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Tumor metastasis is a common event in patients with gastric cancer (GC) who

previously underwent curative gastrectomy. It ismeaningful to employ high-volume

clinical data for predicting the survival of metastatic GC patients. We aim to establish

an improvedmachine learning (ML) classifier for predicting if a patientwithmetastatic

GC would die within 12 months. Eligible patients were enrolled from a Chinese GC

cohort, and the complete detailed information frommedical records was extracted

to generate a high-dimensional dataset. Appropriate feature engineering and feature

filter were conducted before modeling with eight algorithms. A 10-fold cross

validation (CV) nested in a holdout CV (8:2) was employed for hyperparameter

tuning and model evaluation. Model selection was based on the area under the

receiver operating characteristic (AUROC) curve, recall, and precision. The selected

model was globally explained using interpretable surrogate models. Of the total

399 cases (median survival of 8.2months), 242 patients survived less than 12months.

The linear discriminant analysis (LDA), support vector machine (SVM), and random

forest (RF) model had the highest AUROC (0.78 ± 0.021), recall (0.93 ± 0.031), and

precision (0.80 ± 0.026), respectively. The LDA model created a new function that

generally separated the two classes. The predicted probability of the SVMmodelwas

interpreted using a linear regressionmodel visualized by a nomogram. Thepredicted

class of the RF model was explained using a decision tree model. In summary,

analyzing high-volumemedical data byML is helpful to produce an improvedmodel

for predicting the survival in patients with metastatic GC. The algorithm should be

carefully selected in different practical scenarios.
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Introduction

Gastrectomy with adequate lymphadenectomy provides a

potential opportunity of cure for resectable gastric cancer

(GC) (Smyth et al., 2020); however, a substantial

proportion of patients still develop recurrence or metastasis

afterward (Chen et al., 2021; Hisamori et al., 2021). The

prognosis of metastatic GC is expected to be poor; the

survival time after relapse varies from 3–15 months (Smyth

et al., 2020), depending on the metastatic site (Chau et al.,

2004; Lee et al., 2007; Kim et al., 2008; Custodio et al., 2017),

performance status (Chau et al., 2004; Lee et al., 2007; Kim

et al., 2008; Custodio et al., 2017), palliative chemotherapeutic

regimen, and other factors (Custodio et al., 2017; Zhu et al.,

2022). Several models have been established based on clinical

trials or real-world data, aiming to precisely estimate the

survival probability in these patients (Chau et al., 2004; Lee

et al., 2007; Kim et al., 2008; Koo et al., 2011; Custodio et al.,

2017). Although different sets of variables have been

incorporated, the ability of survival prediction in the

traditional model is dissatisfactory. A Spanish multicenter

study (the AGAMENON study) developed a nomogram-

based model to predict the survival of patients with

advanced GC (AGC), with an accuracy of 0.67 in the

validation set (Custodio et al., 2017). A Korean single-

center study constructed a score-based model with an

accuracy of 0.58 (Koo et al., 2011), then externally

validated another three models (Chau et al., 2004; Lee

et al., 2007; Kim et al., 2008), and showed similar

performances in the same population (Koo et al., 2011).

Our previous work also developed a score-based model in a

Chinese cohort with a c-index of 0.67 (Ma et al., 2021).

Meanwhile, we validated seven published models (Chau

et al., 2004; Lee et al., 2007; Kim et al., 2008; Koo et al.,

2011; Takahari et al., 2014; Wang et al., 2016; Kim et al., 2020)

in a Chinese population, and the results showed that the area

under receiver operating characteristic (AUROC) curves was

only about 0.60 (Xu et al., 2021).

The traditional prognostic model is frequently built by the

logistic or Cox regression analysis on the basis of the well-known

clinical and pathological variables, for example, performance

status (Chau et al., 2004; Lee et al., 2007; Kim et al., 2008;

Takahari et al., 2014), tumor differentiation (Custodio et al.,

2017; Kim et al., 2020), metastatic sites (Kim et al., 2008; Takahari

et al., 2014; Wang et al., 2016), and routine laboratory tests (Koo

et al., 2011; Custodio et al., 2017; Kim et al., 2020; Ma et al., 2021).

The selection of candidate variables is typically guided by the

clinical experience and previous literature. In the era of digital

medicine, the electronic medical record (EMR) and laboratory

information system (LIS) make massive medical data readily

available; nevertheless, we are still far from taking full advantage

of them. One possible reason is the incompetence of the classic

statistical method in dealing with numerous independent

variables, which emphasizes the need for adopting a new

strategy of statistics.

Machine learning (ML) is increasingly used for data mining

due to its capacity to tackle big data. In order to utilize the

abundant digital medical records and further improve model

performance in predicting the survival of GC patients with

recurrence or metastasis after radical gastrectomy, we enroll

eligible participants from a retrospective GC cohort, build a

high-dimensional dataset from the EMR and LIS, identify the

most relevant prognostic factors, and implement modeling using

several ML algorithms.

Materials and methods

Study setting and population

In this retrospective study, we trained ML models using

different algorithms to predict if a GC patient would die

within 12 months after the first metastasis or recurrence

because 12 months is typically recognized as the median

survival time for patients with AGC (Smyth et al., 2020). The

participants were enrolled from a registered hospital-based GC

cohort (ChiCTR1800019978, http://www.chictr.org.cn/). The

consecutive gastric or esophagogastric junction carcinoma

patients who underwent radical gastrectomy and developed

disease recurrence or metastasis were included and followed

up in the cohort. Those patients with multiple primary

malignant tumors or with no records of laboratory

examinations at the time of metastasis were excluded. The

EMR and LIS were retrieved to obtain data for analysis. The

survival information was acquired from the death register system

or by telephonic follow-up conducted every 3 months. The

overall survival (OS) was defined as the interval between the

first metastasis and death or the last follow-up. The workflow of

the study is illustrated in Figure 1.

All procedures performed in the study involving human

participants were in accordance with the 1964 Helsinki

Declaration and its later amendments or comparable ethical

standards. The studies involving human participants were

reviewed and approved by the Ethics Committee of The First

Affiliated Hospital of Anhui Medical University (reference

number: Quick-PJ-2021-05-19). The Ethics Committee waived

the requirement of written informed consent for participation.

Dataset and feature engineering

All features are listed in Supplementary Table S1. Briefly, the

dataset included information about demography, histopathology,

surgical resection, postoperative adjuvant chemotherapy, first-

line palliative chemotherapy, radiotherapy, baseline laboratory

records at the time of metastasis (routine blood test,
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biochemistry, coagulation, immunology, and tumor biomarkers),

and survival. Each aspect had several items to record the details,

so a high-dimensional dataset was generated.

Categorical features were transformed by one-hot

encoding. Numerical features were standardized, normally

transformed, or grouped where appropriate. In our dataset,

missing values generally occurred at random, so they were

deleted (the fraction of the missing values over the total cases

was more than 30%) or imputed using decision tree

algorithm.

ML model performance may suffer from high

dimensionality, so, here, some features were filtered out

prior to modeling. A feature with zero or near-zero

variance was first dropped because it provided no useful

information to a model. The rule of detecting a near-zero

variance feature was (Smyth et al., 2020) that the fraction of

unique values over the sample size was less than 10% and

(Hisamori et al., 2021) the ratio of the frequency of the most

prevalent value to the frequency of the second most prevalent

value was more than 20% (Boehmke and Greenwell, 2019).

Next, we used the importance value calculated by the random

forest (RF) algorithm to rank the features and select a number

of them that contributed most to the model. The specific

number was tuned by a random search during model

development. All these data-dependent preprocessings were

conducted in isolation of each resampling iteration in order to

avoid data leakage.

Model development

First, the entire dataset was randomly split into a training set

and a validation set (8:2) as the outer layer. Then, the training set

was further randomly split by 10-fold cross-validation (CV) as

the inner layer. The inner layer was used to tune hyperparameters

by random search, and the best configuration was passed on the

validation set from the outer layer to evaluate the model

performance. The nested CV design reduced the risk of

overestimation of the model because the information of the

training set was not leaked into the validation set. The whole

process was repeated five times for averaging the effect of

randomness, so we used the mean value to measure the

model performance. The AUROC curve was the primary

indicator to evaluate the model because it did not have any

bias toward classifiers on balanced or imbalanced binary

prediction problems (He and Ma, 2013). Precision and recall

were also crucial as they reflected the false-positive error and the

false-negative error of the model, respectively. In addition,

accuracy and F1 score (the harmonic mean of precision and

recall) were also calculated.

We used eight common classification algorithms for

modeling: kernel K-nearest neighbor (KKNN), linear

discriminant analysis (LDA), support vector machine (SVM),

RF, XGBoost, ridge regression, LASSO regression, and elastic net

regression. For each algorithm, the hyperparameters that needed

to be tuned and the optimal settings are given in Supplementary

FIGURE 1
Flow diagram of patient selection. Abbreviation: GC, gastric cancer.
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Table S2. The whole project was deployed using RStudio

1.4.1717 with packages “mlr3verse” (modeling pipeline and

framework), “kknn” (KKNN algorithm), “e1071” (SVM

algorithm), “MASS” (LDA algorithm), “ranger” (RF

algorithm), “xgboost” (XGBoost algorithm), and “glmnet”

(ridge, LASSO, and elastic net regression). To make a

comparison with the traditional method, we used the logistic

regression as a reference algorithm.

A learning curve is used to diagnose if the sample size is

adequate for modeling and if an overfitting or underfitting

problem occurs. It comprises two lines that represent the

errors of the training set and the validation set, respectively,

in relation to the sample size. The training learning curve shows

how well the model is learning, and the validation curve shows

how well the model is generalizing. If a model is underfitting, the

error of the training set is close to that of the validation set, so

obtaining more samples is unlikely to improve the performance.

In contrast, if a model is overfitting, the gap between the errors of

the training set and validation set is large, so adding more

samples is likely to be helpful.

Model interpretation

Only the selected models were interpreted, which comprised

the LDA, the SVM, and the RF-based model. The model

interpretation was based on the final model built on the entire

dataset with the tuned hyperparameters or model configuration.

The general theories of the three algorithms were briefly

demonstrated. The LDA aims to learn a new line, called the

discriminant function (DF) that combines the original features in

a linear fashion, weighting greater for “better” predictors and less

for “poorer” predictors. The value that gives the weight for each

feature is called the DF coefficient, which indicates how much it

contributes to class discrimination. The DF separates the

centroid of each class (OS longer than or equal to 12 months

versus shorter than 12 months in the case) by maximizing the

difference between the class centroids and minimizing the

within-class variance when the data being projected onto the

DF (Rhys, 2020).

The SVM and the RF algorithms are more alike “black-box”

models. The SVM algorithm finds an optimal linear hyperplane that

best separates the two classes and is penalized for having cases inside

its decision boundary defined by the support vectors. The algorithm

can also add a kernel, namely, an extra dimension, to deform the

feature space, so that a linear hyperplane can separate the classes

(Rhys, 2020). The RF algorithm is an implementation of a bagging

technique for decision tree algorithm. It randomly samples cases and

features to create a large number of tree classifiers on a binary

prediction task that are highly uncorrelated. Then, new data are

passed to the trees to make their own prediction, and the model

prediction is made based on the majority of the predictions from

each tree (Rhys, 2020).

Global surrogate is a common global model-agnostic method

to interpret a black box model (e.g., SVM or RFmodel) by using a

surrogate model with a good intuition. In this case, we train a

linear regression model or a decision tree model to fit the black

box-predicted probability or response, respectively. R-square was

used to measure how close the surrogate model is to the black box

model (Elshawi et al., 2019).

Results

As shown in Figure 1, 399 GC patients developing metastasis

or recurrence after curative intent gastrectomy were enrolled for

modeling. The median survival after metastasis was 8.2 months.

Two lost to follow-up cases were removed. Fourteen patients

were still alive (survival time ranged from 20.7 to 144.0 months,

median 95.1 months), so all the living patients had an OS of no

less than 12 months and were assigned to the negative

subgroup. Of 385 patients who reached the endpoint (mOS =

7.8 months), 143 patients survived for no less than 12 months

(negative subgroup). Overall, the negative subgroup consisted of

157 cases, and the positive subgroup (post-metastatic survival

time <12 months) consisted of 242 cases. The ratio of the

majority to the minority was 1.54:1. The five most frequent

metastasis sites were 46.1% for distant lymph nodes (n = 184),

26.8% for the liver (n = 107), 19.8% for the peritoneum (n = 79),

15.8% for bone (n = 63), and 15.5% for the chest (n = 62). The

baseline information is briefly presented in Table 1. No missing

value existed.

After excluding some features with massive missingness, a

total of 62 laboratory indexes were in the feature space, and the

distribution of missing values was generally at random

(Supplementary Figure S1A). No clear pattern was observed

when comparing these indexes between the positive and the

negative subgroups (Supplementary Figure S1B,C). The feature

filter process returned a feature list ordered by the RF importance

and then passed it into further modeling. Interestingly, the highly

important features were generally the laboratory information at

metastasis, i.e., inflammatory index, blood cell test, and

biochemistry. Supplementary Figure S1C illustrates the

30 most important features for brevity.

After tuning the optimal number of the features and the

hyperparameters, the model performances are shown in Table 2.

The LDA model had the highest AUROC (m ± sd; 0.78 ± 0.021),

followed by the SVMmodel with an AUROC of 0.77 ± 0.014 and

the RF model with an AUROC of 0.77 ± 0.0064. The SVMmodel

ranked first with respect to recall (0.93 ± 0.031), and the RF

model ranked first with respect to precision (0.80 ± 0.026). So, we

further look into these three models.

The LDA itself had no hyperparameter to be tuned, so only

the number of the included features should be tested. Figure 2A

shows that the inclusion of the first 25 or 40 features yielded the

lowest error in the validation set, so 25 was chosen to make the
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TABLE 1 Baseline characteristics of the patients enrolled for modeling.

Overall (n = 399) Negative (n = 157) Positive (n = 242) p-value

General information

Sex (male) 283 (70.93) 108 (68.79) 175 (72.31) 0.519

Age at surgery, y 62.00 (54.00, 68.50) 60.00 (51.00, 68.00) 64.00 (56.00, 69.00) 0.012

DFS, mo 11.87 (5.94, 21.72) 11.43 (4.40, 21.70) 12.02 (6.56, 21.70) 0.378

Age at first metastasis, y 64.00 (55.00, 70.00) 62.00 (53.00, 69.00) 65.00 (56.00, 71.00) 0.014

OS, mo 8.23 (3.77, 17.20) 21.40 (14.90, 31.13) 4.46 (2.51, 7.34) <0.001
Pathological information

T stage 0.048

T1 12 (3.01) 6 (3.82) 6 (2.48)

T2 26 (6.52) 17 (10.83) 9 (3.72)

T3 231 (57.89) 89 (56.69) 142 (58.68)

T4a 105 (26.32) 38 (24.20) 67 (27.69)

T4b 21 (5.26) 7 (4.46) 14 (5.79)

Tx 4 (1.00) 0 (0.00) 4 (1.65)

N stage <0.001
N0 59 (14.79) 38 (24.20) 21 (8.68)

N1 81 (20.30) 41 (26.11) 40 (16.53)

N2 105 (26.32) 28 (17.83) 77 (31.82)

N3a 112 (28.07) 36 (22.93) 76 (31.40)

N3b 39 (9.77) 14 (8.92) 25 (10.33)

Nx 3 (0.75) 0 (0.00) 3 (1.24)

Grade 0.093

G1 5 (1.25) 2 (1.27) 3 (1.24)

G2 84 (21.05) 43 (27.39) 41 (16.94)

G3 273 (68.42) 98 (62.42) 175 (72.31)

G4 5 (1.25) 3 (1.91) 2 (0.83)

Gx 32 (8.02) 11 (7.01) 21 (8.68)

Location¶

Cardia 223 (55.89) 93 (59.24) 130 (53.72) 0.327

Body 137 (34.34) 51 (32.48) 86 (35.54) 0.603

Pylorus 125 (31.33) 44 (28.03) 81 (33.47) 0.301

Linitis plastica 4 (1.00) 1 (0.64) 3 (1.24) >0.999
Histology¶

Adenocarcinoma, NOS 333 (83.46) 136 (86.62) 197 (81.40) 0.218

Mucinous adenocarcinoma 54 (13.53) 14 (8.92) 40 (16.53) 0.043

SRC 25 (6.27) 7 (4.46) 18 (7.44) 0.323

Borrmann type 0.819

I 18 (4.51) 8 (5.10) 10 (4.13)

II 111 (27.82) 42 (26.75) 69 (28.51)

III 223 (55.89) 93 (59.24) 130 (53.72)

IV 25 (6.27) 9 (5.73) 16 (6.61)

Unknown 22 (5.51) 5 (3.18) 17 (7.02)

Treatment information

Resection site 0.731

Proximal 16 (4.01) 8 (5.10) 8 (3.31)

Distal 101 (25.31) 35 (22.29) 66 (27.27)

Total 273 (68.42) 112 (71.34) 161 (66.53)

Others 9 (2.26) 2 (1.27) 7 (2.89)

(Continued on following page)
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model simpler. The learning curve illustrated that, with

25 features being considered, the gap between the train and

the validation error became steady as the sample size exceeded

200 (Figure 2B). The DF coefficient for each included feature is

shown in Figure 2C. The absolute value of the coefficient reflected

the contribution of the feature to the model. By summing up the

product of the DF coefficient and the feature, a DF was calculated

for each case. The distribution of the DF in each class was a bell-

shaped curve, with a clearly distinct summit from each other

(Figure 2D). As expected, the mean of the DF in each class was

statistically different (Figure 2E). The plot of the DF (x-axis) over

the probability of being predicted as positive by the final model

(y-axis) demonstrated that, as the DF became greater, the

probability of being predicted as positive declined (Figure 2F),

which was consistent with the DF distribution across the classes

(Figure 2E).

The SVM model with the tuned hyperparameters

(Supplementary Table S2) performed best with respect to

recall. Figure 3A shows that the sample size was sufficient to

stabilize the validation error from the SVM model. Figures 3B,C

TABLE 1 (Continued) Baseline characteristics of the patients enrolled for modeling.

Overall (n = 399) Negative (n = 157) Positive (n = 242) p-value

Procedure 0.557
Open gastrectomy 364 (91.23) 141 (89.81) 223 (92.15)

Laparoscopic gastrectomy 34 (8.52) 16 (10.19) 18 (7.44)

Unknown 1 (0.25) 0 (0.00) 1 (0.41)

Lymphadenectomy 0.695

D1 128 (32.08) 54 (34.39) 74 (30.58)

D2 212 (53.13) 83 (52.87) 129 (53.31)

Unknown 59 (14.79) 20 (12.74) 39 (16.12)

Radiotherapy (yes) 4 (1.00) 1 (0.64) 3 (1.24) 0.939

Adjuvant chemotherapy (yes) 298 (74.69) 116 (73.89) 182 (75.21) 0.858

Adjuvant chemotherapy cycles§ 5 (3, 6) 5 (3, 6) 5 (3, 6) 0.290

Palliative chemotherapy (yes) 317 (79.45) 137 (87.26) 180 (74.38) 0.003

First-line drugs¶

Platinum 45 (11.28) 26 (16.56) 19 (7.85) 0.012

Fluorouracil 72 (18.05) 33 (21.02) 39 (16.12) 0.267

Taxane 28 (7.02) 14 (8.92) 14 (5.79) 0.319

Abbreviations: DFS, disease-free survival; SRC, signet-ring cell.
¶ In this variable, the count of each category did not sum up to the total number of cases within a subgroup due to overlapping distribution; therefore, a chi-squared or Fisher’s exact test was

conducted within each row. Otherwise, the test for categorical variables was conducted within each matrix.
§ Only the patients who had a history of adjuvant chemotherapy were summarized.

Continuous variables were presented by the median (interquartile range).

TABLE 2 Comparison of model performance across different machine learning algorithms for predicting 12-month survival in patients with
metastatic gastric cancer.

Algorithm AUROC Recall Precision F1-score Accuracy

LR 0.68 ± 0.055 0.76 ± 0.058 0.69 ± 0.083 0.72 ± 0.033 0.68 ± 0.045

ER 0.75 ± 0.006 0.74 ± 0.031 0.76 ± 0.037 0.75 ± 0.033 0.70 ± 0.041

KNN 0.75 ± 0.014 0.85 ± 0.039 0.74 ± 0.014 0.79 ± 0.017 0.73 ± 0.018

LASSO 0.76 ± 0.016 0.74 ± 0.027 0.76 ± 0.046 0.75 ± 0.035 0.70 ± 0.046

LDA 0.78 ± 0.021 0.84 ± 0.018 0.78 ± 0.023 0.81 ± 0.016 0.76 ± 0.023

RF 0.77 ± 0.006 0.82 ± 0.039 0.80 ± 0.026 0.81 ± 0.019 0.76 ± 0.022

RR 0.76 ± 0.016 0.74 ± 0.027 0.76 ± 0.046 0.75 ± 0.035 0.70 ± 0.046

SVM 0.77 ± 0.015 0.93 ± 0.031 0.72 ± 0.02 0.81 ± 0.015 0.74 ± 0.022

XGBoost 0.73 ± 0.035 0.84 ± 0.162 0.72 ± 0.037 0.77 ± 0.092 0.70 ± 0.083

Abbreviations: AUROC curve, area under the receiver operating characteristic curve; LR, logistic regression; ER, elastic-net regression; KNN, K-nearest neighbor; LASSO, least absolute

shrinkage and selection operator; LDA, linear discriminant analysis; RF, random forest; RR, ridge regression; SVM, support vector machine.

The bold value indicates the highest performance in the column.
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simulate hyperparameter tuning by grid search, showing that a

combination of a radial kernel function, a natural log-

transformed cost of about -3 and a natural log-transformed

gamma of about -2, gave the highest AUROC in the

validation set. It was consistent with the configuration of the

actual model tuned by random search (Supplementary Table S2).

Because this model only picked the first eight features, it is

possible and more intuitive to interpret the SVM model by a

FIGURE 2
Construction of the LDAmodel. (A)Correlation between the predicted error in the validation set and the number of features. (B) Learning curve
of the LDA model. (C) DF coefficient of the features in the model. All the features were scaled, so the absolute value of the coefficient reflected the
contribution of a feature to the model. (D) Distribution of the DF in the positive or the negative subgroup. (E) Difference of the median DF in each
subgroup was examined by the Wilcoxon test. (F) Plot of the DF over the predicted probability of being positive by the final LDA model.
Abbreviations: LDA, linear discriminant analysis; DF, discriminant function; PINI, prognostic inflammatory nutrition index; SIRI, systemic inflammation
response index; LYM, lymphocyte; PREALB, prealbumin; LAR, lymphocyte–albumin ratio; DIBL, direct bilirubin; T_PRO, total protein; NEU,
neutrophil; HCT, hematocrit; IBIL, indirect bilirubin; LPR, lymphocyte platelet ratio; LMR, lymphocyte–monocyte ratio; ALRI, aspartate
aminotransferase–lymphocyte ratio index; RBC, red blood cell; DFS, disease-free survival; MON, monocyte; ALB, albumin; POS_LN, number of
positive lymph node; CEA, carcinoembryonic antigen; NLR, neutrophil–lymphocyte ratio; LDH, lactic dehydrogenase; BIL, bilirubin; PNI; prognostic
nutrition index.
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linear regression model visualized by a nomogram (Figure 3D).

Of the eight features, the linear model, namely, the surrogate

model, automatically chose six features by a stepwise method

(Figure 3D). The R-square was 0.68.

The RF model with the tuned hyperparameters

(Supplementary Table S2) had the highest precision.

Figure 4A shows that the model performance stabilized when

the number of trees was greater than 400 and reached the best

when approximately 700 trees were aggregated. The simulation

test showed the optimal combination of the mtry and the

nodesize by grid search (Figure 4B). The rank of the feature

demonstrated that the baseline white cell count, platelet count,

and prealbumin were the most crucial predictors in the RF model

(Figure 4C). This model chose 29 features, so it was more

appropriate to use a decision tree algorithm, with a cp of

0 and a maxdepth of 4, as a surrogate model to approximate

the response predicted by the RF model (Figure 4D). The

R-square was 0.57.

Discussion

This study demonstrates that the LDA, SVM, and RF models

outperform other algorithms in predicting the survival of

patients with metastatic GC. The model performance assessed

by a single holdout CV is not reliable because of the effect of

randomness in splitting data into training and validation sets.

Here, this issue is addressed by repeating the holdout CV five

FIGURE 3
Construction of the SVMmodel. (A) Learning curve of the SVMmodel. (B) Simulation test of the tuning kernel functionmeasured by the AUROC.
(C) Simulation test of tuning cost and gamma measured by the AUROC. (D) Global surrogate model visualized by a nomogram to approximate the
predicted probability of being positive by the SVM model. Abbreviations: SVM, support vector machine; AUROC curve, area under the receiver
operating characteristic curve; LAR, lymphocyte–albumin ratio; LMR, lymphocyte–monocyte ratio; LPR, lymphocyte–platelet ratio; NLR,
neutrophil–lymphocyte ratio; POS_LN, number of positive lymph node; PREALB, prealbumin.
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times, so the performance is unbiased in the local cohort, as

measured by AUROC, recall, and precision. All the AUROCs of

the three models exceed 0.75, which is higher than those in the

previous reports (Koo et al., 2011; Custodio et al., 2017; Ma et al.,

2021). In addition, our earlier work selected the patients with

AGC receiving first-line chemotherapy from the same local

cohort and compared the performances of seven survival

prediction models on it, showing the best model having an

AUROC of 0.60 (Xu et al., 2021). The present study does not

impose restrictions on treatment or other factors, so the

population is of wider heterogeneity, which may help the

model generalize well due to closely reflecting the

characteristics of the patients in a real-world setting.

The LDA model performs the best as measured by the

AUROC. This model is relatively the most interpretable

model among the algorithms tested because it constructs a

single and intuitive DF from the original features for

classification, which is similar to the well-known logistic

FIGURE 4
Construction of the RF model. (A) Correlation of the out-of-bag error with the number of trees. (B) Simulation test of tuningmtry and nodesize
measured by the AUROC. (C) Feature importance as measured by the RF algorithm. (D) Global surrogate model visualized by a decision tree to
approximate the predicted response by the RF model. Abbreviations: RF, random forest; AUROC curve, area under the receiver operating
characteristic curve; LMR, lymphocyte–monocyte ratio; NLR, neutrophil–lymphocyte ratio; PREALB, prealbumin; IBIL, indirect bilirubin; RBC,
red blood cell; DFS, disease-free survival; GAR, γ-glutamyl transpeptadase–albumin ratio; LDH, lactic dehydrogenase; LAR, lymphocyte–albumin
ratio; GLO, globulin; MON, monocyte; ALB, albumin; MCH, mean corpuscular hemoglobin; RETIMRTC, moderate fluorescence–reticulocyte ratio;
HCT, hematocrit; RDW, red cell distribution width; AAPR, albumin-to-alkaline phosphatase ratio; RETI, reticulocyte count; ALP, alkaline
phosphatase; PHOS, phosphorus.
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regression. In contrast, the SVM and RF models are less

explainable; however, they perform the best as measured by

recall and precision, respectively. In clinical practice, if we

want to identify as many patients as possible with less than 1-

year survival by the model, i.e., avoid a false-negative event, we

should consider the SVM model because it has the highest recall.

If we want to be confident with the ML’s prediction, i.e., avoid a

false-positive event, we should consider the RF model due to its

highest precision. Therefore, model selection is closely related to

the specific practical scenario.

Almost all the features included for modeling are the baseline

index of systemic inflammation and malnutrition, albeit with a

few exceptions, which is in line with the previous studies. For

patients receiving first-line treatment, Kim et al. (2020) identified

the clinically relevant features as NLR, neutrophil count, alkaline

phosphatase, albumin, lymphocyte count, and white blood cell

count. The AGAMENON nomogram weights the neutrophil-to-

lymphocyte ratio (NLR) greater than tumor differentiation,

metastasis site, or HER2+-treated (Custodio et al., 2017).

Hsieh et al. (2016) selected NLR, modified Glasgow

prognostic score (mGPS), and Patient-Generated Subjective

Global Assessment (PG-SGA) as the most relevant predictors

(all of them are inflammation- or nutrition-based scores),

compared with age, physical status, differentiation, and

metastasis site. In fact, the laboratory index is frequently

adopted in models for predicting the survival of metastatic

GC patients (Chau et al., 2004; Lee et al., 2007; Kim et al.,

2008; Takahari et al., 2014; Wang et al., 2016; Kim et al., 2020), as

extra information added on the well-recognized predictors. The

present study further emphasizes the prediction value of the

index in a setting of a more heterogeneous population with GC.

In other words, the ML model “considers” that the post-

metastasis survival is mainly attributed to the characteristics

of the patients at the time of metastasis, other than the

history of staging, surgery, adjuvant chemotherapy, and so on.

This may explain the prognoses of the patients with

metachronous or synchronous GC being the same as long as

the cancer is at an advanced stage (Patel et al., 2007).

The current study has several limitations. First, the models

are confident to generalize well in the local population because

they are unbiasedly evaluated by repeated CV; however, the case

is uncertain in other situations due to lack of external validation.

Second, the ensemble technique, a common method to enhance

model performance (Rhys, 2020), is not utilized for modeling.

We consider there is a trade-off between model complexity and

model performance: using ensemble is very likely to improve the

model at the cost of long running time and poor interpretability

and vice versa. So, here we prefer an easier model, at the cost of

performance, in order to facilitate real clinical practice. Third,

there are still over 20 features in some models, albeit feature

filtering has been conducted. This would impede the models

from being used as a quick screening tool for practitioners.

In conclusion, on the basis of the readily available

information from the EMR and LIS, the mainstream ML

method can produce satisfactory models for predicting

survival in patients with metastatic GC who experienced

prior radical gastrectomy. The algorithm should be selected

according to the measurement and its meaning in a practical

scenario.
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