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Following the hugely successful application of deep learning methods to

protein structure prediction, an increasing number of design methods seek

to leverage generative models to design proteins with improved functionality

over native proteins or novel structure and function. The inherent flexibility of

proteins, from side-chain motion to larger conformational reshuffling, poses a

challenge to designmethods, where the ideal approachmust consider both the

spatial and temporal evolution of proteins in the context of their functional

capacity. In this review, we highlight existing methods for protein design before

discussing how methods at the forefront of deep learning-based design

accommodate flexibility and where the field could evolve in the future.
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Introduction

By interacting with substrates, performing precise chemical reactions, and

transducing signals, proteins directly govern a wide range of regulatory functions in

living cells. Consequently, in silico protein design, where a protein is either re-engineered

from a native template or de novo designed, offers a direct route to addressing a wide range

of complex bioengineering issues (Mahendran et al., 2020; Sterner and Sterner, 2021)

without expensive and time-consuming experimental screening. De novo design can, in

principle, facilitate the programming of any desired function, making it highly versatile

over re-engineering, which is more restricted by the native protein fold. However, pure de

novo protein design is often more challenging than re-engineering. It requires careful

consideration of the optimal binding site that confers the desired function, and the active

fold state of the designed protein must be both thermodynamically stable and kinetically

accessible along a folding pathway. The inherent flexibility of proteins further exacerbates

this complexity from a local side-chain to global scale, where multiple conformational

states can be crucial for function. Switching between states can be triggered by external

stimuli such as ligand binding. Thus, the design of any function that requires some

internal motion such as molecular transport, allosteric regulation, and

mechanotransduction, must carefully consider the coupling between the stimuli and

switching of a protein’s occupied fold state and subsequent functional capacity.
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Over the last 3 years, there has been a shift in the paradigm in

the biophysical study of proteins, with the application of deep

learning (DL) methods for structure prediction far

outperforming traditional physics-based methods (Pakhrin

et al., 2021). Broadly, DL is used to process unstructured data

to learn underlying descriptors of that data (features) that can

then be exploited for either generative or classification purposes.

Some data, such as discrete variables, can be projected into a

higher dimension (embedding) such that features that are more

alike are closer in the embedding space, enabling more

meaningful learning of relationships. By leveraging the many

layers of a neural network, DL can learn complex and non-linear

relationships to map the raw input into some low dimensional

latent space that describes the data. The power of DL, and

machine learning in general, is in backpropagation, where the

error between the output of a network, such as in a classification

task, is connected directly to the input of the network in an end-

to-end fashion—with the weights connecting nodes between

layers adjusted based on the overall gradient.

Protein structure prediction methods such as AlphaFold2

(Jumper et al., 2021) and RoseTTAfold (Baek et al., 2021), rely on

a multiple sequence alignment (MSA) to learn an evolution-

based history of residue contacts, working in harmony with a

pairwise feature map that encodes information about residue

relationships. Predicted structures represent the most likely state

occupied by a protein given the distribution of structural states

present in the PDB training data and input MSA. Therefore,

while local flexibility is inherently accounted for within these

networks, conformational switching is (usually, see later) not.

This represents a significant limitation in current structure

prediction methods. Thus most conformational state-based

design studies continue to rely on re-engineering existing

proteins known to occupymultiple states (Alberstein et al., 2022).

Despite the current limitations, the improvements gained by

moving to DL-based prediction has motivated a similar change

within the protein design community, with novel methods

distancing themselves from the traditional design approaches

such as Rosetta (Huang et al., 2011; Ollikainen et al., 2015; Bonet

et al., 2018) and others (Röder and Wales, 2018) that rely on

scoring functions describing physical energies. Numerous DL

design strategies have recently emerged, broadly falling into two

categories: sequence-(Wu et al., 2021) and structure-based design

(Ovchinnikov and Huang, 2021). These employ what are known

as generative neural networks, which create an underlying model

that represents the distribution of the example training data.

Interrogation of this model via interpolation in a constructed

latent space yields plausible samples, i.e., non-native proteins. DL

protein design chiefly uses one of three types of generative

networks (Figure 1): autoencoders (AE) and closely related

variational autoencoders (VAE) (Kingma and Welling, 2014),

generative adversarial networks (GAN) (Goodfellow et al., 2014),

and autoregressive likelihood models (Bengio et al., 2003). There

are other generative networks yet to be directly applied to protein

design (Bond-Taylor et al., 2021), but they have seen use in

adjacent problems such as protein-protein interaction prediction

(Gainza et al., 2019) and the modelling of protein dynamics (Noé

et al., 2019). Both AEs and VAEs utilise an encoder to convert

real features, e.g., coordinates, into a latent space representing

either a transformation of the original data (AE) or a Gaussian

distribution of the original data (VAE). A decoder is then used to

sample this latent space, where interpolation between training

samples yields plausible solutions, although this is more

challenging for AEs as the latent space is non-regularised.

GANs pit a generator network producing fake but realistic

data against a discriminator, which attempts to decide if an

input sample is real or not. The two compete, resulting in an

iterative improvement of both the generator and discriminator.

Autoregressive models, often used for Natural Language

Processing, forecast future data samples based on historical

context—such as the next amino acid in a sequence. We refer

the reader to the recent review by Strokach and Kim (2022) where

they discuss these models in extensive detail within the context of

protein design.

Sequence design (Figure 2A) relies on learning a distribution

of protein family sequences to sample new sequences that offer

similar or improved functionality. Structure design (Figure 2B)

begins with a design objective—such as a binding site fold and

aims to generate a structure that supports that objective before

populating the structure with a sequence. Much like in structure

prediction, dealing with flexibility in these networks remains a

challenge. Herein, we will briefly overview these current

methods, summarised briefly in Table 1, before discussing

how innovative approaches are considering the question of

protein flexibility in the design of proteins and how we could

better harness MSA data in protein design. For a more detailed

insight into the latest advances in sequence and structure design

DL methods, we refer the reader to recent reviews by Wu et al.

(2021) and Ovchinnikov and Huang (2021), respectively.

Sequence versus structure in deep
learning protein design

Sequence generation

Sequence design leverages available sequence data (Bateman

et al., 2021) to learn statistical patterns that indicate function or

folding stability (Wu et al., 2021). Networks are typically trained

to learn the distribution of sequences in a desired protein family,

from which new protein sequences can be extracted. Recurrent

neural networks, a subclass architecture of autoregressive

models, have been used to design antimicrobial and

membranolytic anticancer peptides (Grisoni et al., 2018;

Müller et al., 2018). PepCVAE constructs a latent space

representing the distribution of known sequences for

antimicrobial peptides, where interpolation within the space
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FIGURE 1
Three types of generative models are generally applied in DL-based protein design: (A) autoencoders/variational autoencoders (AE/VAEs), (B)
generative adversarial networks (GANs), and (C) autoregressive models.

FIGURE 2
Most DL protein design methods tackle design as either a (A) sequence generation or (B) structure generation problem, each accompanied by
the general process outlined here. Examples of both methods used to assess the quality of generated samples and specific DL protein design
examples are also indicated.
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yields novel sequences (Das et al., 2018), and Hawkins-Hooker

et al. (2021) recently included MSA data within VAE training to

produce active luciferase enzymes. ProteinGAN has been

similarly designed to produce active enzyme sequences

(Repecka et al., 2021). While sequences generated through

these methods have been identified as functional in silico

(Alford et al., 2017; Müller et al., 2017; Sillitoe et al., 2019),

they are not necessarily improvements on native proteins, and

owing to the training method, any novel functionality is generally

serendipitous. Attempts have been made to optimise sequences

to improve functionality via biased training data in GANs (Gupta

and Zou, 2019; Amimeur et al., 2020), and reinforcement

learning (Angermüller et al., 2020), though these serve more

as examples of functional optimisation than programming.

Conditional learning, where data in pre-defined categories is

used to train the network such that new samples can be generated

based on those categories, is necessary to deliver fine-tuned

programming. However, while sequence generative models

can harness divergent sequences from the proteome to offer

protein variants with novel functionality, conditional learning to

control this functionality remains in its infancy. Greener et al.

(2018)’s VAE was trained to produce sequences containing

metal-binding sites based on the labelling of bound metal

cofactors. Current efforts with a biased network training

approach (Gupta and Zou, 2019; Amimeur et al., 2020) to

introduce some programmability need to ensure a delicate

balance between sequence diversity and the desired functional

result (Linder et al., 2020). Ingraham et al. (2019) were able to

design sequences using an autoregressive model conditioned on

graphs of 3D structures, designing plausible sequences for

protein folds outside the training data, providing an example

of more targeted sequence functional design given the

relationship between structure and function. Kucera et al.

(2022)’s GAN offers one of the first examples of a function-

specific conditional general sequence generation method.

Trained on labels of the hierarchical Gene Ontology, their

network was able to produce a wide variety of proteins with

distinct functional properties based on the input label or labels,

including mixed labels absent in the training data. Nevertheless,

improving the functional specificity, e.g., activation from a

specific ligand, is a considerably more difficult task given the

niche training set size. All sequence-based methods require

significant validation, most relying on in silico methods such

as peptide classifiers (Müller et al., 2017) outside the gold

standard of experimental testing. Kucera et al. introduced a

novel in silico validation metric based on ensuring sequence

TABLE 1 Summary of the key deep learning protein design methods discussed in this review, with their generation type and generative model type
indicated by a *. ~ in the structure design field suggests that some minor design coincides with sequence design. The design target of each
method is also provided.

Method Generation type Generative model Design target

Sequence Structure VAE GAN Autoregressive

Grisoni et al. (2018) * * Antimicrobial peptides

Müller et al. (2018) * * Membranolytic anticancer peptides

PepCVAE * * Antimicrobial peptides

Hawkins-Hooker et al. (2021) * * Luciferase enzymes

ProteinGAN * * MDH-like enzymes

Greener et al. (2018) * * Metalloproteins

Gupta and Zou (2019) * * Antimicrobial peptides

Amimeur et al. (2020) * * Human antibodies

Ingraham et al. (2019) * * Non-specific

ProteoGAN * * Non-specific

ProteinSolver * * Non-specific

Anand et al. (2022) * * Non-specific

Ig-VAE * * Immunoglobulins

Anand et al. (2019) * * Non-specific

Tischer et al. (2020) * ~ Inverted structure prediction model Non-specific

Anishchenko et al. (2021) * * Inverted structure prediction model Non-specific

Norn et al. (2021) * ~ Inverted structure prediction model Non-specific
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diversity, conditional consistency with the labels, and

distributional similarity to try and address the absence of

reliable evaluation metrics. Arguably the most effective in

silico validation method of structure prediction may prove

challenging. Generated de novo sequences featuring high

conformational entropy versus any native sequence may not

be structurally verifiable with conventional or DL-based protein

folding methods such as AlphaFold2, although new orphan-

protein structure prediction DLmethods are emerging that could

address this (Chowdhury et al., 2021; Wang et al., 2022).

Structure generation

The workflow of structure generation typically follows four

stages: 1) formulation of a design objective (e.g., a fold that

confers desired binding), 2) the generation of coordinates that

support the fold, 3) sequence design to stabilise any generated

structure, and 4) evaluation of generated designs, typically via

Molecular Dynamics or Rosetta energy checks (Ovchinnikov and

Huang, 2021). By considering the design objective from the first

stage, structure generation already addresses one of the key

limitations of sequence generation in that the specific

functional outcome is used as a constraint in design. Stage

2 can be achieved with 1-3D data. 1D data typically describes

local bond lengths, angles etc., and non-local features such as

interaction energies between residues (O’Connell et al., 2018;

Wang et al., 2018); recurrent networks have already been applied

in protein forcefield development (Greener and Jones, 2021) and

could be extended to design. 2D pairwise matrices can leverage

popular image classifiers or “deepfake” methods (Eguchi and

Huang, 2020). Finally, the most challenging is 3D coordinate

data, which is always unique to the input protein, unlike 1D or

2D basic descriptors such as contact maps, which share many

common attributes (e.g., bond lengths) across the proteome,

although there are examples of 3D DL structure generation

(Eguchi et al., 2020). Exacerbating the complexity, unlike 1D

and 2D data, 3D data is not rotationally invariant, necessitating

careful treatment in design (Renaud et al., 2021). However, direct

3D design is end-to-end, i.e., the conditions and objectives are

fully connected to the direct 3D output, meaning

backpropagation occurs directly from a proposed structural

solution to the input. In contrast, 1D and 2D data must be

converted to 3D coordinate data in a separate stage outside the

network. This is analogous to sequence design, where further

validation is often required in silico through structure prediction.

Therefore, while more challenging, direct 3D structure

generation must approximately learn protein physics to

produce reasonable structures, a highly generalisable property.

Numerous approaches exist to tackle converting 1-2D maps to

3D (Anand and Huang, 2018), such as a decoder network

featuring two discriminators able to handle GAN generated

output without a ground truth and produce coordinates with

the correct chirality (Anand et al., 2019). Stage 3 of structure

generation commonly wield pre-existing sequence design

methods to stabilise the backbone. For example, structural

designs generated by the aforementioned GAN (Anand et al.,

2019) and VAE have produced immunoglobulin specific

backbones and SARS-CoV-2 binders (Eguchi et al., 2020)

using standard Rosetta FastDesign (Bhardwaj et al., 2016) to

fill the backbone. Thus, a limitation of current structure

generation lies in its inability to include sequence and by

extension side-chain interactions that stabilise protein

structures during design. While not explicitly considering

side-chain interactions, sequence generation, particularly those

that leverage powerful transformer-based language models

(Ferruz and Höcker, 2022), can identify potential relationships

between individual amino acids that confer stability.

ProteinSolver (Strokach et al., 2020) is a DL example of a

backbone sequence populator, leveraging a graphical neural

network that splits individual amino acids into nodes

connected by edges that represent distance constraints to

predict masked residue positions. Aside from an expanded

training dataset, it improves on Ingraem et al. (2019)’s

approach by considering both the successive and preceding

residue identities during design. Trained on 72 million

sequences corresponding to 80,000 unique structures, the

network learnt the relationship between common structural

and sequence motifs, ultimately providing de novo sequences

for four stable protein folds absent in the training set. However,

side-chain reconstruction was neglected within the network,

which is crucial for determining thermodynamic stability. The

authors instead relied on homology modelling of large, generated

datasets for validation. In contrast, Anand et al. (2022) aimed to

explicitly build side-chain conformers given a structural template

and evaluate a full atomistic model using a conditional

convolutional autoregressive neural network. Their approach

iteratively samples amino acid types and rotamers at specific

residue positions conditioned on the local chemical environment,

producing sequences that satisfied the fold of a de novo TIM-

barrel backbone (Huang et al., 2016b), indicating that their

network had learnt something of the underlying physics that

guides folding.

Directly comparing the two general strategies for protein

design purposes, structure generation appears more versatile

than sequence generation as the inclusion of functional

objectives such as binding site folds enhances functional

programmability (Gao et al., 2020). Indeed, the increased

variety of features allows one to profit from more advanced

techniques in Machine Learning. Furthermore, structure design

is more generalisable, as demonstrated by Table 1, with most

sequence generation methods requiring some specific protein

family design target. However, structure generation methods

must still undergo subsequent sequence design. This

disconnect between structure and sequence is inherently

problematic from a switchable state perspective, as to perform
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multi-state design on an ensemble of generated backbones is

computationally expensive. The same disconnect is true in

reverse of course, with the lack of explicit modelling in

sequence generation hindering our ability to design

conformational flexibility.

Accounting for flexibility in deep
learning protein design

Sequence generation effectively avoids the question of

flexibility entirely by relying on pure bioinformatics, and thus

cannot explicitly consider the flexibility problem. Yet, sequence

generation methods can yield novel structural folds

representative of hybridisation between homologous sequences

that represent a spectrum of structural states. For instance,

ProteinGAN produced distinct structural sequence motifs,

validated by CATH (Sillitoe et al., 2019), suggesting that the

network can learn generalised relationships between residues and

produce sequences with increased structural diversity (Repecka

et al., 2021). However, these sequences still only represent a single

structural fold. Ultimately, even if proteins with purpose-built

conformational flexibility or switchable state can be constructed,

any functionality must be verified through further in silico

validation (Nivedha et al., 2018; Chen et al., 2020), meaning

programming function from sequence generation is not end-to-

end differentiable. Analogous to structure prediction, structure

generation methods inherently account for local side-chain

flexibility owing to the ensemble of rotamer positions

examined per residue during construction (Defresne et al.,

2021). Yet there remains a conceptual gap to more extensive

conformational flexibility. The sequence-structure design

problem is still treated as a one-to-one mapping (Figure 3A),

when in fact conformational selection requires concurrent

exploration of sequence and structure design space given that

a sequence can be connected to multiple fold states. Instead,

during the sequence population stage of structure generation, the

goal is primarily to stabilise the identified fold, and not offer

perturbed structures which deviate from those produced by the

network. Some exceptions exist; Tischer et al. (2020) created

binding motifs within a discontinuous scaffold through the

trRosetta structure prediction network (Yang et al., 2020) to

tolerate larger backbone flexibility. They applied a loss function

that rewarded both recapitulation of the input motif template

and global structure stability, the latter facilitating some

deviation from the inserted motif to ensure fold stability,

thereby providing sequence and minor structure design. Norn

et al. (2021) demonstrated that they could backpropagate

gradients through trRosetta to generate sequences, exploring

the sequence and structure space via optimisation of the

conformational energy landscape towards one smooth

funnelled state, thereby considering the global fold state and

ensuring thermodynamic stability. Anishchenko et al. (2021)

were able to generate completely de novo structure-sequence

pairs by feeding random sequences into the trRosetta network,

and performing an iterative Monte Carlo simulated annealing

process to substitute individual amino acids randomly. By then

re-predicting the distance and orientation maps from the

network and accepting the substitution based on an increased

Kullback–Leibler divergence, they transformed initially

homogenous residue contact maps to ones with distinct

structural features. Intriguingly, the similarity of the produced

“hallucinated” sequences with native ones was very low,

indicating the design of true de novo proteins. However, this

process tended to neglect non-idealised structures, producing

well-defined α-helices and ß-sheets connected by short loops.

Long loops can be critical to function, from substrate binding,

catalysis, and allosteric regulation. While it is noted that the loss

function could be modified to retain specific sites such as binding

interfaces (Tischer et al., 2020) or catalytic sites (Wang et al.,

2021), whether this can be used to stabilise motifs such as binding

loops remains to be seen. All three of these approaches that

facilitate some structure design leverage inverted structure

prediction models, as opposed to the direct generative models

discussed above. While this makes intuitive sense given the

inverted relationship between protein design and structure

prediction, the consequence of this is that there is less control

over the designed outputs, with the network acting as a black box.

In addition to function conditional inputs, applying purpose-

built generative models would allow for the specific application of

powerful methods from the DL community.

While the networks by Norn et al. and Anishchenko et al.

were able to learn something of the intimate relationship between

structure and sequence, the adaptability of these methods

towards purposeful conformational flexibility or switch design,

where dual or even multiple conformational states are accessible

by the same sequence is more challenging. Norn et al. optimised

towards one clear funnelled state in the conformational

landscape, while Anishchenko et al.’s network favoured

selecting secondary structure elements that delivered global

stability of a singular ground state, where any reshuffling into

a second state would be energetically challenging. Yet, one of

Anishchenko et al.’s designs did appear to adopt multiple

monomeric conformations when tested experimentally, the

authors attributing this switching behaviour to the lack of

explicit side-chain representations in the modelling. While

this is non-ideal for a monomeric protein without stimulus,

the network has returned structure-sequence topologies able

to adopt multiple conformations, albeit unintentionally.

Adapting this approach to deliberately consider multiple states

connected by a coherent path in the conformational landscape,

while ambitious, could provide the means for switch design.

Another potential solution lies in the greater exploitation of the

known numerous states native proteins can occupy. In principle,

multiple conformational landscapes should be connected to

identical or evolutionary related sequences, the difference
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between them being perturbation by external stimuli (Figure 3B).

AlphaFold2 recently demonstrated this via quaternary structure

prediction (Ghani et al., 2021; Tsaban et al., 2022), where MSAs

that included bound substrates returned different and accurate

structural predictions versus the unbound MSA. In a peptide

docking case, no MSA was necessary for the peptide, and the

network could still predict conformational changes depending on

the bound peptide (Tsaban et al., 2022). del Alamo et al. (2022)

recently demonstrated they were able to predict multiple

conformational states of transporters and GPCRs not present

in the AlphaFold2 training data by reducing the depth of input

MSA to AlphaFold2, indicating that while deep MSAs tend to

relate to one fixed structure, stochastically sampled shallower

MSAs are associated with a diversity of structural states. These

works reveal that MSAs contain crucial underlying relationships

that couple sequences with numerous plausible conformations

(Wang and Barth, 2015), which could be leveraged for expanded

functional capacity design. A sequence generation approach that

also harnesses MSA data could recognise the divergence of

structural states from phylogenetic trees of extensive protein

families constructed using existing modern methods (Azouri

et al., 2021). Here, the goal would be to learn the general

motif changes in key sites that lead to the adoption of

multiple states, and exploit that in design.

Discussion

Over the last 3 years, deep learning has revolutionised

protein structure prediction (Baek et al., 2021; Jumper et al.,

2021). Given the mantra that protein design is effectively the

reverse folding problem, it stands to reason that DL methods

should also impact protein design. However, while we have

witnessed the rapid growth of DL based methods, much like

in protein structure, the question of how to accommodate protein

flexibility, particularly their ability to adopt multiple

conformational states for function, remains. The explicit

inclusion of conformational flexibility and switching

FIGURE 3
(A)Current designmethods either: (i) Produce new sequences corresponding to some structure with limited design objective conditioning that
could be leveraged for conformational flexibility design. (ii) Produce novel folds that confer some function that must be stabilised through sequence
design. Both these approaches are inherently negligent of conformational flexibility. (B) (i) The general goal of DL-based protein switch design is to
connect multiple structures to one sequence, with conformational perturbation triggered by some controlled signal. I.e., Given some stimuli
(e.g., palatinate peptide), the contacts of a designed sequence in one state (red) shift given some new fold (blue), providing novel functional capacity.
This could be achieved through (ii) Conformational landscape optimisation of multiple states given some design objective, similar to Norn et al., (iii)
Harnessing of implicit relationships between sequence and multiple structures contained within MSA data, as demonstrated by del Alamo et al.
(2022). Here, co-evolving residues (denoted in the coloured blocks) in two different low-depth MSAs make distinct contacts (shown as C1, C2, etc.,)
that change the overall fold state.
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properties in protein design has a wide range of biomedical

applications. For example, the development of synthetic light-

activated ion channels for studying neurological disorders (Beck

et al., 2018), the engineering of GPCR biomarkers that trigger on

diagnostic ligand association (Adeniran et al., 2018), and the

design of highly ligand specific molecular on-switches that

mediate CAR T-cell activity (Zajc et al., 2020).

Most existing design methods pivot towards either sequence

(Wu et al., 2021) or structure generation (Ovchinnikov and

Huang, 2021), with significant strides having been made with

both approaches. Some design methods have even pioneered the

design of both structure and sequence simultaneously (Tischer

et al., 2020; Yang et al., 2020; Anishchenko et al., 2021), which is

necessary when designing proteins with multiple fold states.

However, it is worth noting that, with few exceptions (Grisoni

et al., 2018; Amimeur et al., 2020; Linder et al., 2020; Strokach

et al., 2020; Anishchenko et al., 2021; Hawkins-Hooker et al.,

2021; Repecka et al., 2021; Anand et al., 2022) most DL design

methods lack any experimental validation, relying instead on

pure in silico examination. Experimental validation is essential to

truly validate a network and examine whether they are

transferable to other systems.

Coupling the loss of generated structure-sequence topologies to

the dynamic fold state of a protein is beyond the capabilities of

current generative modelling design algorithms. Nevertheless, we

have already observed successful de novo design of proteins via DL

methods and the harnessing of MSA data within the structure

prediction field to extract multiple conformations landscapes of a

protein from a single sequence given contextual information. Given

that conformational landscape optimisation is increasingly

employed in design, and the generalisability of MSA-based

networks have demonstrated that multiple conformational

landscapes can be intimately linked to the same sequence, greater

exploitation of MSA in DL-based protein design could yield de novo

topologies able to adopt multiple conformations based on some

stimulus. However, it has been indicated that AlphaFold2 is unable

to accurately learn the underlying energy landscape that describes

protein folding and function (Saldaño et al., 2021). Thus, future

design methods could be assisted by DL work in orthogonal fields,

which have shown their ability to predict ensembles of biophysically

related states (Jin et al., 2021; Ramaswamy et al., 2021; Tian et al.,

2021). Of particular interest are networks where the loss includes

explicit physics-based terms (Ramaswamy et al., 2021), which could

be seen as an alternative to the MSA bioinformatics approach,

offering a more intimate understanding of a protein’s folding

landscape during design while ensuring that kinetic pathways are

accessible between states.

Over the last few decades, protein design has been based on

re-engineering native proteins to alter their functionality. Yet,

this restricts our programming of novel function. While there

have been pure de novo successes, protein design remains a

highly complex optimisation problem with the vast space of all

possible sequences and structures far outside the known

proteome (Huang et al., 2016a) inaccessible to traditional

approaches. DL is well suited for these complex tasks, having

already revolutionised the structure prediction field.

AlphaFold2 and RoseTTAfold present a general solution to

the protein folding problem. Protein design, considered the

inverse problem, contributes an additional layer of complexity.

Rather than just predicting a plausible structure from sequence,

comprehensive programmability requires an appreciation of how

the sequence, structure and dynamic conformational state of a

protein underpin its function. DL is already expanding our

design capabilities and knowledge of a dynamic proteome,

while the machine learning field itself is undergoing

significant and continuous innovation. Leveraging these

evolving techniques while improving the exploitation of MSA

data or physics-based descriptors could prove key to designing

proteins with significant conformational flexibility and thus

more advanced functional capacity.
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