
Analysis of metabolic
disturbances attributable to
sepsis-induced myocardial
dysfunction using metabolomics
and transcriptomics techniques

Xiaonan Jia1, Yahui Peng1, Xiaohui Ma1, Xiaowei Liu2,
Kaijiang Yu1* and Changsong Wang3*
1Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University,
Harbin Medical University, Harbin, China, 2Departments of Critical Care Medicine, The Fourth Affiliated
Hospital of Harbin Medical University, Harbin Medical University, Harbin, China, 3Departments of
Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin,
China

Background: Sepsis-induced myocardial dysfunction (SIMD) is the most

common and severe sepsis-related organ dysfunction. We aimed to

investigate the metabolic changes occurring in the hearts of patients

suffering from SIMD.

Methods: An animal SIMD model was constructed by injecting

lipopolysaccharide (LPS) into mice intraperitoneally. Metabolites and

transcripts present in the cardiac tissues of mice in the experimental and

control groups were extracted, and the samples were studied following the

untargeted metabolomics–transcriptomics high-throughput sequencing

method. SIMD-related metabolites were screened following univariate and

multi-dimensional analyses methods. Additionally, differential analysis of

gene expression was performed using the DESeq package. Finally,

metabolites and their associated transcripts were mapped to the relevant

metabolic pathways after extracting transcripts corresponding to relevant

enzymes. The process was conducted based on the metabolite information

present in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

Results: One hundred and eighteen significant differentially expressed

metabolites (DEMs) (58 under the cationic mode and 60 under the anionic

mode) were identified by studying the SIMD and control groups. Additionally,

3,081 significantly differentially expressed genes (DEGs) (1,364 were down-

regulated and 1717 were up-regulated DEGs) were identified in the
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transcriptomes. The comparison was made between the two groups. The

metabolomics–transcriptomics combination analysis of metabolites and

their associated transcripts helped identify five metabolites (D-mannose,

D-glucosamine 6-phosphate, maltose, alpha-linolenic acid, and adenosine

5′-diphosphate). Moreover, irregular and unusual events were observed

during the processes of mannose metabolism, amino sugar metabolism,

starch metabolism, unsaturated fatty acid biosynthesis, platelet activation,

and purine metabolism. The AMP-activated protein kinase (AMPK) signaling

pathways were also accompanied by aberrant events.

Conclusion: Severe metabolic disturbances occur in the cardiac tissues of

model mice with SIMD. This can potentially help in developing the SIMD

treatment methods.
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1 Introduction

Sepsis is defined as a life-threatening organ dysfunction that

is caused by an overreaction of the body to infection (Singer et al.,

2016). It is a serious global problem and the most common cause

of in-hospital mortality (Rudd et al., 2020). Sepsis-induced

myocardial dysfunction (SIMD) is the most common and

severe sepsis-related organ dysfunction. SIMD induces or

exacerbates dysfunction in other organs. The prognosis of

patients with SIMD is poor, resulting in an extremely high

mortality rate (70–90%) (Martin et al., 2019; Ravikumar et al.,

2021). It is known that the mechanisms underlying SIMD involve

the release of circulating myocardial inhibitory substances, the

release of nitric oxide and reactive oxygen species, abnormalities

in calcium handling, downregulation of adrenergic pathways,

and mitochondrial dysfunction (Hollenberg and Singer, 2021;

Yang and Zhang, 2021). However, these abnormalities fail to

explain the mechanisms underlying the onset and progression of

SIMD. Circulating troponin and NT-proBNP exhibit good

specificity and sensitivity in the cases of myocardial ischemic

disease and cardiac failure. However, similar roles are not

observed in the case of SIMD (Hollenberg and Singer, 2021).

At present, a viable biomarker for SIMD is yet to be identified.

Metabolomics allows the exploration of small molecule

metabolites in blood or tissues. Results obtained by

conducting qualitative and quantitative analyses revealed that

the relationship between metabolites and physiological/

pathological changed over time (Rochfort, 2005; Patti et al.,

2012). Metabolites are the end products of the biochemical

activities occurring in the body. Therefore, metabolomics is

the omics study that is closest to phenotyping. A number of

metabolomics-oriented studies have been conducted to

understand the pathogenesis, progression, and patient

prognosis of sepsis (Neugebauer et al., 2016; Ping et al., 2019;

Ping et al., 2021). However, there is a lack of such studies on

SIMD. Additionally, transcriptomics facilitates the investigation

of gene function and gene structure at a global level to identify

differentially expressed genes (DEGs) within cells, tissues, or

individuals under different physiological or pathological states

(Velculescu et al., 1995; Virlon et al., 1999; Morris, 2009).

However, metabolomics solely may lead to incomplete

findings. Therefore, metabolomics–transcriptomics

combination analysis can be performed to accurately identify

key metabolites, hub genes, and metabolic pathways associated

with the ‘cause’ and ‘result’ dimensions (Rochfort, 2005; Griffin,

2006).

Mannose metabolism, amino sugar metabolism, starch

metabolism, unsaturated fatty acid biosynthesis, platelet

activation, and purine metabolism have some studies in sepsis

(Gao et al., 2015; Bakalov et al., 2016; Hwang et al., 2019; She

et al., 2022). However, there are no relevant studies in Sepsis-

induced myocardial dysfunction (SIMD). The AMPK signaling

pathway has some studies in SIMD (Song et al., 2020;Wang et al.,

2021).

We aimed to investigate metabolite changes occurring in the

heart tissues of mice suffering from SIMD. The SIMD-related

metabolites and metabolic pathways were identified and studied

by conducting untargeted metabolomics–transcriptomics

combination analysis. Overall, the findings of this study

provide new insights into the processes associated with the

pathogenesis, early diagnosis, and treatment of SIMD.

2 Methods

2.1 Animal model establishment

Male C57BL/6 mice (age: 6–8 weeks) were purchased from

Charles River (Beijing, China). The mice under study had free

access to food and water. The mice belonging to the experimental

group were administered intraperitoneal injections of

lipopolysaccharide (LPS) (20 mg/kg) once to induce SIMD.
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The volume of saline that was administered intraperitoneally to

the mice belonging to the control group was the same as the

volume of LPS injections. The mice were subjected to conditions

of echocardiography after 6 hours of injection, and 2D and

M-mode echocardiographic measurements were taken under

these conditions. A high-resolution in vivo imaging system

(VIVID E9, GE, United States) was used to record the data.

The left ventricular ejection fraction (LVEF), left ventricular end-

diastolic dimension (LVEDd), left ventricular end-systolic

dimension (LVESd), and left ventricular fractional shortening

FIGURE 1
The cardiac function of SIMDmice decreased significantly. (A) Representative images of mice heart examined by echocardiography. (B)EF%, FS
% and LVESd (n = 6, p < 0.001) (C)Tn-I in serum were measured by ELISA assays (n = 6, p < 0.01).
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(LVFS) functioned as the measurement indicators. A short-axis

view of the heart was obtained from the parasternal approach.

The ejection fraction was also calculated. The formula for

calculation is as follows:

(LVEDd3 − LVESd3)/LVEDd3 × 100

The ejection fractional shortening was calculated as follows:

(LVEDd − LVESDd)/LVEd × 100

Subsequently, the whole heart tissue samples were harvested

following the execution of the mice. The blood in the heart

chamber was rinsed with PBS. The samples were stored at a

temperature of –80°C for subsequent use. All necessary

permissions were obtained from the Ethics Committee of

Harbin Medical University, and all procedures met the

relevant regulatory standards.

2.2 Enzyme-linked immunosorbent assay

Commercially available enzyme-linked immunosorbent

assay (ELISA) kits (Meimian Biotechnology, Jiangsu, China)

were used to determine the levels of Tn-I. The instructions

FIGURE 2
The multidimensional results in positive and negative ionization modes are shown in this figure. (A,B) OPLS-DA score plot and OPLS-DA
validation plot intercepts in positive ionization modes: the Treated group vs. the Control group. R2Y = (0.0, 0.9638), Q2 = (0.0,−0.139). (C,D)OPLS-
DA score plot and OPLS-DA validation plot intercepts in negative ionization modes: the Treated group vs. the Control group. R2Y = (0.0, 0.8281),
Q2 = (0.0,−0.2474).
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provided by the manufacturer were followed to conduct the

studies.

2.3 Untargeted metabolomics studies

Heart tissue samples collected from mice belonging to the

experimental group (n = 6) and the control group (n = 6) were

slowly thawed at 4°C. Following this, the samples were treated

with a pre-chilled solution consisting of methanol, water, and

acetonitrile (methanol:acetonitrile:water = 2:2:1, v/v). The

solution was vortexed, after which it was sonicated over a

period of 30 min at a low temperature. Subsequently, the

sample solution was allowed to stand at –20°C for 10 min,

following which it was centrifuged at 14,000 g over a period

of 20 min at 4°C. Subsequently, the supernatant was extracted,

and it was dried under conditions of vacuum. The samples were

analyzed using the mass spectrometry technique.

Analyses were performed using an UHPLC (1,290 Infinity

LC, Agilent Technologies) coupled to a quadrupole time-of-

flight (AB Sciex TripleTOF 6,600). For HILIC separation,

samples were analyzed using a 2.1 mm × 100 mm ACQUIY

UPLC BEH 1.7 µm column (waters, Ireland). In both ESI

positive and negative modes, the mobile phase contained

A = 25 mM ammonium acetate and 25 mM ammonium

hydroxide in water and B = acetonitrile. The gradient was

85% B for 1 min and was linearly reduced to 65% in 11 min,

and then was reduced to 40% in 0.1 min and kept for 4 min,

and then increased to 85% in 0.1 min, with a 5 min re-

equilibration period employed. For RPLC separation, a

2.1 mm × 100 mm ACQUIY UPLC HSS T3 1.8 µm column

(waters, Ireland) was used. In ESI positive mode, the mobile

phase contained A = water with 0.1% formic acid and B =

acetonitrile with 0.1% formic acid; and in ESI negative mode,

the mobile phase contained A = 0.5 mM ammonium fluoride

in water and B = acetonitrile. The gradient was 1%B for

1.5 min and was linearly increased to 99% in 11.5 min and

kept for 3.5 min. Then it was reduced to 1% in 0.1 min and a

3.4 min of re-equilibration period was employed. The

gradients were at a flow rate of 0.3 ml/min, and the column

FIGURE 3
In two ionization modes, one-dimensional, and multi-dimensional analysis results of differential metabolites. (A)significant differences in
metabolite expression in positive ionization modes. (B)significant differences in metabolite expression in negative ionization modes.
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temperatures were kept constant at 25°C. A 2 µL aliquot of

each sample was injected.

The ESI source conditions were set as follows: Ion Source

Gas1 (Gas1) as 60, Ion Source Gas2 (Gas2) as 60, curtain gas

(CUR) as 30, source temperature: 600°C, IonSpray Voltage

Floating (ISVF) ± 5500 V. In MS only acquisition, the

instrument was set to acquire over the m/z range

60–1,000 Da, and the accumulation time for TOF MS scan

was set at 0.20 s/spectra. In auto MS/MS acquisition, the

instrument was set to acquire over the m/z range

25–1,000 Da, and the accumulation time for product ion scan

was set at 0.05 s/spectra. The product ion scan is acquired using

information dependent acquisition (IDA) with high sensitivity

mode selected. The parameters were set as follows: the collision

energy (CE) was fixed at 35 V with ±15 eV; declustering potential

(DP), 60 V (+) and −60 V (−); exclude isotopes within 4 Da,

candidate ions to monitor per cycle: 10.

The extracted data were used for metabolite structure

identification and subjected to data pre-processing techniques.

Subsequently, the data quality was evaluated and analyzed.

2.4 Pre-processing of the metabolomics
data

The MzXML files were generated from the raw MS data

(wiff.scan files). ProteoWizard MSConvert was used for data

conversion. Following this, the data were imported into the free

XCMS software. The parameters for peak pick up were

determined (centWave: m/z, 25 ppm; prefilter, c (10,100);

peak width: c (10,60)). The parameters for peak grouping

were also set (minfrac: 0.5; bw: 5; mzwid: 0.025). The isotopes

and adducts were annotated using the Collection of Algorithms

of Metabolite pRofile Annotation (CAMERA). The extracted ion

features consisted of variables that were characterized by >50% of

the non-zero measurements in at least one of the sets recorded.

The accuracy of the m/z values (<25 ppm) and the mass

spectroscopy–mass spectroscopy (MS/MS) spectral data were

compared with those present in an internal database

developed using authentic standards to analyze the metabolites.

2.5 Transcriptomics

The heart tissues of the mice belonging to the experimental and

control groups were used for the extraction of total RNA. The

process of sample extraction was performed using TRIzol. A

bioanalyzer (Agilent 2,100) was used to determine the purity and

concentration of the extracted RNA. The ribosomal RNA (rRNA)

Removal Kit was used for ribosomal RNA removal. The rest of the

total RNA samples were subjected to conditions of ionization to

break down the samples into fragments that were 200–300 bp long.

A random primer consisting of six bases and reverse transcriptase

were used to synthesize the first complementary DNA (cDNA)

strand. RNA was used as a template during the process.

Subsequently, the second strand was generated using the first

cDNA strand as the template. This process was followed to

generate a specific library. The polymerase chain reaction (PCR)

amplification process was used to increase the number of fragments

in the library following the process of library construction.

Subsequently, based on the library fragment size, the library

selection process was conducted (library size: 450 bp). The

quality of the libraries was determined using the Agilent

2,100 Bioanalyzer. This same system was also used to test the

effective and total library concentrations. The amount of data

required for the construction of the library and the effective

concentration of the library were analyzed. The mixing of the

libraries characterized by different index sequences was based on

the results. The mixed libraries were diluted to 2 nM and deformed

using alkali to form single-stranded libraries. The libraries were

analyzed using the paired-end (PE) sequencing method (Next-

Generation Sequencing (NGS); Illumina NovaSeq

6,000 sequencing platform) post the process of extraction and

purification of RNA and library construction.

All raw data were filtered to obtain high-quality sequences.

These sequences (Clean Data) were aligned with the reference

genome. HISAT2 was used for sequence alignment, and this

software could be accessed through http://ccb.jhu.edu/software/

hisat2/index.shtml. The expression level of each gene was

determined based on the alignment results. Subsequently,

differential analysis of sample genes was performed using

DESeq to identify DEGs satisfying the criteria of |

log2FoldChange| > 1 and p < 0.05. The ggplots2 package was

used to plot the volcano plots for the DEGs.

2.6 Metabonomics–transcriptomics
combination analysis

The differentially expressed metabolites (DEMs) and gens

(DEGs) were extracted. The gens corresponding to the relevant

enzymes were also extracted. The relevant data were obtained by

analyzing the metabolite information presented in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database. This

database can be accessed through the website https://www.kegg.

jp/dbget-bin/www_bfind?compound. Finally, DEMs and their

associated DEGs were mapped with the corresponding

metabolic pathways.

2.7 Statistical analysis

All statistical analyses were performed using SPSS 19.0, and

the plots were generated using GraphPad Prism 8.0 (statistically

significant results: p < 0.05). The metabolite-related data were

analyzed using ropls (R package). Multiple algorithms were used
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to realize multivariate data analysis. The orthogonal partial least

squares–discriminant analysis (OPLS–DA) and pareto-scaled

principal component analysis (PCA) methods were used for

data analysis. The 7-fold cross-validation method was used,

and response permutation tests were conducted to determine

the robustness of the model. For each variable associated with the

OPLS–DA model, the variable importance in the projection

(VIP) value was calculated. This helped determine the

contribution of the variables toward the classification process.

The student’s t-test was conducted for all metabolites

characterized with VIP values > 1. The significance of each

metabolite was determined by conducting the tests at the

univariate level.

3 Results

3.1 Sepsis-induced myocardial
dysfunction model

Results obtained by conducting echocardiography tests

suggested that the overall cardiac function of the members of

the experimental group, and EF%, FS% recorded for the

experimental group were significantly lower than those

recorded for the control group (p < 0.001) (Figures 1A,B).

LVESd recorded for the experimental group is significantly

higher than the control group (p < 0.001) (Figure 1B). It was

also observed that the circulating Tn-I level in the experimental

FIGURE 4
Bioinformatics analysis of RNA-seq data. (A) Sample correlation test. (B)PCA of mRNAs. (C) Volcano plot of mRNAs. C-group the control group
(n = 6). T-group the SIMD group (n = 6).
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FIGURE 5
Differential expression of metabolites and related transcripts. (A)Differential expression of metabolites and related transcripts in positive
ionization modes. (B) Differential expression of metabolites and related transcripts in negative ionization modes.
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group was significantly higher than the Tn-I level recorded for

the control group (p < 0.05) (Figure 1C). These indicated the

successful establishment of the SIMD model.

3.2 Metabolomics validation of the model

All the identified metabolites were analyzed using a

multi-dimensional statistical analysis method. The

OPLS–DA permutation test plot and the OPLS–DA score

plot generated under both the positive and negative ion

modes are shown in the Figure 2. It was observed that the

model could be used to differentiate between one group of

samples from the other, and overfitting could be avoided.

This indicated the good robustness of the model.

3.3 Identification of differentially
expressed metabolites

The results obtained under the positive and negative ion

modes were combined, and a total of 1,027 metabolites were

identified. Of all these samples, 390 metabolites were

identified under the positive ion mode, and

637 metabolites were identified under the negative ion

mode. Univariate and multi-dimensional analyses methods

were used to screen 118 DEMs (criteria for OPLS–DA:

VIP >1; p < 0.05). Among these, 58 significant DEMs

were identified under the cationic mode, and

60 significant DEMs were identified under the anionic

mode. The results obtained under these two modes are

presented in the Figure 3.

3.4 Transcriptomics analysis of sepsis-
induced my

ocardial dysfunction
High-throughput transcriptome analysis of the heart tissues

in the experimental and control groups was performed. The

correlation coefficients between the samples ranged from 0.8 to 1,

indicating an extremely strong correlation. PCA results indicated

high intra-group similarity between the samples in the

experimental and control groups. Of the 3,081 DEGs

recorded, down-regulation was observed for 1,364 DEGs, and

up-regulation was observed for 1717 DEGs (Figure 4).

FIGURE 6
Metabolites with significant differences between the two groups.
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3.5 Metabolomics–transcriptomics
combination analysis

DEMs obtained under the negative and positive ion modes

and the transcriptome data were subjected to conditions of the

metabolomics–transcriptomics combination analysis method.

The change in the fold of the top 20 DEM–DEG pairs is

shown in the Figure 5. Finally, multiple common metabolites

were identified by analyzing the mice in both groups. The

common metabolites were identified to be D-mannose,

D-glucosamine 6-phosphate, maltose, alpha-linolenic acid, and

adenosine 5′-diphosphate (Figure 6).

3.6 Differentially expressed metabolites
and differentially expressed genes:
Analysis of the kyoto encyclopedia of
genes and genomes pathway

The DEMs and DEGs were mapped simultaneously to the

KEGG pathway database to identify the common

pathways associated with the DEMs and DEGs

(Supplementary Tables S1–S9). The results are presented

in the Table 1.

4 Discussion

Metabolomics allows for a more precise exploration of

disease diagnosis and pathogenesis. The

metabolomics–transcriptomics combination analysis method

used helped us to identify significant DEMs between the two

groups, including D-mannose, maltose, D-glucose 6-phosphate,

alpha-linolenic acid, and adenosine 5′-diphosphate.

Additionally, metabolite-related metabolic pathways were also

investigated.

D-mannose, a common monosaccharide, is a digestive

product of polysaccharides and glycoproteins. However, the

amount of mannose present in the daily diet is significantly

small. Hexokinase converts mannose to mannose-6-

phosphate, which is then converted to fructose 6-phosphate

by mannose phosphate isomerase. This eventually participates

in the glycolytic pathway to produce lactic acid, glucose, and

pentose (Wood and Cahill, 1963; Ganda et al., 1979). Elevated

lactate levels indicate cellular dysfunction in patients with

sepsis. Hyperlactataemia is a sign of severe sepsis and results

in high mortality (Singer et al., 2016). Mannan-binding lectin

(MBL) is a crucial complement component in the human body

and is an important part of the processes associated with

innate immunity. Infection caused by pathogenic

microorganisms induces the secretion of MBL, which

specifically recognizes and binds to mannose on the surface

of microorganisms. This triggers complement activation and

mediates the process of generation of inflammatory response

(Fujita, 2002). It has been reported that in the sera of

individuals with sepsis attributable to Gram-negative

bacterial infections, MBL recognizes and binds to mannose

on LPS to activate the complementary MBL pathway and

initiate the body’s innate immunity to participate in the

inflammatory response (Fujita, 2002). This results in a

significant reduction in the MBL levels. The results

reported herein reveal that the mannose levels in the heart

tissues of mice with LPS-induced SIMD were significantly

higher than the mannose levels recorded for the control

group. Additionally, the expression level of Hk2, a gene

that mediates the process of D-mannose metabolism, was

significantly high. A large amount of D-mannose was

deposited in cardiac tissues, and this activated MBL to

TABLE 1 Pathways of metabolites and related transcripts.

DEMs DEGs Pathway

D-Mannose Hk2 Fructose and mannose metabolism

D-Glucosamine 6-phosphate Gnpda2Hk2; Gnpnat1 Amino sugar and nucleotide sugar metabolism

Maltose Gaa Starch and sucrose metabolism

Amy1 Carbohydrate digestion and absorption

Alpha-Linolenic acid Acot1 Biosynthesis of unsaturated fatty acids

Adenosine 5′-diphosphate Prkci Platelet activation

Igf1r; Pik3ca AMPK signaling pathway

Dguok Purine metabolism
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trigger innate immune responses and induce an inflammatory

response.

D-glucosamine 6-phosphate, a type of glucosamine, is an

important energy source for many bacteria present in the

body. It is also an important component of bacterial cell walls

(Matsuura, 2013). Moreover, D-glucosamine 6-phosphate is

also associated with the virulence of some bacteria (Kawada-

Matsuo et al., 2016).

Maltose is a disaccharide that is produced in the body

during starch catabolism. It can be metabolized to form two

glucose molecules. Researchers have previously used

magnetic resonance imaging-based metabolomics

techniques to study conditions of sepsis. The results

revealed that the maltose content in the metabolites of

patients with sepsis was significantly lower than the

maltose contents of patients not suffering from sepsis.

However, no such changes were observed in the sham-

operated and control groups (Bakalov et al., 2016). This

suggested that the significant reduction in the maltose

content was associated with the chronic depletion of the

long-term inflammatory response. We used an early-state 6 h

animal model to conduct the studies. The experimental

results suggested a significant increase in the maltose

content. However, whether the maltose content changes as

sepsis progresses needs to be further investigated.

Alpha-linolenic acid (ALA) is a type of omega-3 essential

fatty acid. It is a polyunsaturated fatty acid with three double

bonds. It has been previously reported that ALA and its

metabolites significantly inhibit the generation of LPS-induced

inflammatory response, and their action results in a decrease in

the rate of cellular reactive oxygen species (ROS) and NO

production. These could also inhibit the expression of iNOS

and TNF-α in cells and reduce the mortality in mice suffering

from endotoxin-mediated septic shock (Kumar et al., 2016).

Mitochondrial dysfunction is an adverse mechanism

associated with the cardiac dysfunction observed in patients

with sepsis (Ravikumar et al., 2021). It results in the inability

of the body to synthesize sufficient amounts of adenosine

triphosphate (ATP) to provide energy for the heart (Wasyluk

et al., 2021). Insufficient ATP synthesis also results in a reduction

in the adenosine diphosphate (ADP) content in cardiac tissues.

This result agrees with the results reported herein. It was also

observed that the amount of adenosine 5′-diphosphate in the

heart tissues of mice in the experimental group was significantly

lower than the content of adenosine 5′-diphosphate in the heart

tissues of mice belonging to the control group.

DEMs and DEGs were linked to mannose metabolism,

aminoglycan metabolism, starch metabolism, unsaturated fatty

acid biosynthesis, platelet activation, purine metabolism, and

AMP-activated protein kinase (AMPK) signaling pathways.

AMPK significantly affects the process of cellular energy

homeostasis (Carling et al., 2011). Stressors such as

hypoglycemia, hypoxia, and ischemia that remarkably deplete

ATP can activate this pathway (Canto and Auwerx, 2010; Hardie,

2011; Mihaylova and Shaw, 2011), which positively regulates the

signaling pathways that replenish cellular ATP supply.

There are some limitations to this study. Although LPS is an

important myocardial inhibitory factor, the predisposing factors

for cardiac dysfunction are not limited to Gram-negative

bacteria-induced sepsis. Therefore, we will further explore the

metabolic alterations and pathogenic mechanisms associated

with Gram-positive bacteria-induced SIMD in the future.

5 Conclusion

In summary, significant changes in metabolites occur in

the cardiac tissues of patients suffering from SIMD. These

changes are primarily associated with mannose metabolism,

aminoglycan metabolism, starch metabolism, unsaturated

fatty acid biosynthesis, platelet activation, purine

metabolism, and AMPK signaling pathways. The problems

associated with the aberrant metabolic events can be

addressed to help improve the prognoses of patients with

SIMD and provide new insights into the processes associated

with diagnosis and disease management.
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