � ∑3

k�0γkmean(Dβi)k. We then simulate the count
data using the beta-binomial distribution with all the
parameters Hu et al. (2018). For each value of effect size r,
we generate 100 datasets to test the pipeline.

Our MHTP pipeline consists of several processes,
including feature engineering, statistical modeling,
mediation analysis and the machine learning algorithm.
Zhou and Gallins (2019) demonstrated that the random
forest (RF) frequently makes a consistent prediction.
Without loss of generality, we use RF as the final phase in
this simulated scenario. Then we compare the prediction
accuracy by two metrics. One is the area under the curve
(AUC); Figure 2 left panel shows that the AUC increases with
the increase of the effect size. An excellent model has AUC
near the 1, which means it has a good separability measure.
The sample size is another factor that impacts the prediction
accuracy. Larger sample size data tends to have a bigger AUC,
especially for the low to medium effect size. The other metric
is the mean squared error (MSE), which takes the difference
between the model’s predictions and the ground truth, and
averages it across the whole dataset. The MSE decreases as the
effect size increase, which makes perfect sense in Figure 2. We
notice that MHTP outperforms other methods, particularly for
low to moderate effect size/signal data. The performance of
using the combination of statistical modeling and machine
learning method is roughly 0.1 higher in AUC for the low effect
size data, which is in between the two methods we showed in

Figure 2. This pattern emphasizes the importance of feature
engineering in CRC prediction.

To create a mediation relationship, we modify the method
described above. First, we note that the defining feature of
mediation relationships is partial or complete conditional
independence of exposure/predictor data and the response
values, given the mediator. Thus it is permissible to simulate
X conditional on a mediator z and then y depending on X and z.
This approach is valid even though the interpretation for
applications may be reversed, i.e. the causality interpretation is
X → y or X → z → y.

Let Z represent an n × pmatrix of potential mediators. For our
simulation purposes we will start with a latent multivariate
normal Z′ ~ MVN(0, Σ), and each variable zj � I[zj′ > 0], i.e.
the binary z-values are obtained by thresholding. We choose Z1 as
the “true” mediator, and generate the X matrix following the
above ZIBB simulation approach, but using z1 instead of the
phenotype. Then we do a forward simulation of binary y values,
with P(Y = 1) = expit(α0 + α1z1 + α2PC1(X)), which can be
followed by rejection sampling if we wish to exactly control the
number of sample with y = 0 and y = 1. This approach involves a
mediation relationship with a single z and many OTUs, with
effect size controlled by α1 (and α1 = 0 corresponds to no
mediation and null y). Moreover, by including correlated
columns of Z as specified by Σ, the identification of the
“correct” mediator is not guaranteed.

Adding additional mediators helps to increase the CRC status
prediction accuracy. The overall improvement of AUC is about
3% under the simulation setting with one “true” mediator. We
encourage the users to include clinical information or other
relevant testing results as mediators for the actual data analysis.

4 REAL DATA ANALYSIS AND RESULTS

4.1 CRC Dataset 1
The first CRC dataset labeled “cancer 1” was extracted from
PRJNA290926 Baxter et al. (2016). All the patients were aged
above 18 years old. The V4 region of the bacterial 16 S rRNA gene
was amplified using custom barcoded primers and sequenced
Baxter et al. (2016). Among these 490 samples, 120 had CRC,
198 had adenomas, and 172 had no colonic lesions. We used the
ones diagnosed as “cancer” and “normal” (120 vs 172). The meta
data provided 25 variables, including ethnicity information,
smoking status, etc.

Usually, scientists run a list of traditional machine learning
methods, such as Random Forest, Xgboost, SVM, Lasso, neural
network, and LDA. The area under the curve ranges from 0.53 to
0.73 for the species level with 335 OTUs. Among all these
methods, Random Forest and Bart stand out. We further
added feature engineering based on these two optimal
methods. In this example, HFE filtered the majority of OTUs,
with only eight remained, which drove the prediction less
accurate. Therefore, we combine AUCRF feature engineering
with count-based statistical modeling ZIBB, following our
MHTP pipeline. In the last step of adding mediators, we used
a Bayesian mediation method Song Y. et al. (2020) to use

FIGURE 2 | Two groups of sample sizes are used, with n1= n2=50, n1=
n2=100 respectively. Here we compare two methods: 1. our MHTP approach
2. zero-inflated modeling with random forest. The left panel is the area under
the curve comparison among the simulated data with the different effect
sizes. The right panel shows the mean square error changes with the effect
size increase.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2022 | Volume 9 | Article 9219454

Zhou and Sun Microbiome-Based CRC Prediction

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


continuous Bayesian shrinkage priors to select mediators and
assume that all the potential mediators contribute some effects in
mediating the colorectal cancer status. A tiny proportion of
mediators exhibit significant effects. We kept these mediators
(ethnicity information, smoking status, body mass index, gender,
weight) in both testing and training sets in each cross-validation
step. Table 1 shows that missing any step in the MHTP pipeline
will lack the power in prediction. Using our proposedmethod, the
area under the curve is 13% higher than the optimal traditional
machine learning alone, with the lowest mean square of error.

Normalization is an essential process to ensure the
comparability of data across samples. Zhou and Gallins (2019)
cited multiple works of literature, which largely account for the
large variability in library sizes (total number of sequencing reads
across different samples). These normalization approaches
include the cumulative sum scaling, variance stabilization,
trimmed-mean by M-values, and the centered log-ratio (CLR)
transformation of the relative abundance vectors. There is not
enough evidence that normalization has any impact on host trait
prediction Song K. et al. (2020). In the analysis of CRC dataset 1,
we use the internal library normalization in the step of application
of statistical modeling ZIBB and also find that other
normalization does not change the CRC prediction.

4.2 CRC Dataset 2
The second CRC dataset labeled “cancer 2” was extracted from
PRJEB6070 Zeller et al. (2014). Among the collected 156 samples
for the shotgun sequencing in population F, 53 patients had
colorectal cancer, 42 with adenoma, and 61 were normal controls.
Zeller et al. (2014) combines the 17 patients who had small
adenoma with the neoplasia-free regular patients, so we followed
the same 53 cases vs 88 controls here. Zeller et al. (2014) used 10-
fold cross-validation and reported the area under the ROC curve
0.733 by a logistic regression model.

We applied a list of machine learning methods like a SVM,
k-nearest neighbor, neural network, Random Forests, ridge
regression and Lasso. The AUC ranged from 0.51 to
0.86 under species level. The prediction accuracy decreased as
we used the higher level - genus level instead. TheMHTP pipeline
provides two options of feature engineering procedures. HFE
selected 25 OTUs, while AUCRF chose 15 out of 1,753 OTUs at
the species level. The result implied that AUCRF performed
better than HFE in this example. Due to the limited clinical
information on cancer 2, the mediation analysis didn’t show

significant mediators available, so MHTP didn’t include any
clinical information for the downstream analysis. Figure 3
shows that our MHTP provides AUC 0.91, which is
0.18 higher than the logistic regression (0.73) reported by
Zeller et al. (2014), indicating our pipeline provides a much
better prediction accuracy, which also emphasizes the importance
of feature engineering.

Bacteroides fragilis is one of the top selected features. To
investigate this phenomenon further, we apply the WGCNA
method to identify highly co-expressed modules. The first
principal component of the module containing Bacteroides
fragilis is significantly associated with CRC status. Figure 4

TABLE 1 | The area under the curve, prediction accuracy, and mean square error
are listed for the CRC status prediction using the real data. AUCRF refers to
feature engineering in the first column; MHTP is our proposed method, which can
combine with the best machine learning method.

Method AUC Prediction accuracy MSE

ZIBB + Random Forest 0.777 0.732 0.191
ZIBB + Bart 0.782 0.741 0.182
AUCRF + ZIBB + Random Forest 0.804 0.757 0.168
AUCRF + ZIBB + Bart 0.802 0.743 0.180
MHTP (with RF) 0.867 0.792 0.142
MHTP (with Bart) 0.882 0.796 0.147

FIGURE 3 | The receiver operating characteristic (ROC) curve compares
the performance using Random Forest and our MHTP, on the second real
CRC dataset.

FIGURE 4 | The cluster of OTUs that are highly correlated with
Bacteroides fragilis.
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shows the network graph after keeping the OTUs with pairwise
correlations > 0.5. The published work Dejea et al. (2018) and
Grivennikov et al. (2012) have reported that Bacteroides fragilis
has a “pro-tumor” effect by adhering to and directly interacting
with colorectal tumors, driving mutagenesis inducing
inflammatory cytokines. Members of the colonic
microbiome can play a detrimental role in the host’s health
and potentially contribute to diseases, including colorectal
cancer. The local environment can influence immune
responses to intestine resident bacteria, with infection,
inflammation, and nutrition all having a significant effect
on the formation and differentiation of microbiome-specific
T cell responses Ansaldo et al. (2019), Belkaid and Hand
(2014),Wegorzewska et al. (2019). Thus, each interaction
between the immune system and a microbiota member is
context-dependent.

In this study, we used R packages MCC, ZIBB, randomForest
(with tuning parameters ntree = 500, mtry =

��
p

√
), and BART

(with tuning parameters ntree = 50).

5 CONCLUSION

The gut microbiome plays a vital role in the host’s immune
system. Our article proposed a new machine learning pipeline to
boost colorectal cancer prediction accuracy, using gut
microbiome and available clinical information. We integrate
feature engineering, mediation analysis, statistical modeling,
and an existing machine learning algorithm into a single
pipeline. Moreover, we optimize the precision of colorectal
cancer diagnoses, with an 8.7% higher detection rate of
colorectal cancer than other published work. Our pipeline is
flexible for both the 16 S rRNAmicrobiome data and the shotgun

metagenomic data; A side product extracts and refines the taxa-
taxa co-occurrence network for inferring the biological
relationships between the microbes. In addition, we provide
the keystone taxa related to colorectal cancer. A thorough
review of the potential role of the gut and locally resident
bacterial microbiota may have a beneficial impact on future
cancer therapeutics.
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