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As an evolutionarily phenotypic conversion program, the epithelial-

mesenchymal transition (EMT) has been implicated in tumour deterioration

and has facilitated the metastatic ability of cancer cells via enhancing migration

and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin

malignancy globally. Most GC-associated mortality can be attributed to

metastasis. Recent studies have shown that EMT-related long non-coding

RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In

addition, lncRNAs are associated with EMT-related transcription factors and

signalling pathways. In the present review, we comprehensively described the

EMT-inducing lncRNA molecular mechanisms and functional perspectives of

EMT-inducing lncRNAs in GC progression. Taken together, the statements of

this review provided a clinical implementation in identifying lncRNAs as

potential therapeutic targets for advanced GC.
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Introduction

As the most frequently occurring malignancy worldwide, gastric cancer (GC) remains

the fifth most diagnosed tumour and the third primary cause of tumour-related death

(Sung et al., 2021). Approximately 1,089,103 people are diagnosed with GC worldwide

each year, of whom about 783,000 die from this disease (Rawla and Barsouk, 2019; Yang L.

et al., 2020). Asian countries, such as Japan, Mongolia, and Korea, show the highest

incidence rates, with an estimated incidence rate per 100,000 of 48.1, 47.2, and 39.7,

respectively (Morgan et al., 2022). GC is primarily divided into diffuse and intestinal types

based on their histological characters (Lauren, 1965). Anatomically the two main types of

GC are cardia and non-cardia subtypes. Additionally, the tumour, node and metastasis

(TNM) system are used to assess tumour stage, including the tumour infiltration degree

and size (T category), the lymph node status (N category), and the tumour distant

metastasis to other organs (M category) (Amin et al., 2017). The important risk factors of

the causes of GC are obesity (Kyrgiou et al., 2017), diabetes (Sona et al., 2018), smoking
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(Ladeiras-Lopes et al., 2008) and high salt intake (D’Elia et al.,

2012). Although several risk factors are described, Helicobacter

pylori infection-induced chronic inflammation is the most

important known risk factor for GC (Huang et al., 1998;

Uemura et al., 2001). The signs of GC in the early stage are

vague and can remain undetected for years. Therefore, most GC

patients are diagnosed late, often presenting tumour invasion or

metastasis (Blum et al., 2013). In primary GC, the 5-year survival

is 70%, whereas it is reduced to 32% amongst those with

metastatic GC (Howlader N et al., 2020). In recent years,

neoadjuvant chemotherapy, radiotherapy, and molecular-

targeted regimen have become the mainstay of GC treatment

(Digklia and Wagner, 2016; Song et al., 2017). Nevertheless,

locally advanced, and metastatic GC patients still have a somber

overall prognosis. Therefore, it is urgently necessary to further

identify potential therapeutic targets to enhance the prognosis of

patients with advanced GC.

Epithelial-mesenchymal transition (EMT) is a double-

edged sword. EMT is a normal physiological process

necessary for embryogenesis and wound healing. However,

EMT dysregulation is a pathological process that result in

cancer or fibrosis (Barriere et al., 2015; Yang J. et al., 2020).

Gastrulation is an embryonic development of single layers

embryo into three layers formation, of which the EMT is

considered to be an important component. (Trelstad et al.,

1967; Kim et al., 2017). EMT also provides a critical mechanism

for the re-epithelialization of tissue which contributes to wound

healing (Pastar et al., 2014). In addition, recent evidence has

proven that the aberrant activation of EMT is closely linked

with tumorigenesis, invasion, and metastasis of GC (Peng et al.,

2014; Huang et al., 2015). As a complicated process, tumour

metastasis mainly includes local invasion, intravasation,

transport, and extravasation, by which malignant cells leave

the primary tumour sites, sequentially colonize, and form

secondary tumours at adjoining or distant organs, leading to

GC-associated death (Yilmaz and Christofori, 2009). As a

biological program, EMT triggers the detachment of

polarized epithelial cells from neighbouring cells and

converts them into mesenchymal cells, in which tumour

cells forfeit epithelial polarity and transform into a

mesenchymal phenotype, playing crucial roles in tumour

invasion and metastasis (Kalluri and Weinberg, 2009).

Epithelial markers (E-cadherin and α-catenin) and

mesenchymal markers (N-cadherin, vimentin and

fibronectin) are examined to determine whether cancer cells

undergo the EMT (Zeisberg and Neilson, 2009). The GC

patients with mesenchymal phenotype facilitate GC cell

motility and metastasis and are correlated with advanced GC

stage, while intestinal phenotype is mainly distributed in those

at the early stage (Zheng et al., 2013). Accumulating evidence

has revealed that the worst prognosis is associated with GC

patients with EMTmolecular subtype (Cristescu et al., 2015; Oh

et al., 2018).

Non-coding RNAs (ncRNAs), including microRNAs

(miRNAs), long non-coding RNAs (lncRNAs), and circular

RNAs (circRNAs), can regulate the tumorigenesis of different

tumours (Chan and Tay, 2018). Among these, lncRNAs

dysregulation play an essential role in tumour metastasis and

are conducive to the EMT (Bhan et al., 2017; Wei et al., 2020;

Wang H. et al., 2021; Wang X. et al., 2021). Various lncRNAs are

identified to enhance the migration, invasion of GC cells and

promote the EMT process of GC (Gao et al., 2021; Li et al., 2022).

Therefore, targeting lncRNAs has become a promising

therapeutic regimen in patients with metastatic GC. In the

present review, we summarised the regulatory functions of

lncRNAs in the EMT-induced metastatic GC.

The characteristics andmechanismof
lncRNAs’ action in EMT-induced
metastasis

The first transcript sequence of lncRNAs was discovered in

eukaryotes. LncRNAs are longer than 200 nucleotides in length

and cannot be translated into proteins, and their primary

structure is nucleotide sequence. Most of the lncRNAs share

some similar features with messenger RNAs (mRNAs) and can

be spliced, capped and polyadenylated by RNA polymerase II

(Sun et al., 2018). In the past, traditional gene annotation filtered

out proteins with <100 amino acids and treated them as noise

(Wu et al., 2020). In recent years, research has revealed that

lncRNAs contain short open reading frames (sORFs) which

encode functional small peptides of approximately 100 amino

acids in length using proteomics and translation technology (Zhu

et al., 2018; Choi et al., 2019). These micro peptides resemble

coding and noncoding genes and function as tumour regulatory

factors to get involved in angiogenesis, signalling pathway

transduction and metabolism in promoting cancer progression

(Wu et al., 2020; Ye et al., 2020).

The functional activity of lncRNAs includes regulating

transcription of neighbouring and distant genes, affecting the

stability of mRNAs and interfering with signalling pathways

through their crosstalk with DNA, RNA and proteins (Statello

et al., 2021). Based on genomic localization and transcriptional

orientation, lncRNAs are divided into intergenic lncRNAs,

intronic lncRNAs, exonic lncRNAs, sense lncRNAs, and

antisense lncRNAs (Ma et al., 2013). Based on the subcellular

localization, lncRNAs are classified as nuclear lncRNAs and

cytoplasmic lncRNAs (Kapranov et al., 2007). Nuclear

lncRNAs mainly mediate the transcription (Sun et al., 2018),

and cytoplasmic lncRNAs commonly participate in post-

transcriptional regulation and function as miRNA sponges

(Du et al., 2016).

LncRNAs are a highly heterogeneous group of epigenetic

regulators that can mediate EMT-induced metastasis utilizing

diverse mechanisms. First, lncRNAs can regulate gene expression
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at chromatin modification, transcription processing, and post-

transcriptional processing (Dykes and Emanueli, 2017).

LncRNAs recruit chromatin remodelling complexes to specific

sites and coordinate genome activity by controlling chromosome

structure and affecting histone status and DNA methylation

status (Beckedorff et al., 2013; Böhmdorfer and Wierzbicki,

2015), which is significantly associated with the overall suvival

and disease-specific survival of GC (Dai J. et al., 2021). After

transcription, most lncRNAs are transcribed by RNA polymerase

II and share some similarities with mRNAs, including 5′ end
capping, 3’ end polyadenylating, splicing, and intracellular

transporting (Canzio et al., 2019). Second, transcription

factors (TFs) play an essential role in the development of GC.

LncRNAs have been implicated in gene transcription through

biding to EMT-inducing TFs (Long et al., 2017). The lncRNAs -

TFs interaction directly regulates gene transcription via inducing

the targeted protein degradation by phosphorylation and

ubiquitination (Lamouille et al., 2014; Xiu et al., 2019).

Thirdly, some identified lncRNAs shows oncogenic properties,

acting as competing endogenous RNAs (ceRNAs) to sponge

miRNA at the post-transcriptional level, as consequently, the

interaction with targeted mRNA, thus increasiong the expression

of oncogenic mRNA to facilitate the cancer occurrence and

progression (Arun K. et al., 2018; Liu H. et al., 2018; Qi et al.,

2020).

LncRNAs regulate EMT-induced
metastasis bymediating the signalling
pathways

EMT is induced by a variety of signalling pathways, including

TGF-β, BMP, Wnt-β-catenin, NOTCH, Shh, and receptor

tyrosine kinases, and many feedback activation/inhibition

mechanisms have been demonstrated (Deshmukh et al., 2021).

In the process above, lncRNAs regulate the EMT process in GC

by mediating various signalling pathways, including Wnt, PI3K/

AKT, Hippo, MEK/ERK, and Notch1 (Table 1).

Wnt is a secretory glycoprotein that acts by autocrine or

paracrine. After secretion, Wnt can bind to cell surface-specific

receptors, leading to β-catenin accumulation via phosphorylating

and dephosphorylating a series of downstream proteins. As a

multifunctional protein, β-catenin reacts with E-cadherin at the

cell junctions and is involved in the formation of adhesive bonds.

Free β-catenin can reach the nucleus and get involved in gene

expression, while its dysfunction or activation can trigger

tumorigenesis. The primary elements of the Wnt signalling

pathway consist of secreted protein Wnt family,

transmembrane receptor Frizzled family, casein kinase (CK1),

Dishevelled (DVL), adenomatous polyposis coli (APC), Axin,

glycogen synthase kinase 3-beta (GSK3β), β-catenin and TF

transcription factor T-cell factor/lymphoid enhancer-binding

TABLE 1 LncRNAs and their targeting signalling pathways in the regulation of EMT-induced GC metastasis.

Signalling
pathway

lncRNA Expression Target Function References

Wnt/β-catenin H19 Up β-catenin Promotes of H19 on GC cell EMT and metastasis Liu et al. (2021)

TTTY15 Up Wnt1 Promotes proliferation, migration, invasion, EMT Zheng et al. (2022)

ZEB2-AS1 Up ZEB2 Increases the proliferation, migration, invasion, and EMT and
resistance to chemotherapeutic reagents

Wang et al. (2019a)

LOC400043 Down β-catenin Impairs cell cycle, proliferation, and EMT ability and induces
apoptosis

Jafarzadeh and Soltani,
(2020)

DLGAP1-AS2 Up Six3, Wnt1 Improves the malignancy of GC Lu et al. (2021)

HOXC-AS1 Up eIF4AIII Promotes the proliferation and the EMT process and inhibit
apoptosis

Chao et al. (2020)

LINC01225 Up — promoted EMT and malignant progression of GC Xu et al. (2019)

ZFAS1 Up NKD2 migration, invasion, EMT and resistance to chemotherapeutic
reagents

Xu et al. (2018b)

GSK-3β/β-catenin SNHG20 Up EZH2 Promotes invasion capability and EMT in the GC Liu et al. (2017)

PI3K/AKT TM4SF1-AS1 Up M4SF1 Promotes cancer cell proliferation, invasion and the EMT He et al. (2021a)

TNK2- AS1 Up miR-125a-5p Promotes the malignant behaviours of GC cells AGS Guo et al. (2022)

PI3K/AKT/mTOR XLOC_006753 Up — Promotes MDR GC cell migration through enhancing EMT Zeng et al. (2018)

TGF-β LINC00665 Up — Promotes GC cell proliferation, invasion, and metastasis Zhang and Wu, (2021)

SGO1-AS1 Down PTBP1 Prevents the EMT and metastasis Huang et al. (2021)

MEK/ERK AL139002.1 Up miR-490-3p/
HAVCR1

Regulates EMT and metastasis Chen and Zhang,
(2021)

Hippo LincRNA-p21 Down YAP knockdown correlates with higher invasion depth grade and
induces EMT

Ying et al. (2017a)

Notch1 SNHG1 Up DCLK1 Enhances the EMT process in GC cells Liu et al. (2020a)
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factor (TCF/LEF) family (MacDonald et al., 2009; Zhan et al.,

2017; Albrecht et al., 2021).

LncRNA H19 is increased in different malignancies, and it

functions as an oncogene. H19 is overexpressed in GC and

associated with poor prognosis. H19 can transfer β-catenin
into the nucleus and activate Wnt/β-catenin signalling,

facilitating EMT of GC cell (Liu et al., 2021). LncRNA ViM

antisense RNA 1 (VIM-AS1) is highly expressed in GC and

associated with prognostic outcomes. VIM-AS1may enhance cell

migration, invasion, and EMT by mediating frizzled 1(FDZ1),

and activating the Wnt/β-catenin pathway (Sun et al., 2020). The

expression of lncRNA Zinc finger E-box-binding homeobox two

antisense RNA 1 (ZEB2-AS1) is up-regulated in GC specimens,

down-regulated of ZEB2-AS1 can suppress the proliferation,

EMT, and Wnt/β-catenin signalling (Wang F. et al., 2019).

LncRNA testis-specific transcript, Y-linked 15 (TTTY15)

(Zheng et al., 2022), lncRNA DLGAP1 antisense RNA 2

(DLGAP1-AS2) (Lu et al., 2021), and lncRNA HOXC cluster

antisense RNA 1(HOXC-AS1) (Zhou C. et al., 2020) are also

overexpressed and can regulate the Wnt/β-catenin signalling

pathway to promote EMT in GC.

GSK-3β is a serine/threonine-protein kinase. In the absence

of Wnt signalling, phosphate groups can be added to n-terminal

serine/threonine residues of β-catenin by GSK-3β. After covalent
modification by β-TRCP ubiquitination, the phosphorylated β-
catenin is degraded (Stamos and Weis, 2013). LncRNA small

nucleolar RNA host gene 20 (SNHG20) acts as an oncogene in

GC. The expressions of E-cadherin and p21 can be markedly

suppressed when SNHG20 is overexpressed in MKN45 and

BGC-823 cells via binding to the enhancer of zeste homolog 2

(EZH2) and mediating the GSK-3β/β-catenin signalling

pathway, and SNHG20 can be a therapeutic target for GC

(Liu et al., 2017).

The AKT, also called protein kinase B, signalling pathway is

involved in the molecular mechanisms underlying many cancers,

which plays a vital role in tumor cell proliferation, metastasis and

drug resistance, lncRNAs can regulate the relative expressions of

key genes in the phosphoinositide 3-kinase (PI3K)/AKT pathway

(Peng et al., 2017; Lin et al., 2020). The PI3K/Akt signalling

pathway can impact the EMT in various manners to alter the

aggressiveness of cancer (Xu et al., 2015). GC tissues and cells

exhibit increased expression of lncRNA Transmembrane four

superfamily 1-antisense 1 (TM4SF1-AS1). However, the

proliferation, invasion, EMT and enhanced apoptosis of

cancer cells can be inhibited when TM4SF1-AS1 is depleted.

The underlying mechanism is associated with the suppression of

TM4SF1 and PI3K-AKT signalling pathways (He C. et al., 2021).

Transforming growth factor-β (TGF-β) family is a group of

structurally related proteins, is involved many cellular functions,

including EMT and migration, and many human diseases,

including vascular diseases, autoimmune disorders, and

carcinogenesis (Syed, 2016). LncRNA Shugoshin-like protein

1-antisense 1 (SGO1-AS1) facilitates TGF-β1/2 mRNA decay

by competitively binding to the PTBP1 protein, leading to

impaired TGF-β production, and preventing EMT and

metastasis (Huang et al., 2021). Extracellular signal-regulated

kinase (ERK) cascade can regulates proliferation, differentiation,

survival, and apoptosis of cells, the mitogen extracellular signal-

regulated kinase (MEK) functions as an upstream essential

protein of ERK (Liu W. et al., 2015). LncRNA AL139002.1 is

highly expressed in GC cells, and lncRNA AL139002.1/miR-490-

3p/HAVCR1 functions critically in GC by mediating the MEK/

ERK signalling (Chen and Zhang, 2021). The Hippo pathway can

mainly restrict adult tissue growth and regulate cell proliferation,

differentiation, and migration in developing organs. In addition,

abnormal cell growth and neoplasia are observed when the

Hippo pathway is dysregulated (Meng et al., 2016).

LINC00649 acts as an oncogene to promote the EMT by

targeting the miR-16-5p/YES-associated protein 1 (YAP1)/

Hippo signalling pathway (Wang H. et al., 2021).

The Notch family consists of four highly conserved

transmembrane receptors. Enzyme activity of G-secretase is

required to release active regions within cells. Notch is

involved in many physiological processes of embryonic

development and normal cells, regulating cell growth,

apoptosis, and differentiation. Notch1, a member of the Notch

family, has been linked to various cancers (Gharaibeh et al.,

2020). LncRNA small nucleolar RNA host gene 1(SNHG1) is

overexpressed in GC and regulates the EMT process and cell

migration by miR-15b/DCLK1/Notch1 axis (Liu Z. Q. et al.,

2020).

LncRNAs regulate EMT-induced
metastasis in GC through
transcription factors

TFs also known as DNA-binding factors, control the

transcription from DNA to RNA via binding to a specific

DNA sequence (Latchman, 1993). TFs regulates RNA

polymerase activity via interacting with two classes of surface

domain: a sequence-specific DNA binding domain (i.e., zinc

finger and homeodomain) and an activation domain that binds

to various cofactors to recruit RNA polymerase (Bhagwat and

Vakoc, 2015; Mulero et al., 2018). LncRNAs exist in both

cytoplasm and nucleus and their functions are activated by

two main mechanisms. In the nucleus, lncRNAs bind to TFs

directly by interacting with DNA to regulate the transcription of

GC metastasis-related genes (Fatima et al., 2015). In the

cytoplasm, lncRNAs bind to tissue-specific protein, altering

the post-translational modification to induce the protein

ubiquitination and degradation (Table 2) (Liao et al., 2021).

LncRNAs participate in tumour progression and metastasis

by modulating EMT (Xu et al., 2016). In addition, lncRNAs

function critically in the induction and regulation of EMT-TFs

(Pavlič et al., 2022). The loss of expressions of the cadherin family
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proteins remains the hallmark of EMT, which is crucial in cell-

cell adherents junctions (Wang and Zhou, 2013). During EMT,

decreased expression of E-cadherin translocate β-catenin to the

nucleus and activates numerous notable TFs, including SNAIL,

SLUG, Twist-related protein 1 (TWIST1), zinc-finger E-box-

binding homeobox 1 (ZEB1), and 2 (ZEB2) (Chan and Wang,

2015; Stemmler et al., 2019).

SNAIL (also known as SNAI1), a zinc-finger transcriptional

repressor, modulates EMT during tumour progression (Wang

et al., 2013). It binds to E-box, an E-cadherin promoter region,

which converts epithelial cells to mesenchymal cells (Villarejo

et al., 2014). The overexpression of SNAIL up-regulates XBP1 (Li

et al., 2015) and ALX1 (Yuan et al., 2013), subsequently inducing

the activation of EMT. The Notch activity (Timmerman et al.,

2004) and Wilms’ tumour one homolog (Wt1) (Martínez-

Estrada et al., 2010) promote EMT through transcriptional

induction of the SNAIL repressor. Additionally,

overexpression of SNAIL suppresses miR-192 and miR-194

but up-regulates miR-205, let-7i, and SNORD13. Those

identified changes are correlated with the initiation of SNAIL-

mediated EMT in cancer cells (Przygodzka et al., 2019).

Depleting lnc01614 in GC cells (SGC7901 and AGS) exhibits

attenuated migration and invasion caused by decreased SNAIL

expression (Dong et al., 2018). Lee and their colleagues have also

confirmed that siR-MALAT1 reduces gastric tumorigenesis by

inhibiting invasiveness via reduced expression of SNAIL (Lee

et al., 2017). The lncRNAs TRERNA and PCGEM1 function as

enhancers of SNAI1 to contribute to the metastasis of GC (Zhang

J. et al., 2019).

In addition to SNAIL, SLUG is another notable SNAIL

superfamily of zinc-finger TFs. It acts as a transcriptional

repressor to bind to E-box to mediate the expressions of

target genes responsible for the EMT (Stegmann et al., 1999).

The expression of SLUG is controlled by Tbx18 and Wt1, which

TABLE 2 LncRNAs and their associated transcription factors in the regulation of EMT-induced metastasis in gastric cancer.

LncRNA Expression EMT-related targets Biological functions References

AC093818.1 Up PDK1 Accelerates GC tumour metastasis Ba et al. (2020)

AGAP2-AS1 Up SP1 Increases GC cell migration and invasion Qi et al. (2017)

AK023391 Up c-Myb and BCL-6 Increases GC cell invasion in vitro and GC tumour metastasis in vivo Huang et al. (2017)

CASC2 Down E2F6 Inhibits GC cells invasion Li et al. (2019)

CASC15 Up ZEB1 Increases GC tumour volume and weight in vivo Wu et al. (2018)

DANCR Up SALL4 Increases GC cells migration and invasion Pan et al. (2018)

DLGAP1-AS2 Up SLUG and TWIST Increases GC cell AGS migration and invasion Lu et al. (2020b)

DLX6-AS1 Up OCT1 Increases GC cell migration, invasion and EMT Liang et al. (2020)

GAPLINC Up HIF-1α Promotes GC tumour invasion behaviour Liu et al. (2016b)

H19 Up RUNX1 Increases GC cell AGS invasion Liu et al. (2016a)

HOTTIP Up HMGA1 Increases GC cell migration and invasion Wang et al. (2019b)

Lnc01614 Up SNAIL Increases GC cell migration and invasion Dong et al. (2018)

LINC00261 Down SLUG Promotes lung metastasis of GC in vivo Yu et al. (2017)

LINC01272 Up ZEB2, TWIST Increases GC cell migration and invasion Leng et al. (2020)

LINC-ROR Up OCT4, SOX2 and NANOG Increases invasion of GC Wang et al. (2016b)

LincRNA-p21 Down YAP Promotes malignant behaviour of lincRNA-p21 knockdown GC cells Chen et al. (2017)

LncRNA-AF147447 Down E2F1 Inhibits GC cell migration and invasion in vitro and in vivo Zhou et al. (2016)

LOXL1-AS1 Up USF1 Increases GC cell migration and EMT Sun et al. (2019a)

MAG12-AS3 Up ZEB1/2 Increases GC cell migration and invasion Li et al. (2020a)

MALAT1 Up SNAIL Increases GC cell AGS migration and invasion Lee et al. (2017)

MALAT1 Up SNAIL Enhances GC tumour invasion Lee et al. (2015)

MIR99AHG Up FOXP1 Increases GC cell migration and invasion Meng et al. (2020)

MNX1-AS1 Up TEAD4 Increase GC cell migration and invasion Shuai et al. (2020)

PCGEM1 Up SNAI1 Increases GC cell invasion and metastasis Zhang et al. (2019a)

PVT1 Up FOXM-1 Increases GC cell invasion in vitro and in vivo Xu et al. (2017)

RGMA-AS1 Up NFIB Increases GC cell migration and invasion Zhang et al. (2020a)

SEMA3B-AS1 Down Sp1 Inhibits GC cell migration and invasion Guo et al. (2019b)

SNHG20 Up TWIST Increases expression level of Twist expression in GC cell MKN45 Liu et al. (2017)

TRERNA1 Up SNAI1 Increases GC cell migration and invasion and GC tumour metastasis Wu et al. (2017)

UCA1 Up ZEB2 Increases GC cell migration and invasion Gong et al. (2018)
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regulate EMT activation (Takeichi et al., 2013). Moreover, the

high-mobility group AT-hook 2 (HMGA2) has a positive

correlation with SLUG expression in EMT activation (Li et al.,

2014). The work performed by Lu and their colleagues has

demonstrated that depletion of DLGAP1-AS2 suppresses the

migration and invasion of GC cells AGS via down-regulating

SLUG (Lu J. et al., 2020).

As a primary helix-loop-helix TF, TWIST participates in

recognizing E-box elements. Overexpression of TWIST plays an

essential role in promoting EMT (Chava et al., 2019). TWIST

activation is controlled by several signalling pathways, such as

Akt (Tang et al., 2016) and STAT3 (Zhang et al., 2015).

Overexpression of TWIST up-regulates miR-214 to facilitate

the EMT process (Liu C. et al., 2018). The in vitro

investigation has indicated that inhibition of LINC01272 and

DLGAP1-AS2 attenuates the migration and invasion of GC cells.

Exposure of GC cells to LINC01272 siRNA and DLGAP1-AS2

siRNA significantly inhibits the expression of TWIST (Lu J. et al.,

2020; Leng et al., 2020).

ZEB1/2 encodes zinc finger and down-regulates E-cadherin

to induce EMT in carcinomas (Bürglin and Affolter, 2016). Li

and their colleagues have confirmed that the expression of ZEB1/

2 is significantly inhibited in MAG12-AS3-depleted GC cells (Li

D. et al., 2020). In another case, lncRNA UCA1 contributed to

GC metastasis via regulating miR-203/ZEB2 axis (Gong et al.,

2018).

In addition to classic EMT-TFs described above, lncRNAs

also regulate some other TFs to influence the progression and

metastasis of GC. For example, overexpression of forkhead box

M1 (FOXM1) enhances GC cell motility, and this effect can be

reversed by blocking Cath-D (Yang et al., 2017). Cytoplasmic

lncRNA plasmacytoma variant translocation 1 (PVT1) is a

valuable prognostic predictor in GC. High PVT1 expression

promotes the invasiveness of GC cell lines through binding to

FOXM1 protein which implicate in high TNM staging and

lymph node metastasis (Xu et al., 2017). The lncRNA MNX1-

AS1 enhances the migration and invasion of GC cells in vitro.

TEA domain DNA-binding family of TF 4 (TEAD4) acts as an

oncogene to mediate Hippo signalling driving cancer

progression. By binding to TEAD4, MNX1-AS1 promotes

tumorigenesis through up-regulating BCL2 expression (Shuai

et al., 2020). Additionally, the study performed by Zhou et al.

have shown that the EMT-induced lncRNA AF147447 negatively

regulates the expression of E2F1 and promotes GC tumour

metastasis via the miR-34c/MUC2 axis (Zhou et al., 2016).

LncRNAs regulate EMT-induced
metastasis in GC through sponging
miRNAs

miRNAs are a group of small RNAs with approximately 22 nt

in length. miRNAs bind to the complementary sequence in

targeted mRNAs, leading to the degradation of targeted

mRNAs via RNA-induced silencing complex (RISC). Like

lncRNAs, miRNAs play a critical role in different tumours.

Many miRNAs are significantly up-regulated in cancer cells,

resulting in cancer development. Several miRNAs even mediate

the progression of various tumours (Karagkouni et al., 2021). In

the study on the regulation of gene expression, miRNA and

lncRNA are vital links. One of the widely recognized types is the

endogenous competition mechanism. Different from directly

regulating target genes, some lncRNAs inhibit the degradation

or inhibition effect of miRNAs on target genes by binding to

miRNAs. Such a regulatory strategy is widely reported in GC.

LncRNA metallothionein 1 J, pseudogene (MT1JP) sponges

miR-92a-3p and mediates the downstream F-Box-WD Repeat-

Containing Protein 7(FBXW7) gene, which in turn impacts the

progression of GC (Zhang G. et al., 2018). LINC01234 functions

as the ceRNA of miR-204-5p and blocks the activation of core-

binding factor b (CBFB) in GC (Chen et al., 2018). Some

lncRNAs that regulate the target genes and are involved in the

EMT progress of GC via the competitive binding of lncRNAs and

miRNAs are summarized in Table 3.

Some miRNAs can regulate the expressions of TFs, while

lncRNAs can suppress the degradation of target genes by binding

these miRNAs to promote the expressions of TFs, leading to the

promoted EMT process of GC. SNHG1 promotes the

proliferation and invasion of GC cells via modulating the

miR-140/ADAM10 axis (Guo et al., 2019a). GC cell lines

display markedly high expressions of lncRNAs small nucleolar

RNA host gene (SNHG3) and TWIST. Depletion of

SNHG3 significantly inhibits the proliferation, migration, and

invasion of GC cell lines. SNHG3 acts as an endogenous sponge

to reduce the expression of miR-326 and regulates the expression

of TWIST by competitively binding to miR-326 (Rao et al., 2021).

Overexpression of small nucleolar RNA host gene 7 (SNHG7)

has been reported in most human tumors, including lung cancer,

and it acts as an oncogenic lncRNA in GC and may be a

promising therapeutic candidate for GC patients.

SNHG7 promotes the migration and invasion of GC cells by

inhibiting miR-34a (Zhang Y. et al., 2020). As a potential

oncogene, small nucleolar RNA host gene 6 (SNHG6) is

involved in the initiation and progression of hepatocellular

carcinoma, and SNHG6 functions as an oncogene in GC cells

by post-transcriptionally mediating and transcriptionally

silencing miR-101-3p/ZEB1 via recruiting EZH2 to the

promoter of p27 (Yan et al., 2017).

Emerging evidence has shown that EMT plays a critical role

in the chemoresistance of tumor cells. The resistance of lung

cancer cells to doxorubicin can be effectively reversed by

inhibiting EMT (Ying Y. et al., 2017). EMT is associated with

treatment resistance (Gaianigo et al., 2017), suppressing EMT

may enhance the chemosensitivity. SNHG6 positively regulates

B-Cell Lymphoma 2 (BCL-2) by sponging miR-1297. The DDP

resistance, proliferation, and metastasis of DDP-resistant cells
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can be suppressed by depletion of SNHG6 (Mei et al., 2021).

Exosome HOTTIP can regulate the miR-218/high-mobility

group A1 (HMGA1) axis, contributing to cisplatin resistance

in GC cells. HOTTIP regulates HMGA1 by acting as a ceRNA of

miR-218 in GC cells. Serum exosome HOTTIP has been related

to cisplatin resistance in GC patients (Wang et al., 2019b),

lncRNA H19 suppresses the chemosensitivity to ADM via

sponging miR-152 from TCF4 in GC cells (Jiang et al., 2020).

HNF1A-AS1 promoted chemoresistance by facilitating EMT

process through upregulating EIF5A2 expression by sponging

of miR-30b-5p (Jiang et al., 2022).

LncASNR (apoptosis suppressing-non-coding RNA) inhibits

the expression of miR-519e-5p but up-regulates fibroblast

growth factor receptor 2 (FGFR2). As a receptor for FGF,

FGFR2 can deliver the FGF signal to RAS-ERK and PI3K-

AKT signal cascades, facilitating EMT-related migration and

invasion of GC cells (Chen Z. et al., 2021). Overexpression of

lncRNA HLA complex group 18 (HCG18) induced by

hepatocyte nuclear factor 1 homeobox A (HNF1A) promotes

GC progression by competitively binding to miR-152-3p and up-

regulating DNAJB12. HNF1A can facilitate its transcription by

binding to the HCG18 promoter. The DNAJB12 and cytosolic

heat shock protein 70 (Hsp70) can promote the triage of nascent

polytopic membrane proteins for folding or degradation by

cooperating on the endoplasmic reticulum’s cytoplasmic face

(Ma et al., 2020). GC tissues and cell lines show high expression

of lncRNA PCED1B antisense RNA 1 (PCED1B-AS1), and its

expression has been linked to the clinicopathological

TABLE 3 LncRNAs and their associated miRNAs in the regulation of EMT-induced metastasis in GC.

LncRNA Expression miRNA Biological function References

ACTA2-AS1 Down miR-378a-3p/PLCXD2 Inhibits GC cell viability, migration, invasion and EMT process Liu et al. (2022)

ASNR Up miR-519e-5p/FGFR2 Promotes EMT Chen et al. (2021b)

CCL2 Up miR-128/PARP2 Promotes migration, invasion and EMT Liang et al. (2022)

DLX6-AS1 Up miR-204-5p/OCT1 Promotes GC progression and the EMT process Liang et al. (2020)

FAM225A Up miR-206/ADAM12 Promotes the development of GC and EMT Chen et al. (2021a)

H19 Up miR-152-3p/TCF4 Promotes EMT process Jiang et al. (2020)

HCP5 Up miR-186-5p/WNT5A Promotes EMT Gao et al. (2021)

HCG18 Up miR-152-3p/DNAJB12 Promotes GC progression and EMT Ma et al. (2020)

HNF1A-AS1 Up miR-30b-5p/EIF5A2 Promotes EMT process Jiang et al. (2022)

HOTTIP Up miR-218/HMGA1 Promotes migration, invasion, and EMT process Wang et al. (2019b)

HOTAIR Up miR-217/GPC5 Promotes GC development, invasion and EMT process Dong et al. (2019)

LINC01050 Up miR-7161-3p/SPZ1 Contributing to GC progression and promotes EMT Ji et al. (2021)

LINC00240 Up miR-124-3p/DNMT3B Promotes GC cell proliferation, migration and EMT Li et al. (2020d)

LINC00689 Up miR-526b-3p/ADAM9 Promotes the proliferation, migration, invasion and EMT of GC cells Yin et al. (2020)

LINC00649 Up miR-16-5p/YAP1 Promotes cell proliferation, migration and EMT in GC. Wang et al. (2021a)

LINC00689 Up miR-338-3p/HOXA3 Increases EMT development Lu et al. (2020a)

LINC01133 Down miR-106a-3p/APC Inhibits proliferation, migration and EMT of GC cells Yang et al. (2018)

MAG12-AS3 Up miR-141/200a-3p/HMGB2 Increases GC cell migration, invasion and promotes EMT process Li et al. (2020a)

MALAT1 Up miR-1297/HMGB2 Promotes cell proliferation, invasion and EMT process in GC Li et al. (2017)

MIAT Up miR-331-3p/RAB5B promoted proliferation and metastasis, and inhibited the apoptosis of GC cells. Li et al. (2020c)

MIR99AHG Up miR577/FOXP1 Promotes GC progression by inducing EMT process Meng et al. (2020)

MIR503HG Down miR-224-5p/TUSC3 Represses EMT process and GC progression Lin et al. (2021)

NR2F1-AS1 Up miR-190a/PHLDB2 Promotes the phosphorylation of AKT3 to induce EMT in GC cells Lv et al. (2021)

PCED1B-AS1 Up miR-215-3p/CXCR1 Promotes EMT Ren et al. (2021)

PCAT6 Up microRNA-30/MKRN3 Promotes EMT Xu et al. (2018c)

RGMB-AS1 Up miR-22-3p/NFIB Accelerates the progression of EMT and GC Zhang et al. (2020a)

SNHG6 Up miR-101-3p/ZEB1 Promotes cell proliferation and EMT Yan et al. (2017)

SNHG6 Up miR-1297/BCL-2 Promotes GC tumour growth and EMT process Mei et al. (2021)

SNHG7 Up miR-34a/Snail Promotes EMT initiation to enhances GC cell migration and invasion Zhang et al. (2020b)

SNHG1 Up miR-140/ADAM10 Promotes GC cell invasion and EMT Guo et al. (2019a)

SNHG3 Up miR-326/TWIST Promotes metastasis by inducing EMT Rao et al. (2021)

TMPO-AS1 Up miR-140-5p/SOX4 Promotes cell migration and invasion and EMT process Sun and Han, (2020)

UBE2CP3 Up miR-138-5p/ITGA2 promotes EMT signalling Li et al. (2021)
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characteristics of GC patients. Moreover, PCED1B-AS1, as a

ceRNA, up-regulates C-X-C motif chemokine receptor 1

(CXCR1) by competitively binding to miR-215-3p, leading to

enhanced malignancy of GC cells, and this finding indicates that

PCED1B-AS1/miR-215-3p/CXCR1 axis may be a potential

mechanism involved in the progression of GC (Ren et al.,

2021). CXCR1 can regulate the malignant biological behaviors

of cancer cells by controlling the activation of AKT and ERK1/

2 signaling pathways. Depletion of CXCR1 up-regulates

E-cadherin in GC cells (Wang J. et al., 2016). Nuclear

receptor subfamily two group F member 1-antisense RNA 1

(NR2F1-AS1)/miR-190a/Pleckstrin Homology Like Domain

Family Member 2 (PHLDB2), a ceRNA, can facilitate the

EMT process of GC cells, and PHLDB2 can enhance the

expression and phosphorylation of AKT3 to promote the

EMT process of GC cells (Lv et al., 2021). LINC00689/miR-

526b-3p/A disintegrin and metalloproteinase domain 9

(ADAM9) participates in many biological processes, including

myogenesis, fertilization, cell migration, inflammatory response,

proliferation, and cell-cell interactions (Yin et al., 2020). miR-

338-3p has a negative correlation with LINC00689 in GC.

Homeobox A3 (HOXA3) is one target gene of miR-338-3p,

and ectopic expression of LINC00689 inhibits miR-338-3p

and up-regulates HOXA3 in GC cells (Lu H. et al., 2020).

HOXA3 can activate EGFR/Ras/Raf/MEK/ERK signalling

pathway, promoting the tumor growth of colon cancer.

LINC00689 functions as a ceRNA by sponging miR-526b-3p

in GC cells (Zhang X. et al., 2018).

As growth factors, cell signal transducers, and nuclear TFs,

proto-oncogenes primarily regulate biological activities in

normal cells. Changes in these genes affect their encoded

proteins, becoming oncogenes, which drive cell proliferation

and play a critical role in tumorigenesis (Kontomanolis et al.,

2020). The expression of HOTAIR is often increased in GC

tissues and cell lines, and a high expression of HOTAIR has been

linked with poor prognosis in GC patients. HOTAIR can sponge

miR-217 and inhibit its expression in GC. HOTAIR can facilitate

the development of GC by up-regulating glypican-5 (GCP5) via

sponging miR-217 (Dong et al., 2019). GPC5 is an oncogene and

may play a critical role in regulating tumorigenesis. Early studies

have confirmed that miR-217 functions as a cancer suppressor by

directly targeting the GPC5 oncogene in GC (Wang et al., 2015).

HOTAIR can interact with polycomb repressive complex 2

(PRC2), thereby mediating the downstream targets via

epigenetic regulation. HOTAIR also binds to PRC2 to activate

its target genes C-Met (HGF/C-Met/Snail pathway) and Snail via

epigenetically decreasing the expression of miR34a, thereby

facilitating EMT in advanced stages of GC (Liu Y.W. et al., 2015).

Depletion of LINC00649 inhibits YAP1 and releases miR-16-

5p, leading to the recovery of the Hippo pathway, and some

downstream oncogenes are suppressed accordingly, such as

EGFR, SOX2, and OCT4, suppressing the malignant

phenotypes in GC cells (Wang H. et al., 2021). YAP1 has been

identified as an oncogene, which can promote the pathogenesis of

multiple cancers and immunosuppression (He S. et al., 2021;

Wang and Gao, 2021). LncRNA metastasis associated lung

adenocarcinoma transcript 1 (MALAT1) promotes cell

proliferation and invasion in GC, and its up-regulation is

associated with local invasion, lymph node metastasis, and

TNM stage. MALAT1 is negatively correlated with miR-1297

and functions as a molecule sponging miR-1297, antagonizing its

ability to inhibit the expression of high mobility group box 2

(HMGB2) (Li et al., 2017). HMGB2 is an essential protein in

carcinogenesis, and it is associated with increased proliferation,

invasion, and glycolysis of GC cells (Cui et al., 2019). FAM225A

(Chen N. et al., 2021), HCP5 (Gao et al., 2021), MIAT (Li X. M.

et al., 2020), and UBE2CP3 (Li et al., 2021) all can promote the

expressions of oncogenes.

In normal cells, there are tumor suppressor genes besides

oncogenes. Tumor suppressor genes play a fundamental role in

the normal growth and differentiation of cells. They protect the

body from tumor invasion, block tumor growth, and promote the

normal development of cells (Kontomanolis et al., 2020).

LncRNA actin alpha 2, smooth muscle antisense RNA 1

(ACTA2-AS1) can suppress malignant phenotypes of GC cells

as it can function as a ceRNA to bind to miR-378a-3p and

antagonize the inhibitory impacts of miR-378a-3p on the

expression of phosphatidylinositol-specific phospholipase C X

domain containing 2 (PLCXD2) (Liu et al., 2022). PLCXD2 is

linked to an enhanced risk of esophageal squamous cell

carcinoma in the Han Chinese population (Wang et al.,

2019c). LncRNA MRI503HG up-regulates tumour suppressor

candidate 3 (TUSC3) in GC cells through sponging miR-224-5p,

leading to GC progression. Depletion of ATF6 partially rescues

EMT in GC cells overexpressing lncRNA MIR503HG. GC cell

invasion is inhibited by overexpressing lncRNA MIR503HG,

which reduces protein contents of N-cadherin and vimentin

to hinder EMT in GC cells (Lin et al., 2021). Overexpression

of TUSC3 impedes cell proliferation and triggers apoptosis in

retinoblastoma (Kong et al., 2020).

As an essential epigenetic regulation, methylation can be

described as the transfer of the active methyl group to the target

chemicals catalyzed by methyltransferases, and the DNA

sequence composition remains unchanged in this process.

Methylation deregulation is involved in many diseases,

including human cancers (Dai X. et al., 2021). Ubiquitination

regulates several steps in autophagy via post-translational

modification, which is a primary lysosome-mediated

intracellular degradation pathway. Multiple ubiquitin chains

act as selective markers to attach to protein aggregates and

dysfunctional organelles, thereby accelerating the degradation

in an autophagy-dependent manner (Grumati and Dikic, 2018).

Overexpression of lncRNA prostate cancer-associated transcript

6(PCAT6) has been reported in GC, which facilitates the

progression of GC by endogenous competition with miRNA-

30 by targeting makorin ring finger protein 3 (MKRN3).
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MKRN3 participates in the processes of gene transcription and

ubiquitination. The invasive ability of GC cells is enhanced when

PCAT6 is overexpressed. The expressions of EMT-related genes

at the protein level are also remarkably increased (Xu Y. et al.,

2018). LncRNA The C-C motif chemokine ligand 2 (CCL2)

suppresses the expression of miR-128 in GC. miR-128 mimic

significantly down-regulates the expression of poly (ADP-ribose)

polymerase 2 (PARP2). As a leading member of the PARP family,

PARP2 possesses multiple biological functions, such as DNA

repair, synthetic lethality, apoptosis, necrosis, and histone

binding (Ma et al., 2022). LINC00240 can bind to miR-124-3p

as a ceRNA to enhance the expression of DNAmethyltransferase

3b (DNMT3B), a member of the DNMT family. DNMT3B can

enhance cell proliferation, invasion, and migration of GC cells.

siRNA targeting LINC00240 up-regulates E-cadherin and down-

regulates vimentin in GC SGC-7901 cells and BGC-823 cells (Li

Y. et al., 2020).

In addition to the widely recognized endogenous

competition mechanisms, there are a few other mechanisms of

lncRNAs and miRNAs. For example, miR-21 is negatively

mediated by lncRNA Maternally expressed gene 3 (MEG3)

and can enhance metastasis in GC. The MEG3/miR-21 axis is

involved in the progression and metastasis of GC through

mediating EMT (Xu G. et al., 2018).

Diagnostic and prognostic value of
EMT-related LncRNAs in metastatic
gastric cancer

Most GC--associated mortality is attributed to tissue

metastasis. GC preferably metastasizes to the liver

accounting for 48% of metastatic GC patients. Moreover, the

other common sites for GC to spread include the peritoneum,

lung and bone, accounting for 32%, 15% and 12% of patients

with metastatic cancer, respectively (Riihimäki et al., 2016). At

present, the combined chemotherapy protocols, such as

FOLFOX (oxaliplatin and 5-FU/leucovorin), CAPOX

(oxaliplatin and capecitabine) and FOLFIRI (irinotecan and

5-FU/leucovorin) are the most commonly regimen of

chemotherapy treatment for GC. In addition, targeted drugs

(Trastuzumab, Ramucirumab, Larotrectinib and Entrectinib)

might be helpful in GC patients with gene over-expression and

mutation. Growing evidence has shown that immunotherapy is

a promising treatment for GC. FDA approved nivolumab and

pembrolizumab, in combination with chemotherapy, for the

treatment of patients with locally advanced or metastatic GC

(Takei et al., 2022). Although the availability of numerous

drugs for the treatment of GC, 39% of GC patients were

found to have metastatic disease and had a poor prognosis

(Dai W. et al., 2021). Thus, there is an urgent need to find

potential valuable biomarkers for prognosis of patients with

metastatic GC.

Carbohydrate antigen (CA) 12-5 and CA 72-4 are the most

frequently used biomarkers in diagnosis of patients with GC

(Matsuoka and Yashiro, 2018). In addition, carcinoembryonic

antigen (CEA) and CA 19-9 act as the prognostic predictors in

clinical practice, as they have not detected in the early stage of GC

(Feng et al., 2017). Therefore, some novel reliable markers

supporting diagnosis and prognosis of GC are needed.

Previous study has demonstrated that circulating lncRNAs is

detectable in plasma, and it significant increase in GC patients

than that of health donors (Arita et al., 2013). Therefore,

lncRNAs are adopted to diagnose tumors at early stages, and

they can also predict the prognosis, metastasis risks, and

recurrence after surgery (Necula et al., 2019).

As diagnostic biomarkers, some lncRNAs are differentially

expressed in the serum and plasma of GC patients and normal

patients. For example, using gastric juice ABHD11-AS1 as a

marker, ABHD11-AS1 levels were significantly increase in early

GC patients, reaching to 71.4% (Yang Y. et al., 2016). Serum

B3GALT5-AS1 levels were significantly higher in GC patients than

that of in normal individuals. High serum B3GALT5-AS1 levels

were also associated with TNM stage and lymph node metastasis

(Feng et al., 2020). The level of serum exosome lncRNAH19 in GC

patients was significantly up-regulated before and after surgery

when compared with that in healthy controls, and the

postoperative level was significantly lower than that before

operation. Preoperative lncRNA H19 levels were significantly

correlated with TNM stage. The area under the ROC curve

(AUC) value of exosome lncRNA H19 was significantly higher

than the AUC value of cancer antigen 19-9, 72-4 and

carcinoembryonic antigen (Feng et al., 2020). The AUC of

exosome HOTTIP was 0.827, and its diagnostic ability was

significantly higher than that of CEA, CA 19-9 and CA72-4

and exosome HOTTIP overexpression was an independent

prognostic factor in GC patients (Feng et al., 2020). In

addition, several studies have investigated the effects of H.

pylori infection on GC progression by regulating lncRNAs

expression. For example, lncRNA AF147447 decreased

expression by H. pylori infection and acts as a tumour

suppressor in the development of GC (Zhou et al., 2016). Li

and their collegues addressed a significant associations with

high expression of lncRNA51663 and FLJ46906 and increased

risk of H. pylori infection-induced GC (Li N. et al., 2020). In

addition, serum H19 and LINC00152 could function as potential

biomarkers for GC patients withH. pylori infection due to the joint

effect of H19 and LINC00152 and H. pylori infection on the

increased risk of GC (Yang T. et al., 2016).

Accumulating evidence has shown that lncRNAs can act as

prognostic biomarkers in predicting GC tumor size and Lauren

classification, depth of invasion, Lymph node and distant

metastasis, TNM stage. Highly expressed lncRNA DANCR was

tested in tumour tissues and serum form GC patients than that of

from healthy controls (Pan et al., 2018). Moreover, HOTAIR

expression is significantly elevated in GC tissues when compared
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TABLE 4 The correlation between LncRNAs and diagnosis or prognosis in metastatic GC.

LncRNA Expression
in GC

Type of clinical
sample

Potential roles of detecting the expression of LncRNAs for
GC diagnosis and prognosis

References

AOC4P Up Tumour tissue Correlates with poor overall and disease-free survival, expression was correlated
with lymph vascular invasion

Zhang et al.
(2019b)

AFAP1--AS1 Up Tumour tissue Correlates with the poor survival rates of GC patients, increased in the primary
tumour tissues of GC patients with lymph node metastasis or tumour node
metastasis stage

Zhao et al. (2018)

B3GALT5-
AS1

Up Serum Correlates with tumour Node Metastasis (TNM) stage, and lymph node
metastasis

Feng et al. (2020)

CASC15 Up Tumour tissue Correlates with a poor prognosis for patients suffering from GC Wu et al. (2018)

CCAT2 Up Tumour tissue Correlates with tumour size, lymph node metastasis and TNM stage in GC
patients

Wang et al.
(2016c)

CTSLP4 Down Tumour tissue Correlates with tumour local invasion, TNM stage, lymph node metastasis, and
prognosis of GC patients

Pan et al. (2021)

DANCR Up Tumour tissues, serum Correlates with tumour size, TNM stage, lymphatic metastasis, and invasion
depth

Pan et al. (2018)

DLGAP1-AS2 Up Tumour tissue Correlates with age, lymphatic, and vascular invasion in internal samples Soltani et al.
(2022)

DLX6-AS1 Up Tumour tissue Correlates with advanced clinical stage, lymph node metastasis and distant
metastasis, decreased survival

Fu et al. (2019)

DLX6-AS1 Up Tumour tissue Correlates with T3/T4 invasion, distant metastasis, and poor clinical prognosis Yu et al. (2020)

H19 Up Serum H19 levels is significantly decreased after compared with before surgery in
patients with GC

Zhou et al.
(2020b)

HNF1A-AS1 Up Tumour tissue A potential therapeutic target for alleviating GC chemoresistance Jiang et al. (2022)

HOTAIR Up Tumour tissue Correlates with poor prognosis in GC patients Dong et al. (2019)

HOTAIR Up Tumour tissue Correlates with lymph node metastasis and TNM stage,, was a predictor of poor
over-all survival in GC patients

Xu et al. (2013)

HOTTIP Up Serum Correlates with invasion depth and TNM stage Rui et al. (2018)

HULC Up Tumour tissue Correlates with lymph node metastasis, distant metastasis, and advanced
tumours node metastasis stages

Zhao et al. (2014)

HULC Up Serum Correlated with tumour size, lymph nodemetastasis, distant metastasis, tumour-
node-metastasis stage, and H. pylori infection

Jin et al. (2016)

LINC00261 Down Tumour tissue Correlates with advanced tumour status and clinical stage as well as poor
prognostic outcome

Yu et al. (2017)

LINC00978 Up Tumour tissues, serum Correlates with tumour size, lymphatic metastasis and TNM stage Fu et al. (2018)

LINC00184 Up Tumour tissue Correlates with a worse prognosis Piao et al. (2021)

LINC01061 Up Tumour tissues、serum Correlates with the clinicopathological features and survival time Liang et al. (2021)

LINC01094 Up Tumour tissue Correlates with poor overall survival Ye et al. (2022)

LINC01272 Up Tumour tissue Correlates with advanced GC staging and lymph node metastasis Leng et al. (2020)

LINC01503 Up Tumour tissue Correlates with lymph node metastasis, TNM stage, and poor prognosis of GCA
patients

Guo et al. (2021)

lincRNA-p21 Down Tumour tissue Correlates with higher invasion depth grade, more distant metastasis and
advanced TNM stage

Chen et al. (2017)

Lnc01614 Up Tumour tissue Correlates with higher tumours staging, greater lymph node metastasis and
distant metastasis rates, and lower overall survival rate

Dong et al. (2018)

Loc490 Down Tumour tissue Correlates with lymph node metastasis negatively and vein/nerve invasion, while
it correlated positively with overall and disease-free survival

He et al. (2020)

MALAT1 Up Tumour tissue The expression of MALAT1 was significantly elevated in various GC cell lines
and GC tumour tissues compared to normal cell lines and tumour tissues

Lee et al. (2017)

MALAT1 Up Tumour tissue Correlated with local invasion, lymph node metastasis, TNM stage, shorter
survival, and poor prognosis

Li et al. (2017)

NR027113 Up Tumour tissue Positively correlates with lymph node metastasis and distant metastasis Chen et al. (2019)

p4516 Up Tumour tissue Correlates with worse clinical outcomes Nie et al. (2019)

PCAT6 Up Tumour tissue Negatively correlated to prognosis, tumour size, TNM stage and metastasis
of GC

Xu et al. (2018c)

(Continued on following page)
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with adjacent non-cancer tissues. This study also confirmed the

association of HOTAIR overexpression with poor overall survival

in patients with diffuse-type GC (Petkevicius et al., 2022). Yang and

their colleagues have performed study to determine the expression

of lncRNAABHD11-AS1 in gastric juice fromGC patients relate to

tumour size, tumour stage, Lauren type and blood CEA level (Yang

Y. et al., 2016). In addition, elevated expression of lncRNA

M26317 might be a potential biomarker that correlate with

Lauren’s classification, lymph node and distant metastasis (Li

et al., 2018). The lncRNAs RP11-119F7.4, C5orf66-AS1 and

DLEU2 were differentially expressed in GC tissue and non-

tumour gastric tissue, and were predominantly correlated with

Lauren histologic classification of GC (Sun et al., 2015; Zhou Q.

et al., 2020; Hu et al., 2022). In addition to this, some lncRNAs

expressed in some specific tissue (i.e. GAS5 and H19 expressed in

embryo tissue) that can be targeted using nucleic acid-based drugs,

small molecule inhibitors, and gene-editing methods at different

functional levels to provide various therapeutic options (Arun G.

et al., 2018).

In clinical practice, the lncRNAs expression might be tested in

patients’ fluid samples from whole blood, serum or plasma, and

tissue samples from gastric carcinoma tumour tissue and

surrounding tissues or adjacent non-cancer tissues using qRT-

PCT technique, to diagnose and predict the lymphatic metastasis

and distal metastasis of GC. The single lncRNAs or combined

lncRNAs or combined lncRNAs with the well-established

biomarkers (CA12-5, CA72-4 and CA19-9) are promising

biomarkers for assessing the diagnosis and prognosis of advanced

gastric carcinoma. According to present studies, lncRNAs has

potential valuable of being the biomarker for patients with GC in

clinical settings. Therefore, the effects of lncRNAs on diagnosis and

prognosis of GC are summarized in Table 4.

Perspectives

LncRNAs play an important role in the development of GC.

Some identified oncogenic lncRNAs overexpressed in gastric

cancerous tissue, such as H19, HOTAIR, and MALAT1,

whereas others are expressed in the tissue from gastric

carcinoma at a low level, such as LincRNA-p21, LINC00261,

CTLSP4 and SPRY4-IT1. LncRNAs regulate EMT process by

targeting EMT-related signalling pathways directly (i.e., H19,

HOTAIR, ZEB2-AS1, LincRNA-p21 and SNHG1), or function as

ceRNAs (i.e., H19, HOTTIP, MALAT1, SNHG1 and SNHG6) for

tumour suppressive miRNAs. Furthermore, dysfunction of

lncRNAs regulates apoptosis and cell cycle in GC cell lines,

for example, SNHG6 function as a positive regulator for BCL-

2 gene expression. In addition, SNHG6 implicated in initiation

and EMT-induced metastasis of GC by regulating

TABLE 4 (Continued) The correlation between LncRNAs and diagnosis or prognosis in metastatic GC.

LncRNA Expression
in GC

Type of clinical
sample

Potential roles of detecting the expression of LncRNAs for
GC diagnosis and prognosis

References

PCED1B-AS1 Up Tumour tissue Correlates with tumour size, TNM stage and lymph node metastasis in GC
patients

Ren et al. (2021)

RP11-731F5.2 Up Serum The serum levels of RP11-731F5.2 in GC patients were significantly higher than
those in healthy controls, correlates with vival time

Jing et al. (2020)

SNHG1 Up Tumour tissue Correlates with poor prognosis Guo et al. (2019a)

SNHG6 Up Tumour tissue Correlates with invasion depth, lymph node metastasis, distant metastasis, and
TNM stage and predicted poor prognosis

Yan et al. (2017)

SNHG7 Up Tumour tissue Positively correlated with TNM stage, depth of invasion, lymph-nodemetastasis,
distant metastasis and an independent poor prognostic factor for overall survival
in GC patients

Zhang et al.
(2020b)

SPRY4-IT1 Down Tumour tissue Associates with larger tumour size, advanced pathological stage, deeper depth of
invasion and lymphatic metastasis

Xie et al. (2015)

TMPO-AS1 Up Tumour tissue Correlates with aggressive clinicopathologic characteristics and poor overall
survival

Sun and Han,
(2020)

TP73-AS1 Up Tumour tissue Associated with tumour size, TNM stage, and overall survival Wei et al. (2018)

TTTY15 Up Tumour tissue Associates with advanced TNM stage and poor tumour differentiation Zheng et al.
(2022)

UBE2CP3 Up Tumour tissue Associates with poor prognosis in GC Li et al. (2021)

VIM-AS1 Up Tumour tissue Relates to the prognosis of patients with GC Sun et al. (2020)

XLOC_006753 Up Tumour tissue Correlates with tumour progression (MDR reversal) Zeng et al. (2018)

ZEB2-AS1 Up Tumour tissue Correlates with tumour progression Wang et al.
(2019a)

ZFAS1 Up Tumour tissues, serum,
serum exosomes

Correlated with lymphatic metastasis and TNM stage Lei et al. (2017)

ZFAS1 Up Tumour tissues, plasmas Correlates with tumour progression Hu et al. (2016)
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ZEB1 expression. Dysregulated lncRNAs (SNGH6, HOTTIP,

H19, HNF1A-AS1 and ZFAS1) exert the functional role in

chemoresistance leading to enhanced EMT ability in GC cell

lines and tissues. Aberrant expression of H19 is involved in

progression and metastasis in numerous cancer through

regulating various of targeted genes. For example, it regulates

VEGF expression by competitively binding miR-138 in glioma

(Liu Z. Z. et al., 2020). H19/miRNA-140 axis promotes ovarian

cancer cell migration by upregulating Wnt1 expression (Wang

and Gao, 2021). Additionally, H19 upregulates

PFTK1 expression through targeting miR-194 in pancreatic

cancer cells (Sun Y. et al., 2019). Since targeting lncRNAs are

currently under development by researchers, H19 might be a

promising target in the treatment of patients with advanced GC.

In addition to being a potential therapeutic target for GC,

another important clinical value of lncRNAs is as a diagnostic

marker (differentially expression in GC and surrounding tissues or

in GC patients and health individuals) or prognostic markers

(association with Lauren’s classification, TNM stage, lymph node

metastasis and overall survival time). It is likely that the

overexpression of serum-derived lncRNAs, such as H19,

HOTTIP, DANCR and HULC, may be an early event in

tumorigenesis of the GC. The upregulation of tumour tissue-

derived lncRNAs (HOTAIR, MALAT1, SHNG1 and SHNG6)

might be adverse prognostic factors of GC. To ensure high

specificity and sensitivity of the diagnosis and prognosis of GC,

the expression level of lncRNAs, both diagnostic and prognostic

markers, can be used alone or in combination with existing

markers. The above insights may help to provide strategies for

basic research and clinical diagnosis and treatment with lncRNAs.

However, more in-depth investigations are still required to verify

the practicality of lncRNAs in clinical application.
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