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Prostate cancer (PCa) is one of the most commonmale malignancies with frequent remote
invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT)
is a fundamental process in embryonic development and plays a key role in tumor
proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs)
could regulate the occurrence and development of EMT through various complex
molecular mechanisms involving multiple signaling pathways in PCa. Given the
importance of EMT and lncRNAs in the progression of tumor metastasis, we
recapitulate the research progress of EMT-related signaling pathways regulated by
lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling,
PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore,
we summarize four modes of how lncRNAs participate in the EMT process of PCa via
regulating relevant signaling pathways.
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INTRODUCTION

Prostate cancer (PCa) is one of the most common malignancies in males worldwide and has become
a global “killer” threatening the health of elderly men. The incidence and mortality of PCa rank
second and fifth in men worldwide, respectively (Sung et al., 2021). Accounting for 27% of diagnoses
and 11% deaths among all the male malignancies, PCa currently had the highest incidence rate and
became the second most common cause of cancer-related death in the United States (Siegel et al.,
2021; Siegel et al., 2022). Although the incidence of PCa in China is lower than that in American and
African countries, the incidence and mortality have increased dramatically in the past 2 decades, and
the annual increase ranks first among male malignant tumors (Sun et al., 2020). PCa is a hormone-
dependent disease, therefore therapies targeting the androgen receptor (AR) signaling, especially the
androgen deprivation therapy (ADT), become the main clinical theory for PCa patients (Ishikawa
et al., 1989; Shore et al., 2020). Even though most PCa patients present a satisfying response to ADT
for a while, the disease may finally develop into castration-resistant prostate cancer (CRPC) stage,
characterized by resistance to ADT and aggressive metastases in a considerable proportion of
patients (Galletti et al., 2017). The 5-year survival rate for localized PCa was 99.3%, while that for
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metastatic PCa decreased sharply to 32.3%, demonstrating that
metastasis is the leading cause of PCa-related mortality
(Heidenreich et al., 2014; Siegel et al., 2020).

For tumor metastasis, EMT is an important initiating factor
driving this process and plays a critical role, which confers
metastatic characteristics on cancer cells by increasing mobility
and invasion (Nakazawa et al., 2017). EMT is a reversible process
in which relatively stable epithelial cells lose cell polarity and
intercellular adhesion, and transform into spindle-shaped
mesenchymal cells with migration ability (Kalluri and
Weinberg, 2009). During the process of EMT, the level of
multiple epithelial cell markers would decrease, such as
cytokeratins, laminin and E-cadherin, which lead to the loss of
cell-to-cell adhesion. In contrast, mesenchymal markers, such as
vimentin, N-cadherin, β-catenin and Snail protein, are up-
regulated, thereby allowing the cells to migrate or metastasize
to different organs (Odero-Marah et al., 2018). While EMT
prevents cell apoptosis and senescence, it will also cause organ
fibrosis and promote tumor development andmetastasis (Bhangu
et al., 2012).

LncRNAs are non-coding RNAs with length greater than 200
nucleotides and hundreds of them are dysregulated in human
tumors with complex regulatory mechanisms (Yu and Shan,
2016). LncRNAs have been reported to regulate the
development of EMT by targeting EMT-related inducible
transcription factors such as Twist, Snail, Slug and Zeb
(Peinado et al., 2007). Recent studies indicated that a variety
of signaling pathways regulated by lncRNAs promoted EMT and
led to tumor metastasis (Montano and Bushman, 2017; Yeh et al.,
2019).

The metastasis of PCa, which leads to treatment failure and
death of patients, is attributed to multi-system and multi-level
pathological alterations affected by multiple factors, but the
molecular mechanism is not yet fully understood (Hussain
et al., 2020; Subudhi et al., 2020). In this review, we aimed to
recapitulate the present studies of lncRNAs in PCa and their
regulation in EMT process, as well as the signaling pathways
regulated by EMT-related lncRNAs in PCa.

EMT AND TUMOR METASTASIS

EMT occurs during different stages of embryonic development
and can be classified into three distinct functional types based on
their biological contexts, ranging from type I contributing to
gastrulation and organ development found in normal
embryological development to type III contributing to
increased cancer cell invasiveness found in cancer progression
and metastasis (Kalluri and Weinberg, 2009). EMT could be
induced by a set of specific transcription factors including
members of the Snail, ZEB and Twist families (Gheldof and
Berx, 2013), which could directly regulate E-cadherin expression
(Montanari et al., 2017). Supplementally, the downregulation of
E-cadherin is regarded as a defining event when EMT occurred
(Lo et al., 2017).

Previous studies have confirmed that the activation of EMT
permitted cancer cells to acquire invasion and migration during

cancer progression (Liao and Yang, 2017). A variety of molecular
mechanisms regulate EMT directly or indirectly (Montanari et al.,
2017; Hao et al., 2019). For example, the combination of growth
factors or cytokines, such as transforming growth factor-β (TGF-
β), epidermal growth factor (EGF) and insulin-like growth factor
(IGF), with corresponding receptors participant in EMT via
inducing downstream effectors (Maruyama, 2014). In addition,
several signaling pathways including AR signaling pathway,
PI3K/AKT pathway and Wnt/β-catenin pathway also play
pivotal roles in orchestrating EMT and metastatic responses of
PCa by cooperating to induce full EMT responses (Lamouille
et al., 2014).

LNCRNAS AND PROSTATE CANCER

LncRNAs are non-coding RNAs with length greater than 200
nucleotides, which are key regulatory molecules in cells and can
function via various paradigms (Wilusz et al., 2009). LncRNAs
could be targeted to specific DNA sequences in cis or trans, and
this feature gives them the ability to regulate tumor-related target
genes at different levels, including epigenetic level, transcription
level and post-transcriptional level (Marchese et al., 2017; Ni
et al., 2019; Braga et al., 2020; Wang et al., 2020). Some lncRNAs
are specifically transcribed and participate in the transduction
mediated by special signaling pathways as signal molecules. In
addition, lncRNAs are capable of folding into secondary and
tertiary structures or sponging miRNA to perform more complex
functions (Misawa et al., 2017). In recent years, many studies have
shown that lncRNAs have a significant role as regulators of key
cellular processes in cancers, including PCa (Prensner and
Chinnaiyan, 2011; Liu et al., 2020; Hu C -Y et al., 2021; Tan
et al., 2021).

LncRNAs may act as oncogenes or tumor suppressors in PCa
and participate in the invasion and metastasis of PCa (Xu et al.,
2019; Lu et al., 2021). Functionally, lncRNAs possess important
application potential in the occurrence and development, early
diagnosis, treatment and prognosis of PCa (Ramnarine et al.,
2019; Morgan et al., 2021). An influential application of lncRNA
in PCa diagnosis is the detection of PCA3 (Hessels and Schalken,
2009; Morgan et al., 2021), which could regulate the expression of
AR signaling pathway and critical genes involved in the
carcinogenesis and development of PCa, including EMT-
related genes (Ferreira et al., 2012; Lemos et al., 2019;
Ghafouri-Fard et al., 2022). LncRNAs are closely correlated
with Gleason score, TNM stage and PSA kinetic parameters in
PCa, which are recognized as the basis for treatment decision-
making and prognosis. The expression of lncRNA TINCR was
measured in 160 PCa specimens, and the results revealed that low
expression of TINCR was strikingly associated with advanced
clinical T stage, lymph node involvement, distant metastasis and
high Gleason score (Dong et al., 2018). Besides, lncRNAs are
often used as crucial biomarkers in the clinic for the prediction of
PCa. For example, single nucleotide polymorphisms (SNPs) in
lncRNA PCAT19 was used as a predictor of PCa risk variant
based on decreased and increased levels of PCAT19-short and
PCAT19-long (Hua et al., 2018). LncRNAs that contribute to
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TABLE 1 | Different lncRNAs and their regulation in EMT of PCa.

LncRNAs Gene ID Expression
in PCa

Regulation
method

Effect on
genes

Functions in PCa Cell lines Molecular mechanism References

TINCR 257000 Down-
regulated

Bind to protein Tumor
suppressor

Inhibit proliferation,
migration and invasion

LNCaP, PC-3,
DU145,
22Rv1, P69
and RWPE-1

Modulate TRIP13 mRNA
and protein expressions

Dong et al.
(2018)

HCG11 493812 Down-
regulated

PI3K/AKT
signaling
pathway

Tumor
suppressor

Inhibit proliferation,
migration and invasion

LNCaP, PC-3,
C4-2B,
HEK293T and
RWPE1

Inhibit PI3K/AKT signaling
pathway by downregulating
miR-543 expression

Wang et al.
(2019)

CCAT2 101805488 Up-regulated Bind to protein Oncogene Promote EMT,
proliferation, migration
and invasion

DU145, 22RV1
and WPMY-1

Abrogating N-cadherin,
vimentin expression and
intensifing the expression
levels of E-cadherin

Zheng et al.
(2016)

LncRNA-
ATB

114004396 Up-regulated ERK and PI3K/
AKT signaling
pathways

Oncogene Stimulate EMT and
inhibit growth

PC-3 and
DU145

Activate ERK and PI3K/AKT
signaling pathways by ZEB1
and ZNF217

Xu et al.
(2016)

LINC01296 503638 Up-regulated PI3K-Akt-mTOR
signaling
pathway

Oncogene Promote proliferation,
migration, and invasion

22Rv1, LNCaP
and WPMY1

Regulate PI3K-Akt-mTOR
signaling pathway

Wu et al.
(2017)

PVT1 5820 Up-regulated Bind to protein Oncogene Promote proliferation,
invasion, and
metastasis

PC-3, DU145,
22RV1 and
WPMY

Act as a sponge for miRNA-
186-5p and positively
regulates Twist1

Chang et al.
(2018)

PCA3 50652 Up-regulated Modulate
proteins

Oncogene Promote growth LNCaP Modulate the expression of
key cancer-related genes of
EMT markers

Lemos et al.
(2016)

PlncRNA-1 100506428 Up-regulated TGF-β1
pathway

Oncogene Promote growth LNCaP, C4-2,
DU145, PC-3
and RWPE-1

Regulate the growth of
prostate cancer cells and
EMT through the TGF-β1
pathway

Jin et al.
(2017)

SNHG1 23642 Up-regulated Through the
SNHG1-
hnRNPL-CDH1
axis

Oncogene Promote EMT,
proliferation and
migration, accelerate
xenograft tumor
growth

LNCaP,
22Rv1, PC-3,
DU145 and
RWPE-1

Competitively interact with
hnRNPL to impair the
translation of protein
E-cadherin, thus activating
the effect of SNHG1 on the
EMT pathway

Tan et al.
(2021)

SNHG7 84973 Up-regulated Through miR-
324-3p/WNT2B
axis

Oncogene Promote migration and
invasion

LNCaP, PC-3,
Du-145 and
RWPE

Promote EMT via miR-324-
3p and WNT2B

Han et al.
(2019)

MALAT1 378938 Up-regulated Activating PI3K/
Akt signal
pathway

Oncogene Promote proliferation,
invasion, migration and
inhibite apoptosis

PC-3 Inhibit EMT process and
PI3K/Akt signaling pathway
via downregulating MALAT1

Lu et al.
(2020)

MALAT1 378938 Up-regulated Serve as a
ceRNA

Oncogene Promote migration,
invasion and EMT

DU145, PC-3,
LNCaP,
22RV1 and
RWPE2

Compete with CORO1C for
the binding sites of miR-
1-3p

Dai et al.
(2019)

MNX1-AS1 645249 Up-regulated mRNAs and
proteins

Oncogene Promote proliferation,
migration, and invasion
of prostate cancer

LNCaP,
DU145, PC-3,
C4-2 and
RWPE

Promote the proliferation via
regulating PCNA and PH-3

Li Z et al.
(2019)

HOXA-AS2 285943 Up-regulated Serve as a
ceRNA

Oncogene Promote proliferation,
migration, invasion and
influence EMT

LNCaP,
DU145, PC-3
and RWPE

Serve as a competing
endogenous RNA through
sponging miR-509-3p to
release pre-B-cell leukemia
homeobox 3 expression

Xiao and
Song, (2020)

PCAT7 101928099 Up-regulated TGF-β/SMAD
signaling

Oncogene Promote bone
metastasis as well as
migration, invasion,
and EMT

LNCaP, PC-3,
22RV1, VCaP,
DU145 and
RWPE-1

Activate TGF-β/SMAD
signaling by upregulating
TGFBR1 expression via
sponging miR-324-5p

Lang et al.
(2020)

ZFAS1 441951 Up-regulated Serve as a
ceRNA

Oncogene Promote cell viability,
proliferation, migration,
invasion and the
occurrence of EMT,
inhibit apoptosis

PC-3, DU145,
22RV1,
LNCAP and
RWPE-1

Competitively bind to miR-
135a-5p which targets the
mRNA

Pan et al.
(2020)

(Continued on following page)
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tumor proliferation, invasion and metastasis in PCa and may
function as oncogenes or tumor suppressors are shown in
Table 1.

EMT-RELATED SIGNALING PATHWAYS
REGULATED BY LNCRNAS IN PCA

The tumorigenesis and development of PCa is a multi-channel,
multi-link, multi-level and highly complex regulatory process, in
which many signaling pathways, such as AR signaling pathway,
STAT3 signaling pathway, Wnt/β-catenin signaling pathway,
play diverse roles in the process of EMT mediated PCa
metastasis (Fearon et al., 2012; Murata and Kang, 2018;
Shorning et al., 2020). Recent studies have found that
lncRNAs in PCa could participate in the regulation of key
genes involved in the above EMT-related signaling pathways.
In order to clarify the regulatory network between them, this
review summarized the research progress of EMT-related
signaling pathways regulated by lncRNAs in PCa in recent years.

AR PATHWAY

Androgen and AR are two main pathogenic factors of PCa. AR is
a member of the nuclear receptor superfamily, which mainly
exists in the nucleus and belongs to steroid receptors. Androgen is
the main ligand of AR. When the ligand is lacking, AR is mainly
distributed in the cytoplasm, binding to heat shock proteins and
sustaining an inactive state (Husmann et al., 1990; Sar et al., 1990;

Heery et al., 1997). When androgen enters the cell, AR will
dissociate from heat shock protein, releasing ligand binding
domain and spontaneously dimerizing. Then dimerized AR
enters the nucleus and bind to ARE (Androgen Response
Elements) on target genes to exert its transcription
regulatory role.

The interaction network between AR and lncRNAs is multi-
dimensional instead of unidirectional. AR is a transcription factor
and there existed a positive feedback loop between AR and AR-
induced lncRNAs in PCa cells. Zhang et al. (Zhang J et al., 2018)
identified ARLNC1 (AR-regulated long non-coding RNA 1) as a
target lncRNA of AR. They demonstrated that AR induced the
expression of ARLNC1 and ARLNC1 stabilized AR via direct
RNA-RNA interaction, and silencing ARLNC1 could reduce the
global activity of AR signaling and the viability of PCa cells.
Huntingtin-interacting protein 1 (HIP1) is an important AR
regulator that could modulate the transcriptional activity of
AR (Mills et al., 2005). Two research groups have reported
similar positive feedback loops, mediated by HIP1, between
AR and AR-induced lncRNAs. Shi et al. (Shi et al., 2021) and
Li et al. (Mather et al., 2021) both treated LNCaP cells and VCap
cells with 10 nM dihydrotestosterone, identifying both PCLN16
and PCAL7 could suppress the migration and proliferation of
PCa cells. Functionally, they found PCLN16 and PCAL7 were
transcriptionally induced by AR, and both the two lncRNAs
could interact with HIP1 and reduce HIP1 degradation,
advancing AR signaling via positive feedback loops.

Another important regulatory mechanism of the expression of
AR protein is via ubiquitination or de-ubiquitination. The
ubiquitination process of AR is mainly mediated by the E3

TABLE 1 | (Continued) Different lncRNAs and their regulation in EMT of PCa.

LncRNAs Gene ID Expression
in PCa

Regulation
method

Effect on
genes

Functions in PCa Cell lines Molecular mechanism References

TUG1 55000 Up-regulated Through miR-
128-3p/YES1
axis

Oncogene Promote proliferation,
migration, invasion,
EMT, and inhibit
apoptosis

PC-3, DU145
and RWPE-1

Modulate YES1 expression
by sponging miR-128-3p
which interacted with TUG1
or YES1

Hao et al.
(2020)

VIM-AS1 100507347 Up-regulated Through
regulating
vimentin

Oncogene Promote EMT, cell
growth, proliferation,
migration and invasion

LNCaP,
DU145,
22RV1, PC-3
and RWPE-1

Promote the expression of
vimentin and further
promote EMT

Zhang Y et al.
(2019)

HULC 728655 Up-regulated Unclear Oncogene Promote cell growth
and metastasis

LNCaP, PC-3
and DU145
and RWPE-1

Regulate the expression of
N-cadherin, vimentin and
E-cadherin, but the
expression pattern and
biological function of HULC
remain largely unclear

Zheng T et al.
(2018)

SNHG17 388796 Up-regulated Serve as a
ceRNA

Oncogene Promote proliferation,
invasion, migration,
and EMT and inhibit
apoptosis

DU145,
LNCaP, VCaP,
PC-3 and
RWPE-1

Sponge miR-339-5p to
upregulate signal
transducer and activator of
transcription 5A and
therefore to cause
transactivation of
SNORA71B

Wu J et al.
(2020)

KCNQ1OT1 10984 Up-regulated Serve as a
ceRNA and the
Ras/ERK
signaling

Oncogene Promote viability,
migration, invasion and
EMT and inhibit
apoptosis

DU145 and
PC-3

Sponge miR-15a and
release its inhibition on PD-
L1 and regulate the Ras/
ERK signaling

Chen et al.
(2020)
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ubiquitin ligase MDM2, a well-known regulator of TP53.
Previous studies reported that LncRNA LINC00675 and
HOTAIR were markedly upregulated in androgen-insensitive
PCa cell lines and CRPC patients, blocking the interaction of
AR proteins with MDM2 and thereby preventing AR
ubiquitination and protein degradation (Zhang et al., 2015;
Yao et al., 2020). LncRNA PCBP1-AS1 (Zhang B et al., 2021)
was reported to be able to stabilize AR via promoting the stability
of USP22-AR complex by binding to AR NTD domain and
enhancing AR de-ubiquitination. Importantly, targeting
LINC00675, HOTAIR and PCBP1-AS1 all could effectively
inhibit the growth and invasion ability of PCa cells and
restore the drug sensitivity of Enzalutamide-resistant PCa cells,
which offered distinct view for future clinical utilization.

Besides increasing the stability of AR protein, lncRNAs were
also reported to affect the stability of AR mRNA and subsequent
translation. Lnc-OPHN1-5, located closely to AR on
chromosome X, was an AR-suppressor and could elevate
Enzalutamide (Enz) sensitivity via inhibiting AR signaling
(Zhang M et al., 2021). The study demonstrated that lnc-
OPHN1-5 competed with hnRNPA1 to bind to the 3′UTR site
of AR mRNA, not only decreasing the half-life period of AR
mRNA but also blocking the enrichment of AR mRNA in the
ribosome RNA 18S. PVT1 is a widely reported lncRNA in PCa
which is over-expressed and related to an unwilling prognosis
(Yang et al., 2017; Liu et al., 2021). Videria et al. (Videira et al.,
2021) found that PVT1 may participate in an AR-dependent
transcriptional repression program in PCa cells. They
demonstrated that 160 genes repressed by AR were up-
regulated and the epigenetic markers such as H3K27me3 and
H3K27ac were remodeled when PVT1 was silenced. Therefore,
they speculated that PVT1 may assist AR in repressing the
expression of tumor suppressor genes via altering the
epigenetic mode in PCa cells.

Taken together, the interaction network between AR and
lncRNAs is multi-directional. AR can induce the transcription of
certain lncRNAs, and lncRNAs could also regulate the expression
abundance of AR at mRNA or protein level. Such reciprocal mode
inside the AR-lncRNAs network may indicate us more potential
methods to improve current anti-androgen therapies.

STAT3 SIGNALING PATHWAY

STAT3 is a member of the signal transducer and activator of
transcription (STAT) family. STAT family has dual functions of
signal transduction and transcriptional activation. In JAK-STAT
signal pathway, JAK (Janus kinase) and STATs are intracellular
and receptor binding proteins, which complete signal
transduction from cytoplasm to nucleus (Darnell et al., 1994).
Generally, STAT3 signaling pathway is activated by extracellular
stimulus, especially diverse cytokines, including IL-6, IL-8,
CXCL-5, and COX2, from the surrounding tumor micro-
environment (Lou et al., 2000; Tong et al., 2017; Roca et al.,
2018; Zheng P et al., 2018). While non-canonical regulation of
STAT3 pathway always occurred inside cells involving the
phosphorylation of Y705 site or S727 site and the

ubiquitination of STAT3 (Bae et al., 2016; Wang et al., 2018).
The continuously activated STAT3 signaling pathway plays an
important role in tumorigenesis, including human PCa (Mora
et al., 2002; Kroon et al., 2013; Schroeder et al., 2014). As reported
by Nicholas et al.(Don-Doncow et al., 2017), 95% of 223
metastatic PCa samples were positive staining of p-STAT3 and
the bonemetastases presented an extremely obvious expression of
p-STAT3 compared with lymph nodes or visceral metastases
samples, suggesting the crucial role of active STAT3 in promoting
the metastasis of PCa.

MAGI2-AS3 was a significantly reduced lncRNA in PCa
samples, and it acted as the miR-424-5p sponge to suppress
the progression of PCa by regulating COP1 expression and
STAT3 signaling pathway activation (Wei et al., 2022). Jiang
et al. (Jiang et al., 2021) reported that LINC00467 can promote
PCa cell growth and metastasis via two methods. Firstly, silencing
LINC00467 in tumor-associated lymphocytes (TAMs) promoted
TAM polarization to the M2 subtype and inhibited the metastatic
capacity of co-cultured PCa cells. Secondly, LINC00467 could
promote PCa cell growth and metastasis via sponging miR-494-
3p and subsequently activating the expression of STAT3. Zhang
et al. found lncAMPC promoted the metastasis via a dual
function in the cytoplasm and nucleus. They proved that
cytoplastic lncAMPC could induce the expression of LIF by
binding and suppressing the activity of miR637. While
lncAMPC in the nucleus could remove histone H1.2 from the
distal promoter region of LIFR and therefore up-regulated LIFR
level. The axis of LIF/LIFR was a well-known inducer of JAK1-
STAT3 signal (Nicola and Babon, 2015; Chan et al., 2019). Due to
the up-regulated expression of LIF/LIFR axis under the dual
stimulation of lncAMPC, JAK1-STAT3 signaling pathway was
activated with the ensuing promoted expression of metastasis-
associated genes, ultimately leading to the metastasis of PCa
(Zhang et al., 2020). Zhu et al. also reported the lncRNA-
activator role of STAT3 in PCa. STAT3 induced the
expression of LINC00160, then LINC00160 bound to EZH2,
leading to the hypermethylation of RCAN1, and therefore
promoted the proliferation and metastasis of PCa cells (Zhu
et al., 2022).

In conclusion, besides the canonical ceRNA interaction
network of lncRNA-miRNA-mRNA, there also may exist a
reciprocal interaction between lncRNAs and STAT3. As a
transcription activator, STAT3 could induce the expression of
certain lncRNAs, such as LINC00160, to epigenetically regulate
the expression mode of down-stream genes. Besides, some
lncRNAs could indirectly activate STAT3 pathway via regulate
the expression of proteins up-stream of STAT3 signaling
pathway, such as lncAMPC.

WNT/β-CATENIN SIGNALING PATHWAY

Wnt gene is the combined term of homologous genes Int and
Wingless. The Wnt protein encoded and expressed by Wnt gene
is a collection of secretory glycoprotein families including 19Wnt
protein members (Ring et al., 2014). Wnt signaling pathway is
composed of transcription regulatory factors, functional proteins
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and enzymes, and β-Catenin is a key component ofWnt signaling
pathway (Watanabe et al., 2004). β-Catenin is a multifunctional
effector protein and its N-terminal and C-terminal have binding
sites with glycogen synthase kinase-3 (GSK-3) and T-cell factor/
lymphoid enhancing factor (TCF/LEF), respectively. It plays an
important role in maintaining cell adhesion and the
morphological structure of adjacent tissues. (Mao et al., 2014).

Canonical Wnt/β-Catenin pathway plays an important role in
different stages of tumor development, including cancer cell
proliferation, migration, invasion, tumorigenesis and
metastasis. Normally, the cytoplastic β-Catenin complex
consists of Axin, APC and CK1α and GSK-3β. The complex is
encapsulated with E3 ubiquitin ligase β-TRCP and eventually
degraded by the ubiquitin-proteome pathway (Jang et al., 2015).
Wnt1 ligands (Wnt2, Wnt3, Wnt3a and wnt8a) bind to FZD
receptor and LRP5/6 to initiate Wnt signaling pathway.
Subsequently, the scattered proteins in the cytoplasm are
phosphorylated and form a complex with Axin, which binds
to GSK3β to block its activation (Liu et al., 2015). This
combination further results in the breakdown of the
degradation complex, leading to the accumulation of β-catenin
in the cytoplasm. The accumulated β-catenin is transported to the
nucleus, which is recognized as the main event of canonical Wnt
pathway activation, and then interacts with TCF/LEF to form an
activator complex, thereby initiating the transcription of Wnt/β-
catenin signal transduction target genes, including c-Myc, Cyclin
D1 and MMP-7 (Yoshida and Saya, 2014).

Noncoding RNA activated by DNA damage (NORAD) is a
recently identified lncRNA that could promote PCametastasis via
regulating Wnt/β-catenin (Zhang Y et al., 2018). The ceRNA
interaction of NORAD and miR-30a-5p promoted the growth
and metastasis, while silencing the expression of NORAD exerted
the opposite effect. AGAP2-AS1 (AGAP2 antisense RNA 1) is
another lncRNA that was reported to activate Wnt/β-catenin
pathway. Zhao et al. (Zhao et al., 2021) reported that AGAP2-AS1
could form a feedback loop with miR-628-5p/FOXP2 and
promote proliferation and EMT progression of PCa by
activating the Wnt signaling pathway.

Moreover, besides the canonical Wnt/β-Catenin pathway, the
non-canonical Wnt pathway also participates in the EMT
progression of PCa. As a non-canonical Wnt signaling pathway
ligand, Wnt5a works with its receptor FZD2 and induces the
expression of EMT-related genes in PCa. LncRNA MCM3AP-AS1
has been demonstrated abnormally up-regulated in PCa tissues and
could up-regulate the expression ofWnt5a atmRNAandprotein level
via sponging miR-876-5p in PCa cells (Wu G et al., 2020).

PTEN/PI3K/AKT SIGNALING PATHWAY

The deficiency of PTEN (phosphatase and tensin homolog on
chromosome 10) tumor suppressor and the oncogenic activation
of PI3K (phosphatidylinositol-4,5-bisphosphate 3-kinase) signaling
axis are among the most common altered signaling pathways in
primary PCa that facilitate tumor occurrence, disease progression
and therapeutic resistance (Shorning et al., 2020). Recent studies
showed that nearly 15–20%PCa patients presented a loss of function

of PTEN and the rate may reach 40–60% when the disease progress
into the CRPC or metastatic stage (Yoshimoto et al., 2012; Leinonen
et al., 2013; Jamaspishvili et al., 2018). PI3K is mainly composed of
the regulatory subunit p85 and the catalytic subunit P110a and could
specifically catalyze phosphatidylinositol. The difference between
catalytic subunit P110 and related substrates can be divided into class
I, II, and III subtypes. The study of type I PI3K showed that activated
PI3K targeted PIP2 (phosphatidylinositol diphosphate), located on
the plasma membrane, and then transformed into PIP3. Then PIP3,
as the second messenger, binds to the downstream protein kinase B
(AKT) containing PH domain and PDK1, prompting PDK1 to
phosphorylate the Ser308 site of AKT and then activate AKT
(Huang et al., 2014). Phosphorylated AKT can activate NF-κB,
CREB and other transcription factors to activate anti-apoptotic
genes to inhibit cell apoptosis and play a positive role in cell
proliferation. Therefore, Akt is regarded as an important hub
factor in PI3K/AKT signaling pathway. In human PCa, the
phosphorylation of AKT at Ser473 has been reported to be an
excellent indicator of the prognosis of PCa patients (Ayala et al.,
2004) and the interaction of IGF-I/PI3K/AKT signaling pathway
and AR signaling pathway promote the synthesis of PSA (Liu et al.,
2011). Moreover, Lamin A/C protein could regulate the activation
and inactivation of PTEN to promote the migration and invasion of
PCa cells (Yan and Huang, 2019). Taken together, The dysregulated
PTEN/PI3K/AKT signaling pathway can regulate the synthesis of
various proteins and is involved in the proliferation and apoptosis,
migration and differentiation of PCa cells (Wu et al., 2018).

LncRNA MBNL1-AS1 exerted a positive regulation of PTEN.
As reported, MBNL1-AS1 is down-regulated in PCa cells, and the
MBNL1-AS1/miR-181-5p/PTEN axis could suppress the
proliferation and migration ability of PCa cells through the
inhibitory effect of PTEN on AKT phosphorylation (Ding
et al., 2021). LncRNA-ATB is a stimulator of EMT associated
with ZEB1 and ZNF217 expression and regulates the EMT
progression of PCa via activation of ERK and PI3K/AKT
signaling pathways (Xu et al., 2016). In addition, Wu et al.
(Wu et al., 2017) analyzed the differentially expressed
lncRNAs in three pairs of PCa specimens and found that
LINC01296, a novel identified highly expressed in PCa, was
related to preoperative PSA (p = 0.002), lymph-node
metastasis (p = 0.035), Gleason score (p = 0.001), tumor stage
(p = 0.036) and recurrence-free survival of PCa patients. In vitro
biological experiments have further proved that knockdown of
LINC01296 can inhibit the proliferation, migration and invasion
of PCa cells by inhibiting the activity of the PI3K/AKT/mTOR
pathway. Another study (Sun et al., 2021) revealed that lncRNA
DANCR exerted an oncogenic role in PCa cells via regulating the
miR-185-5p/LASP1 axis and activated the PI3K/AKT/GSK3β
pathway. Activated GSK3β promoted the transcriptional
activity of Snail, leading to the elevated migration and
invasion ability of PCa cells.

TGF-β/SMAD SIGNALING PATHWAY

The TGF-β signaling pathway is a transmembrane signal
transduction pathway widely existing in invertebrates and
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vertebrates. TGF-β belongs to a polypeptide superfamily with
extensive and complex biological activity regulation. It plays an
important role in the regulation of body tissue homeostasis and early
embryonic development. The abnormal activation of TGF-β
superfamily signaling pathway is related to a variety of diseases,
including human cancers, fibrotic diseases, autoimmune diseases,
etc. (Shangguan et al., 2012; Xue et al., 2014; Fennen et al., 2016). The
Smad family is an important type of transcriptional regulator, and
Smad2 and Smad3 are the key downstream factors of TGF-β.
Activated TGF-β binds to TGF-β receptor on the cell membrane,
catalyzes the phosphorylation and activation of Smad2 and Smad3,
and then Smad2/3 and Smad4 bind to the nucleus and regulate target
gene transcription (Park et al., 2015; Zhao et al., 2020). In the early
stage of tumor, TGF-β signal can suppress tumor growth by
inhibiting the secretion of cytokines and growth factors, and
inducing apoptosis. When the tumor progresses to the
pathological stage, due to the loss or mutation of heterozygous
alleles, the inhibitory effect of TGF-β signal disappears, and it plays a
role in promoting cancer (Oh and Joo, 2020). Specifically, TGF-β up-
regulates the expression levels of VEGF and bFGF, and
simultaneously induces the expression of MMP-2 and MMP-9.
MMPs are enzymes that could promote the degradation of the
vascular endothelial basement membrane and promote the
neovascularization of solid tumors, which greatly benefits tumor
distant metastasis. Studies have reported that the expression of TGF-
β1 and Smad2 are higher in PCa tissues than that in prostate
epithelial tissues. The high expression of TGF-β1 can induce cell
metastasis, invasion and cause adverse effects on the overall survival
of PCa patients (Atılgan et al., 2016).

LncRNA ANRIL was overexpressed in PCa, and knockdown
of ANRIL significantly decreased the levels of TGF-β1 and
p-Smad2 and inhibited the proliferation and migration of PCa
cells (Zhao et al., 2018). The low expression of lncRNA DGCR5
acted as a predictor of poor survival in PCa. While over-
expressing DGCR5 could decrease the stemness of PCa cells
with the down-regulation of TGF-β1, and supplementing TGF-β1
could reverse the effect of over-expressing DGCR5 (Li B et al.,
2019). Zhang et al. (Zhang H et al., 2019) reported that lncRNA
MIR4435-2HG could promote the migration and invasion of PCa
cells and the treatment of TGF-β inhibitor attenuated the
enhancing effects of over-expression MIR4435-2HG in PCa
cells. Distant bone metastasis is a well-recognized lethal event
of advanced PCa patients. PCAT7, a bone metastasis-related
lncRNA, could activate TGF-β/Smad signaling via elevating
the protein level of TGFBR1 with sponging miR-324-5p and
the activated TGF-β/Smad signaling in turn could induce the
expression of PCAT7 by promoting the formation of a Smad3/
Smad4/SP1 complex, which demonstrated a positive feedback
loop in promoting the bone metastasis in PCa cells (Lang et al.,
2020).

NF-κB SIGNALING PATHWAY

NF-κB signaling pathway is a widely reported pathway mainly
involved in immune or inflammatory regulation. Canonical NF-
κB signaling pathway consists of the several sequential events:the

activation of IKK complex (containing catalytic subunits IKKα
and IKKβ and regulatory subunit NEMO), phosphorylation of
IκBα (activated by IKK complex), degradation of IκBα protein
and release of NF-κB and the nuclear shuttle of NF-κB. The
aberrant activation of NF-κB signaling pathway is also reported to
participate in the alteration of diverse tumor phenotypes (Wang
et al., 1996; Chen et al., 1999; Yamamoto and Gaynor, 2001; Karin
and Greten, 2005). In human PCa, lncRNA DRAIC is reported to
inhibit the progression of PCa via suppressing the activation of
NF-κB (Saha et al., 2020). As reported, DRAIC obstruct the
formation of IKK complex via directly interact with IKKα subunit
and NEMO subunit, alleviating the phosphorylation of IκBα
protein and the nuclear transportation of NF-κB. The
inactivation of NF-κB signaling pathway by DRAIC could
efficiently inhibit the growth and metastasis ability of human
PCa cells. Moreover, Shang et al. (Shang et al., 2019) reported
lncRNA PCAT1 could activate the NF-κB signaling pathway in
CRPC cells. They firstly identified PCAT1 as an up-regulated and
prognosis-related lncRNA in CRPC samples and found PCAT1
could compete with PHLPP to bind to the C-terminal
tetratricopeptide repeat (TPR) domains of FKBP51 protein in
an androgen-deprive environment. This competitive
perturbation of FKBP51 and PHLPP not only abolished the
suppression of AKT by PHLPP but also strengthened the
stability of FKBP51/IKKα complex, resulting in the constant
activation of NF-κB signaling pathway and finally the
progression of PCa disease.

OTHER SIGNALING PATHWAYS OR
EFFECTIVE PROTEINS

The above is the main lncRNAs-regulated signaling pathways
that were mostly reported to participate in the EMT process of
human PCa cells, while researches about other signaling
pathways, especially the pathways targeting EMT process, are
not so abundant. Here, we selected the three most typical ones to
make a brief discussion. The first one is NORAD. In addition to
regulating Wnt/β-catenin signaling pathway, lncRNA NORAD
also could regulate the release of extracellular vesicles (EVs) to
promote the bone metastasis of PCa cells (HuW et al., 2021). Via
regulating miR-541-3p-PKM2 axis, NORAD could affect the
release of EVs through phosphorylating SNAP-23 and
promote the internalization of EVs by up-regulating the
production of ATP in EVs. Elevated EVs containing PKM2
finally induced the bone metastasis of PCa cells. Secondly,
NEAT1-1 functioned as a bridge to connect CYCLIN1 and
CDK19 via a m6A dependent manner (Wen et al., 2020). The
special complex promoted the phosphorylation of Pol II Ser2 and
transcription of RUNX2 to induce distant metastasis of PCa cells.
The third one is LINC00261, which perform a dual-role both in
cytoplasm and in nucleus like lncAMPC (Mather et al., 2021). In
the cytoplasm, LINC00261 promoted the expression of CBX2 via
sponging miR-8485 through a ceRNA network. While in the
nucleus, LINC00261 acted as a scaffold to induce SMAD-driven
expression of the FOXA2. The hyper-activation axis of
LINC00261-CBX2-FOXA2 coordinatively promoted the
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FIGURE 1 | The ceRNA network of lncRNA in regulating downstream signaling pathway. MAGI2-AS3 and NORAD regulate STAT3 or Wnt/β-catenin signaling
pathway via sponging miR-424-5p or miR-30a-5p, respectively.

FIGURE 2 | The positive feedback loop between lncRNAs and key signaling effectors. (1) AR induced the expression of lncRNA ARLNC1 and ARLNC1 increased
the stability of AR mRNA to promote AR signaling pathway; (2) LncRNA PCAT7 increased the level of TGFBR1 and activated TGF-β/Smad signaling pathway promoted
the expression of PCAT7 via the formation of Smad3/Smad4/SP1 complex.
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FIGURE 3 | The positive feedback loop between lncRNAs and key signaling effectors. (1) In the cytoplasm, lncAMPC upregulated LIF expression by spongingmiR-
637; (2) In the nucleus, lncAMPC enhanced LIFR transcription by decoying histone H1.2 away from the upstream sequence of the LIFR gene; (3) The increased binding of
LIF and LIFR stimulated the JAK1-STAT3 pathway to promote metastasis-associated gene expression.

FIGURE 4 | The competing integration of the binding site between lncRNAs with specific regulators to promote the stability of key signaling effectors. (1) LncRNA
HOTAIR interfered the degradation of AR by MDM2 and promote the AR signaling pathway; (2) LncRNA PCAT1 activate NF-κB signaling pathway via abolishing the
inhibitory effect of PHLPP on IKKα.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9390709

Shen et al. LncRNAs in EMT in PCa

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


proliferation and metastasis of PCa cells. Other pathways or key
factors that could interact with certain lncRNAs in PCa still
deserve more interest for further exploration.

DISCUSSION

In our review, we discuss the role of lncRNAs in participating in the
EMT process in PCa via regulating multiple signaling pathways,
including AR signaling pathway, STAT3 signaling pathway, Wnt/β-
catenin signaling pathway, PTEN/PI3K/AKT signaling pathway,
TGF-β/Smad pathway and NF-κB signaling pathway. Based on
our discussion, there are four modes of how lncRNAs participate
in the EMT process of PCa via regulating diverse signaling pathways:
1) Forming a ceRNA network via sponging miRNAs to alleviate the
repression of downstream target genes and therefore activate or
inactivate related signaling pathways, such as MAGI2-AS3 in
regulating STAT3 signaling pathway and NORAD in regulating
Wnt/β-catenin signaling pathway (shown in Figure 1); 2) Forming a
positive feedback loop with key signaling effectors, such as the
interaction between ARLNC1 with AR and PCAT7 with TGF-β/
Smad signaling pathway (shown in Figure 2); 3) Epigenetically
regulating the transcription of down-stream genes, for example,
lncAMPC in regulating STAT3 signaling pathway (shown in
Figure 3) or PVT1 in regulating AR signaling pathway; 4)
Competing the binding site with regulator to promote the
stability of key signaling effectors, namely HOTAIR in blocking
the degradation of AR and PCAT1 in activating of NF-κB (shown in
Figure 4).

Moreover, considering that metastasis is the main lethal cause of
PCa patients, we hope clinical doctors and researchers could benefit
from our current literature review. From our standpoint, among the
signaling pathways we discussed above, lncRNAs targeting AR
signaling pathway are of much more values and here we raised
several unsolved points that deserve further exploration. 1)
Bioinformatic analysis or clinical researches about lncRNAs that
could predict the metastasis-free survival (MFS) is absent. As distant
metastasis is universally regarded as the terminal status of PCa
patients, researches that are lack of quantitative analysis of MFS

generally failed to evaluate the progress of PCa patients, since only
MFS has been shown to be a surrogate endpoint for overall survival
(OS) (Xie et al., 2020; Gharzai et al., 2021). 2) Researches about
lncRNAs that targeting distant metastasis is deficient. The lncRNAs
reported above are mainly differentially expressed in samples of
public database, which neglecting the particularity of metastatic
samples. 3) Researches about lncRNAs that could promote
adjuvant therapies are scarce. Latest research demonstrated that
radiotherapy combined with ADT help to improve MFS without
compromising quality of life (Kishan et al., 2022). However, we find
that researches focusing on the role of lncRNAs in promoting
radiotherapy in PCa are very sparse. Therefore, we think these
may be new directions for future researches.
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