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This research introduces new machine learning and deep learning approaches,

collectively referred to as Big Data analytics techniques that are unique to

address the protein conformational selection mechanism for protein:ligands

complexes. The novel Big Data analytics techniques presented in this work

enables efficient data processing of a large number of protein:ligand

complexes, and provides better identification of specific protein properties

that are responsible for a high probability of correct prediction of protein:ligand

binding. The GPCR proteins ADORA2A (Adenosine A2a Receptor), ADRB2

(Adrenoceptor Beta 2), OPRD1 (Opioid receptor Delta 1) and OPRK1 (Opioid

Receptor Kappa 1) are examined in this study using Big Data analytics

techniques, which can efficiently process a huge ensemble of protein

conformations, and significantly enhance the prediction of binding protein

conformation (i.e., the protein conformations that will be selected by the

ligands for binding) about 10–38 times better than its random selection

counterpart for protein conformation selection. In addition to providing a

Big Data approach to the conformational selection mechanism, this also

opens the door to the systematic identification of such “binding

conformations” for proteins. The physico-chemical features that are useful

in predicting the “binding conformations” are largely, but not entirely, shared

among the test proteins, indicating that the biophysical properties that drive the

conformation selection mechanism may, to an extent, be protein-specific for

the protein properties used in this work.
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1 Introduction

The prediction of which small molecules, e.g., substrates or modulators, are more

likely than other small molecules to bind to a specific protein, is one the most formidable

challenges of contemporary biology, chemical biology and pharmacology. Only a small

fraction of the large number of small organic molecules present in living organisms will, in

most cases, bind to a specific protein. There is a considerable amount of work that aims at

improving the biophysical approaches to predicting such protein:ligand interactions.
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As exemplified in the current special issue of Frontiers, the

dynamics of the protein target is increasingly taken into account

in such predictive approaches. Indeed, a protein cycles through

multiple conformations, a few of which will be bound by its

ligands, as conceptualized in the “conformational selection”

mechanism of ligand binding. Virtual docking (Amaro et al.,

2018) that aims at predicting if a given small chemical binds to a

given protein, usually considers only one protein conformation

in an “induced fit” mechanism. Advances beyond a simple

induced fit mechanisms have been proposed, such as

submitting the protein:ligands complexes to molecular

dynamics simulations after docking (Seelinger and de Groot,

2010), which identifies binding modes of known ligands close to

that of their experimental co-crystallized structures, or

generating an ensemble of holo structures from experimental

structures deposited in the PDB for a given protein target

(Aggarwal et al., 2021). This present work, continuing in that

direction, aims at using the information contained in molecular

dynamics simulations of a single protein target structure prior to

any docking.

In principle the “binding” protein conformations will

correspond to the free energy minima of the (protein +

ligand) complex free energy hypersurface. In our research, we

are looking into whether we can identify these rare apo-

conformations that possess this capacity to bind their ligands,

while the vast majority of the other apo-protein conformations

do not. This paper describes our Big Data analytics work toward

such characterization of what properties of an apo-protein

conformation more likely lead to conformational selection.

The data we used here has been obtained using supermassive

“ensemble docking” from proteins’ molecular dynamics

simulations, and is described in (Evangelista et al., 2016). The

data corresponds to about 1.5 millions of protein conformation

and protein:ligand complex structures and their associated

docking scores.

Big Data analytics provides an efficient approach to analyzing

such a large amount of data, and also addresses the class

imbalance problem (Abd Elrahman and Abraham, 2013),

which is a result of imbalanced groups or sub-categories

present in the data, where the majority class or larger group

of data consists of non-binding protein conformations and it

overshadows the minority class or smaller data group, which

comprises the data-of-interest i.e., the binding protein

conformations. In our prior work (Akondi et al., 2019; Gupta

et al., 2022; Sripriya Akondi et al., 2022), a novel two-stage

sampling-based classifier framework was proposed with the

primary goal of addressing the class imbalance problem and

maximizing the detection of potential binding protein

conformations as conventional machine learning (ML)

algorithms are ill-equipped to deal with the issue of class

imbalance during the data-learning phase. This paper extends

on our previous work by presenting additional improvements to

our two-stage sampling-based classification approach (Gupta

et al., 2022) using deep learning techniques and four different

feature selection methods in conjunction with an Enrichment

ratio framework.

2 Materials and methods

2.1 Dataset description

As described in our previous work (Gupta et al., 2022),

Molecular Dynamics (MD) simulations of four proteins,

namely, ADORA2A (Adenosine A2a Receptor), ADRB2

(Adrenoceptor Beta 2), OPRD1 (Delta Opioid Receptor) and

OPRK1 (Opioid Receptor Kappa 1) were used to study the

efficacy of our proposed method. The conformations of these

four proteins have been well-studied, and the protein

conformations that: a) will bind to ligands (binding

conformations) and b) will not bind to ligands (non-binding

conformations), are known and have been previously

documented and published (Evangelista et al., 2016).

ADORA2A: This dataset has 50 attributes and consists of

2,998 protein conformations among which 851 protein

conformations are “binding” and 2,147 protein conformations

that are “non-binding”. Here the imbalance ratio is 3:1 i.e., for

every datasample belonging to minority class (binding

conformations) there are three data samples belonging to the

majority class (non-binding conformations).

ADRB2: This dataset has 51 attributes and consists of

2,565 protein conformations among which 156 are binding

and 2,411 protein conformations are non-binding. Here the

imbalance ratio is 16:1 i.e., for every datasample belonging to

minority class (binding conformations) there are 16 data samples

belonging to the majority class (non-binding conformations).

OPRD1: This dataset has 51 attributes and consists of

3,004 protein conformations among which 72 protein

conformations are binding and 2,932 protein conformations

are non-binding. Here the imbalance ratio is 41:1 i.e., for

every datasample belonging to minority class (binding

conformations) there are 41 data samples belonging to the

majority class (non-binding conformations).

OPRK1: This dataset has 50 attributes and consists of

2,998 protein conformations among which 138 protein

conformations are binding and 2,862 protein conformations

are non-binding. Here the imbalance ratio is 20:1 i.e., for

every data sample belonging to minority class (binding

conformations) there are 20 data samples belonging to the

majority class (non-binding conformations).

Tables describing the protein attributes/features/descriptors

for ADORA2A, ADRB2, OPRD1, and OPRK1 datasets can be

found in our previous work (Gupta et al., 2022). ADRB2 and

OPRD1 have one additional feature - pro_pl_seq (Sequence

based pI) in comparison to ADORA2A and OPRK1. The

molecular descriptors were calculated using the protein
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descriptors from the program MOE (Akondi et al., 2019;

Chemical Computing Group, 2019; Gupta et al., 2022; Sripriya

Akondi et al., 2022).

2.1.1 Analysis of variance
Analysis of variance (ANOVA) is a statistical analysis

method used here to calculate the linear relationship between

the various protein features and to select the important protein

features that correspond to the highest F-values (Johnson and

Synovec, 2002). The top “x” features with the greatest F-values

were selected in this case, where the x features to be retained is

determined experimentally by the user. Thus, ANOVA technique

allows for selection of the primary physio-chemical protein

properties that essay a critical role in protein:ligand

interaction and conformation selection.

2.1.2 Mutual information
Mutual Information (MI) (Macedo et al., 2019) is a measure

of the amount of information that can be inferred about a

variable U through the use of the other given random variable

V. The mutual information I (U; V) for random variables U and

V can be defined as follows (Guyon and Elisseeff, 2003; Gupta

et al., 2022):

I U;V( ) � −∑
v∈V

∑
u∈U

p u, v( )log p u, v( )
p u( )p v( ) (1)

where

• p(u,v) is the joint probability density function.

• p(u) is the probability density function

In Eq. 1, if the MI value I is 1, thenU andV are dependent on

each other, i.e., protein features share similar information. If the

MI value I is 0, then U and V are independent of each other

i.e., no common (in other words unique) information between

the features. The MI in physio-chemical properties are calculated

as follows:

• First, calculate the MI value for all properties to determine

how dependent the physio-chemical features vectors are

and understand the common information contained in all

the protein features.

• Then, sort the protein features according to their highest

MI values. The top “x” protein features with the greatest MI

values are retained, where x is user defined.

2.1.3 Recurrence quantification analysis
Recurrence Quantification Analysis (RQA) is a non-

linear data-analysis method that is used to study the

dynamical systems (Eckmann et al., 1987). The first step in

the recurrence analysis is to quantify the repeating patterns of

a dynamic system. One of the variables generated by the

quantification of the recurrences is Entropy (ENT), which is

the probability distribution p(j) of the diagonal line on the

RQA plot and is defined as:

ENTR � −∑M

j�j min
p j( ) ln p j( )( ) (2)

where M is the number of points on the state space trajectory and

j is the length of the diagonal line in the RQA plot. We investigate

the RQA-based entropy measure’s link to the probability of

detecting potential binding conformations in terms of time-

space evolution of protein conformations.

2.1.4 Spearman correlation coefficient
Spearman correlation coefficient is a statistical measure

(Hauke and Kossowski, 2011) of the strength and direction of

the monotonic relationship between each protein feature and

target variable. The correlation coefficient for each feature is

obtained by applying the formula as defined below:

ρ � Σi(ui − u−)(vi − v−)����������������
Σi(ui − u−)2(vi − v−)2

√ (3)

where u is the feature vector and u− is its corresponding mean.

Similarly, v is the target vector and v− is the mean of the target

vector. The Spearman correlation coefficients for protein features

are computed, sorted and ranked based on the absolute value of the

correlation coefficient. A subset of the protein features were then

selected based on the “x” highest rankings, where x is user-defined.

Therefore, the Spearman correlation coefficient allows us to select

protein features that are strongly correlated with each other.

2.1.5 Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) is a tree ensemble

boosting approach that merges a number of weak classifiers into a

single strong classifier (Chen and Guestrin, 2016). Starting with a

base learner, the strong learner is trained iteratively for best

classification or prediction performance. Given a dataset X with

m samples and n protein descriptors, let (x1 , y1), ..., (xk , yk) be a
set of inputs xi and corresponding outputs yi (Babajide Mustapha

and Saeed, 2016). The XGBoost algorithm uses “K” additive

functions, each representing a classification and regression tree

(CART) to predict the output label ŷi as defined by:

ŷi � ∑K

k�1tk xi( ), tk ∈ T (4)

where tk corresponds to a distinct tree structure with leaf score

“w” and T is the space of all classification and regression trees.

The goal is to minimize the following regularized objective

function (Babajide Mustapha and Saeed, 2016):

Obj Θ( ) � ∑m

i
l yi , ŷi( ) +∑K

k
Ψ tk( ) (5)

where l is the loss function that is used to measure the difference

between the predicted value ŷi and the actual value yi and Ψ is

the regularization term that is used to avoid overfitting and is

defined as:
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Ψ tk( ) � γD + 1
2
λ w‖ ‖2 (6)

where D is the number of leaves, w is the weight of each leaf, γ

and λ are constants to control the degree of regularization.

2.1.6 K-Means clustering
K-Means clustering is an unsupervised machine learning

algorithm (Oyelade et al., 2010) that is used to understand the

data patterns in the input data by grouping the instances in the

dataset that are similar into different clusters. K-Means clustering

is often used to produce compact clusters with minimum intra-

cluster distances and maximum inter-cluster distances (Oyelade

et al., 2010). This goal is achieved by splitting the data into a

number of clusters “k” that the user specifies (Wilkin and Huang,

2007). Here we employ the K-Means clustering algorithm to

under sample the data points from the majority class samples

i.e., non-binding protein conformations as demonstrated in our

prior work (Akondi et al., 2019).

2.1.7 Generative adversarial networks
Generative adversarial networks (GAN) is an unsupervised

learning method that involves learning regularities or patterns in

the input data to produce new examples that mimic the original

dataset. The GAN technique uses two artificial models, the

discriminator and generator, which compete for data learning (Jo

and Kim, 2022). The discriminator focuses on discriminating or

distinguishing between the original and synthetic data, whereas the

generator tries to create synthetic data that is comparable to the real

data. The loss function of GAN (Jo and Kim, 2022) is defined as:

min
D

max
F

V F,D( ) � Qu~pu log F u( )([ ]
−Qv~pv log 1 − F D v( )( )( )([ ] (7)

where.

• pu is the data-generating distribution

• pv is the noise distribution

• u is the real input data

• v is the noise input to the generator neural network

• F(u) is the output probability of the generator

• D(v) is the sample generated by the generator neural

network

Here the GAN is used to oversample or replicate the minority

class in the dataset to alleviate the class imbalance problem and in

turn maximize the prediction of the potential binding protein

conformations.

2.1.8 Convolutional neural networks
Convolutional neural network (CNN) is a supervised deep

learning technique (Hossain and Sajib, 2019) that has emerged as

the most widely used artificial neural network in many computer

vision applications, including texture recognition (Cimpoi et al.,

2016), remote sensing scene classification (Hu et al., 2015; Penatti

et al., 2015) and structure-based protein analysis (Torng and

Altman, 2017). Architectural design of a CNN consists of several

convolutional, pooling and dropout layers followed by one or

more fully-connected layers (FC) (Sultana et al., 2018). Figure 1

describes the architecture of the CNN used in our work.

The architectural design of the CNN in our work consists of a

convolutional layer followed by dropout to reduce overfitting, a

max pooling layer, a fully connected layer and an output layer.

Rectified linear unit (ReLU) is used as the activation function for

the convolution layer and fully connected layer. Binary cross-

entropy L is used as the loss function for the CNN.

2.1.9 Recurrent neural networks
Recurrent neural network (RNN) is a class of neural networks

which is used to detect patterns in a sequence of data (Ho and

Wookey, 2020). In our work, the RNN architecture consists of two

long-short term memory (LSTM) (Schmidt, 2019) layers with

dropout followed by a dense layer with dropout and an output

layer. The LSTM unit introduces a gate mechanism to select

whether to retain or discard specific information in the existing

memory. If the LSTM unit recognizes a pivotal protein descriptor

from an input sequence early on, then it captures any potential

long-distance dependencies between the protein descriptor and

target value. Figure 2 describes the architecture of the RNN used in

our work. Rectified linear unit (ReLU) is used as the activation

function for the LSTM unit and dense layer, sigmoid function is

used as the activation function in the output layer and binary

cross-entropy as the loss function.

2.1.10 Evaluation metrics
The confusion matrix and its derived evaluation parameters

such as classification accuracy, sensitivity, specificity, etc., are some

of the most commonly used ML evaluation metrics to validate a

classification or prediction performance of ML algorithms. In this

case of binary classification between binding and non-binding

protein conformations, the confusionmatrix has four categories of

classification results as follows:

• True Positive (TP): When the classifier accurately predicts

“binding,” indicating that the ligand and target protein did

bind (Right predictions of class 1)

• True Negative (TN): When the classifier accurately

predicts “non-binding,” indicating that the ligand and

target protein did not bind (Right predictions of class 0)

• False Negative (FN): When the classifier inaccurately

predicted “non-binding,” but the ligand and target

protein did bind (Wrong predictions of class 0)

• False Positive (FP): When the classifier inaccurately

predicted “binding,” but the ligand and target protein

did not bind (Wrong predictions of class 1)
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Here class 0 refers to the non-binding protein conformations

(majority class) and class 1 denotes the binding protein

conformations (minority class).

Accuracy of an AI/ML framework is calculated as the sum of

correctly predicted binding and non-binding protein

conformations divided by the total number of conformations

in the data set. It is defined as:

Accuracy � TP + FN

TP + FP + FN + TN
(8)

Sensitivity is the ability of the AI/ML framework to correctly

predict binding protein conformations. It is calculated as the

number of correctly predicted binding protein conformations

divided by the total number of binding protein conformations in

the data set as defined below:

Sensitivity � TP

TP + FN
(9)

Eqs 8, 9 are used for performance evaluation of the

proposed AI/ML protein conformation selection/prediction

framework.

2.1.11 Enrichment ratio framework
The enrichment was calculated using the TP and FN

predictions from the Big Data analytics based AI/ML protein

conformation selection/prediction framework, described in

Section 2.2. The base enrichment ratio is calculated to

measure the effectiveness of general predictive performance

in the absence of the ML protein conformation selection

framework as in our prior work (Gupta et al., 2022). For

accurate base enrichment ratio we performed subset data

selection on previously calculated and published anticipated

protein:ligand interactions energies in (Evangelista et al., 2016).

The assumption is that the computed protein:ligand interaction

energies are quantitatively valid, i.e., a “preferred” binding

conformation would be the one in which the protein binds

the ligand stronger (i.e., with lower interaction energies) than

other alternative conformations. Thus, the base enrichment was

calculated from (Evangelista et al., 2016) by dividing the

number of binding conformations by the total number of

conformations. Eq. 10 calculates the base enrichment

detected during the test phase if the ML algorithm is not

implemented. We select different subsets of the TP and FN

FIGURE 1
Architecture of the CNN used in our proposed Big Data analytics based AI/ML protein conformation selection/prediction framework.

FIGURE 2
Architecture of the RNN used in our proposed Big Data analytics based AI/ML protein conformation selection/prediction framework.
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values in order to calculate the ML prediction framework

enrichment ratios in Eq. 10. The values returned by both

Eqs 10, 11 were then used to calculate the final enrichment

ratio returned by each of the four filters (A,B,C,D) defined in

Eq. 12.

Base enrichment ratio � number of binding conformations

total number of conformations binding and non − binding( )
(10)

ML enrichment ratio � number of binding conformations TP( ) identified
number of total conformations TP andFN( ) identified

(11)

FIGURE 3
The proposed Big Data analytics based AI/ML protein conformation selection/prediction framework.
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Final enrichment ratio � MLenrichment ratio

Base enrichment ratio
(12)

The final enrichment ratios for proteins ADORA2A, ADRB2,

OPRD1, and OPRK1 were calculated using four different filters

(A,B,C,D) and have been described and published in our

previous work (Gupta et al., 2022). The proposed enrichment

ratio framework used is depicted in Supplementary Figure SI-1

(Gupta et al., 2022).

2.2 The proposed Big Data analytics based
AI/ML protein conformation selection/
prediction framework

In this work, we combine the feature selection techniques

discussed in Section 2.1 with the improved two-stage

sampling based classification approach (Gupta et al.,

2022) using deep learning techniques. The steps given

below describe the new improved methodology and is

illustrated in Figure 3:

• The first step in themethodology is to input the dataset and

then apply the ML feature selection methods: i) Analysis of

variance (ANOVA), ii) Mutual Information (MI), iii)

Recurrence Quantification Analysis (RQA), and iv)

Spearman correlation to select the important protein

features from each of the methods respectively.

• We then obtain a feature ranking score for all features

based on the common consensus of all the feature selection

methods. Only the subset of protein features that are

selected by all four feature selection methods are chosen

to create a new dataset.

• Both the original dataset and a new dataset that is more

biased towards samples in class 0 are sent as inputs to the

XGBoost classifier. Samples of class 0 (TN) and class 1 (TP)

are recorded as classification results 1.

• In order to create a new training dataset, the GAN

algorithm was applied to both the original dataset and

the new modified dataset.

• K-Means clustering (Akondi et al., 2019) is used on the

XGBoost classifier’s classification results, class 0 samples

are undersampled, and the intended class 1 samples are

oversampled. This step increases the detection rate of class

1 samples or binding protein conformations to address the

class imbalance issue. The new training dataset has the

same size as the initial training dataset in order to maintain

consistency.

• Supervised classification using deep learning

methodologies: CNN and RNN are applied to the newly

created training dataset. Both classifiers are used to identify

the binding and non-binding conformations in the new

training dataset. The results of both classifiers are recorded.

• As a final step, the TP (binding conformations), and FN

(binding conformations but are incorrectly predicted as

non-binding conformations) by the AI/ML protein

conformation prediction framework (CNN and RNN)

are employed in the Enrichment ratio framework to

calculate the Enrichment ratios. The outcomes of the

framework for enrichment ratios are recorded.

3 Results

The overview of enrichment ratios for ADORA2A that were

determined using the predicted binding conformations from the

AI/ML framework is shown in Table 1. As indicated in

Supplementary Table SI-1 through Supplementary Table SI-5,

the AI/ML framework was evaluated on the remaining 70% of the

dataset after being trained on 30% of it. It can be observed that

the data selection filter A of the Enrichment ratio framework gave

the maximum enrichment ratio of 7.1 using XGBoost +

GANs–RNN framework predictions.

The list of protein descriptors that the four ML feature

selection techniques determined to be significant is shown in

Table 2 and it can be observed that 11 of the 50 features were

chosen. Table 3 gives the overview of the enrichment ratios that

were calculated using the features listed in Table 2. It can be

observed that data selection filter A of Enrichment ratio

framework gave the maximum enrichment ratio of 10.2 using

XGBoost + GANs–CNN framework predictions.

The three common protein descriptors for the proteins

ADORA2A, OPRK1, and OPRD1 that were determined to be

significant by the four ML feature selection methods are listed in

Supplementary Table SI-6. A summary of the enrichment ratios

that were estimated using the characteristics indicated in

Supplementary Table SI-6 is provided in Supplementary Table

SI-7. It can be observed that employing data selection filter A, the

XGBoost + GANs–CNN framework predictions provided the

maximum enrichment ratio of 8.2.

The overview of enrichment ratios for the ADRB2 binding

conformations predicted by the AI/ML framework is shown in

Table 4. On 30% of the dataset, the AI/ML framework was

trained, and on the remaining 70%, it was tested. It can be

observed that employing data selection filter C, the XGBoost +

GANs–RNN framework predictions provided the maximum

enrichment ratio of 13.8.

The list of protein descriptors that the three out of

four ML feature selection techniques determined to be

significant is shown in Table 5. It can be seen from the

table that 8 of the 51 features were chosen. Table 6

provides an overview of the enrichment ratios that were

computed using the features listed in Table 5. It can be

observed that employing data selection filter D, the

XGBoost + GANs–RNN framework predictions provided

the maximum enrichment ratio of 24.2.
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The summary of enrichment ratios for OPRD1 that were

determined using the predicted binding conformations from

the AI/ML framework is shown in Table 7. On 30% of the

dataset, the AI/ML framework was trained, and on the

remaining 70%, it was tested. It can be observed that

utilizing data selection filter B, the XGBoost + GANs–RNN

TABLE 1 Enrichment Ratios of ADORA2A on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 5.6 Filter A 0.5 4.1 Filter C 1.0

XGboost + GANs–RNN 7.1 Filter A 1.0 5.9 Filter C 0.5

TABLE 2 11 features out of 50 were selected having a feature score of four using the feature scoring table for ADORA2A.

pro_asa_vdw pro_dipole_moment pro_patch_ion_n pro_patch_neg_n

pro_asa_hyd pro_hyd_moment pro_app_charge pro_zquadrupole

pro_volume pro_patch_ion pro_helicity

TABLE 3 Enrichment Ratios of ADORA2A on the dataset consisting of features as shown in Table 2 with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 10.2 Filter A 0.5 8.1 Filter C 10.0

XGboost + GANs–RNN 9.0 Filter B 0.5 6.5 Filter D 1.0

TABLE 4 Enrichment Ratios of ADRB2 on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 9.4 Filter C 10.0 6.7 Filter B 0.5

XGboost + GANs–RNN 13.8 Filter C 1.0 7.6 Filter A 1.0

TABLE 5 8 features out of 51 were selected having a feature score of three using the feature scoring table for ADRB2.

pro_dipole_moment pro_patch_hyd_5 pro_patch_pos_2

pro_patch_hyd pro_patch_neg pro_patch_hyd_1

pro_patch_hyd_4 pro_patch_neg_1

TABLE 6 Enrichment Ratios of ADRB2 on the dataset consisting of features as shown in Table 5 with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 18.1 Filter D 10.0 8.4 Filter A 0.5

XGboost + GANs–RNN 24.2 Filter D 10.0 13.5 Filter B 1.0
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framework predictions produced an enrichment ratio of up

to 37.

The list of protein descriptors that the four ML feature

selection techniques determined to be significant is shown in

Table 8. It can be seen that 12 of the 51 features were chosen, and

Table 9 provides an overview of the enrichment ratios that were

computed using the features listed in Table 8. It can be observed

that employing data selection filter B, the XGBoost +

GANs–RNN framework predictions provided the maximum

enrichment ratio of 37.5.

Supplementary Table SI-8 gives the overview of enrichment

ratios that were calculated using the features that were listed in

Supplementary Table SI-6. It can be seen that both XGBoost +

GANs–CNN and XGBoost + GANs–RNN framework

predictions gave the same enrichment ratio of 37.5, using

data selection filter B.

A summary of the enrichment ratios for OPRK1 that were

determined using the predicted binding conformations from the

AI/ML framework is shown in Table 10. On 30% of the dataset,

the AI/ML framework was trained, and on the remaining 70%, it

was tested. It can be seen that employing data selection filter A,

the XGBoost + GANs–RNN framework predictions provided the

maximum enrichment ratio of 27.6.

The list of protein descriptors that the four ML feature selection

techniques determined to be significant is shown in Table 11. It can

be seen that 5 of the 50 features were chosen, and Table 12 provides

an overview of the enrichment ratios that were computed using the

features listed in Table 11. It can be seen that both XGBoost +

GANs–CNN and XGBoost + GANs–RNN frameworks gave the

same enrichment ratio of 27.6, using data selection filter A.

An overview of the enrichment ratios that were calculated using

the descriptors listed in Supplementary Table SI-6 is provided in

Supplementary Table SI-9. It can be seen that employing data

TABLE 7 Enrichment Ratios of OPRD1 on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 12.5 Filter B 0.5 4.9 Filter C 10.0

XGboost + GANs–RNN 37.5 Filter B 0.5 27.6 Filter D 5.0

TABLE 8 12 features out of 51 were selected having a feature score of four using the feature scoring table for OPRD1.

pro_asa_vdw pro_hyd_moment pro_patch_hyd_5 pro_patch_pos

pro_asa_hyd pro_patch_hyd pro_patch_neg pro_net_charge

pro_asa_hph pro_patch_hyd_4 pro_patch_neg_5 pro_app_charge

TABLE 9 Enrichment Ratios of OPRD1 on the dataset consisting of features as shown in Table 8 with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 16.5 Filter B 1.0 11.2 Filter A 0.5

XGboost + GANs–RNN 37.5 Filter B 0.5 25.7 Filter D 0.5

TABLE 10 Enrichment Ratios of OPRK1 on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 11.0 Filter A 10.0 6.9 Filter B 0.5

XGboost + GANs–RNN 27.6 Filter A 1.0 21.0 Filter D 0.5

TABLE 11 5 features out of 50 were selected having a feature score of four
using the feature scoring table for OPRK1.

pro_asa_vdw pro_hyd_moment pro_patch_neg_1

pro_asa_hyd pro_patch_hyd_5
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selection filter A, the XGBoost + GANs–RNN framework

predictions provided the maximum enrichment ratio of 30.1.

4 Discussion

The Big Data analytics research outcomes in this study suggest

that four proteins ADORA2A, ADRB2, OPRK1, and OPRD1, and

their binding conformations considered in this work do possess

similar global properties that can be leveraged to predict whether

they will be more likely to bind their ligands than other

conformations. The enrichment factors obtained with the best

approaches are about 10 to about 40 times better than what would

be available with a random selection of protein conformations for

docking. For three out of the four targets of interest here

(i.e., ADORA2A, OPRK1, and OPRD1), the physico-chemical

features that are most associated with a high propensity to be

selected for binding by the ligands are the water accessible surface

area (MOE descriptor pro_asa_vdw), the hydrophobic surface area

(MOE descriptor pro_asa_hyd) and the hydrophobicity moment

(MOE descriptor pro_hyd_moment). That these properties, which

are global and not limited to the binding sites, are common to the

important descriptor of all proteins point to a dual role of exposure

to solvent and hydrophobicity as globally driving the capacity of

proteins to bind, or not, their ligands. Note that this work is not a

structure-activity relationship studies, i.e., we do not at this point

give a range of values for these proteins that would be associated

with ligand binding and a range of values that would be associated

with non-ligand binding.

The fourth protein target that was used here, ADRB2, can

also be analyzed by deep learning approaches to identify the

ligand binding conformations about 24 times better than a

random selection of conformations. Yet, that one protein

target yields different physico-chemical features than the

other three proteins used here, although the general role of

surface hydrophobicity and electrostatics (negatively-

charged regions, precisely) is conserved. We do not yet

know if this difference observed between ADRB2 and the

other proteins is a result of different actual physicochemical

mechanisms involved in ligand binding, or if this is an

artifact of the data and of specific issues with class

imbalance from the MD trajectories of this target.

Nonetheless, the fact that the apo-proteins’ global physico

chemicals properties may—to an extent—predict the ligand-

binding character of conformations is remarkable. Naturally,

this does not mean that only global protein properties are

“holding” the keys to the conformational selection

mechanisms. This work will have to be continued and

repeated with features that are specific to the binding sites’

conformations rather than describing the global protein

structure.
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