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The mechanism of remdesivir incorporation into the RNA primer by the RNA-

dependent RNA polymerase (RdRp) of severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2) remains to be fully established at the molecular

level. Here, we compare molecular dynamics (MD) simulations after

incorporation of either remdesivir monophosphate (RMP) or adenosine

monophosphate (AMP). We find that the Mg2+-pyrophosphate (PPi) binds

more tightly to the polymerase when the added RMP is at the third primer

position than in the AMP added complex. The increased affinity of Mg2+-PPi to

the RMP-added primer/template (P/T) RNA duplex complex introduces a new

hydrogen bond of a substituted cyano group in RMP with the K593 sidechain.

The new interactions disrupt a switching mechanism of a hydrogen bond

network that is essential for translocation of the P/T duplex product and for

opening of a vacant NTP-binding site necessary for next primer extension.

Furthermore, steric interactions between the sidechain of S861 and the 1′-
cyano group of RMP at position i+3 hinders translocation of RMP to the i +

4 position, where i labels the insertion site. These findings are particularly

valuable to guide the design of more effective inhibitors of SARS-CoV-

2 RNA polymerase.
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Introduction

Remdesivir is an antiviral drug that inhibits viral replication after it is converted into

the triphosphate form and bound to the active site of RNA-dependent RNA polymerase

(RdRp) for its incorporation into the RNA primer (Beigel et al., 2020; Cohen and

Kupferschmidt, 2020; Frediansyah et al., 2021; Gordon et al., 2020a,b; Yates and Seley-

Radtke, 2019). However, its actual inhibition mechanism remains to be fully established at

the molecular level. Here, we focus on the analysis of specific interactions at the active site

of RdRp upon each incorporation of remdesivir monophosphate (RMP). These
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interactions provide key insights into how RMP can alter the

polymerization reaction by affecting the translocation of the

RNA duplex that is essential for primer extension during the

nucleotide addition cycle. The results reported may help to guide

the development of more potent and specific inhibitors of RdRp

for the treatment of viral infections.

The replication-transcription complex (RTC) of SARS-CoV-

2 is composed of RNA-dependent RNA polymerase (RdRp or

nsp12), nsp7, nsp8, nsp13, and the template/primer (P/T) RNA

duplex. RdRp is the enzyme that catalyzes the replication and

transcription of viral RNAs essential for viral replication (Chen

et al., 2020; Yan et al., 2020). It is targeted by remdesivir (RDV), a

1′-cyano adenosine analogue that binds to the active site of RdRp
more strongly than adenosine. RDV is an analog of adenosine

and incorporated into RNA by establishing complementary base

pair interactions with uridine (Yates and Seley-Radtke, 2019). It

was first shown to exhibit some efficacy against the Ebola virus

and more recently against SARS-CoV-2 (Tchesnokov et al., 2019;

FIGURE 1
Cryo-EM RTC 6xez structure of SARS-CoV-2 used for our MD simulations. (A) Schematic diagram of RNA replication and translocation
processes. The replication starts with NTP binding to position i (I). Phosphodiester bond is formed, and the nucleotide is incorporated into the 3′ end
of the primer. PPi is cleaved from NTP (II). Upon release of PPi, the 3′ end of the primer translocates by one nucleotide (III). (B) Our MD simulation
model includes the 6xez structure after removal of two nsp13 helicase subunits, consisting of subunits of nsp7 (magenta), nsp8 (yellow and
cyan), nsp12 (blue) and the RNA template/primer duplex (pink and silver). Mg2+ ions are shown in green, and PPi is shown in orange and RMP is shown
in red. (C–E) Close-up views of the modeled RMP at position i + 1, i + 2 and i + 3 used in this study.
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Wang Y. et al., 2020). Compared to other nucleotide analogue

mutagens (i.e., ribavirin and favilavir), RDV is more selective

since it pairs only with uridine (Byléhn et al., 2021). Its modified

1′-C linkage between the ribosyl moiety and the base of RDV is

designed to counterbalance a strong electron-withdrawing cyano

substitution at the C1′ position and has a fully extendable 3′-OH
(Yates and Seley-Radtke, 2019).

The effect of RDV remains unclear because the primer with

RMP added at positions i, i + 1, and i + 2 can be extended

efficiently, where i labels the insertion site while i + 1 and i +

2 indicate sites after one- and two-base pair translocations of the

RNA duplex, respectively (Figure 1A) (Gordon et al., 2020b).

Further, SARS-CoV-2 RdRp exhibits a ~3-fold higher selectivity

for RMP over AMP at position i (Gordon et al., 2020b), an

observation that has been used to rule out the chain termination

hypothesis (Gordon et al., 2020a). Further, RDV is not

necessarily a direct-acting inhibitor since it does not inhibit

the RNA synthesis by RdRp of SARS-CoV-2. Most likely,

RDV is an indirect-acting inhibitor for viral replication. RMP-

containing RNA may not be functional for either translation

(i.e., translational inhibition) or for the second pass of (+)-sense

RNA synthesis (i.e., replicational inhibition) or both (Wang et al.,

2021), the latter supported by experimental data (Tchesnokov

et al., 2020). However, after incorporation of RMP, the RNA

duplex accumulates with RMP at the third primer position under

low concentration of incoming NTPs but not under physiological

conditions (Gordon et al., 2020b; Yin et al., 2020). So, RMP slows

down the primer extension significantly due to a translocation

pause only at low NTP concentrations. This pause is completely

eliminated with longer time intervals of the primer-extension

assay or at higher NTP concentrations (i.e., at the physiological

concentrations) (Gordon et al., 2020b). Thus, RMP is a delayed

inhibitor of RNA synthesis, but not a chain terminator of

any kind.

Cryo-EM structures have shown that the sidechain of S861 is

next to the cyano group of RMP when RMP is at the fourth

primer position (Wang Q. et al., 2020; Gordon et al., 2020b;

Kokic et al., 2021). Juxtaposition of the S861 sidechain and the

cyano group in these structures leads to the hypothesis that an

extra Oγ atom in the S861 sidechain could block the

translocation of the RNA duplex product with RMP at the

primer position i + 3, hindering translocation to i+4. That

mechanistic hypothesis is further supported by the S861A

mutational data (Wang Q. et al., 2020). However, how the

increased concentration of NTPs can overcome this pause

remains elusive and is addressed in this study.

The concentration-dependent pause is an important

dynamic property of the RdRp, which we address by using

molecular dynamics (MD) simulations. RNA polymerases

often use pauses as mechanisms of transcriptional regulation

(Saba et al., 2019). Elemental pauses are often coupled to

translocation, backtracking, and cleavage. Pauses often occur

during mismatch extension, helping to backtrack any

mismatched nucleotides for mismatch removal (Malone et al.,

2021). In this specific case of RMP-containing P/T complexes,

the binding affinity of the Mg2+ ion/pyrophosphate (PPi)

complex controls the transcriptional pause, translocation,

pyrophosphorylysis, and eventually, possible cleavage by

exoribonuclease. A common efficient translocation mechanism

of P/T duplex is often powered by the release of pyrophosphate

(Yin and Steitz, 2014). This is a basis for this study. However, for

T7 RNA polymerase in the presence of high concentrations of

PPi (i.e., 0.5–3mM, which is not physiologically relevant after

shifting equilibrium of the polymerization-pyrophosphorylysis

reaction) (Guo and Rousa, 2006) and in some polymerases such

as E. coli RNA polymerase (Abbondanzieri et al., 2005), the

release of PPi is uncoupled with the translocation step, i.e., it fails

to drive the forward translocation. This uncoupled event has

been studied computationally (Golosov et al., 2010; Da et al.,

2015; Da et al., 2017). For other polymerases, ratcheting motion

has been proposed during which two strands of RNA duplex are

translocated asynchrotronically, one strand at a time, with

transient deformation of base-pairing geometry between the

primer and template strands (Silva et al., 2014; Shu and Gong,

2016; Wang M. et al., 2020). In many cases, the two mechanisms

are highly coupled.

In this study, we started with the RTCmodel of 6xez (Chen et

a., 2020), with 2 Mg2+ ions bound in the pol active site, MgA and

MgB. We studied dynamic properties of the RTC using MD

simulations shortly before and immediately after polymerization

and/or translocation (but not the translocation process itself

since that would require longer MD simulations than

presented in this study). Our study differs from other recent

similar MD simulations that studied different aspects of RNA

synthesis (Romero et al., 2021; Zhang et al., 2021). Remero et al.,

focused on binding of RTP in both open and closed states of the

polymerase, which couples the P/T translocation with the

conformation NTP-binding site (Romero et al., 2021). Zhang

et al. focused on the RMP’s effect on chain termination, which

misinterpreted the existing biochemical literature as explained

above, and on possible effect to the proofreading activity (Zhang

et al., 2021) MgA binds the carboxylates next to O3′ of the

primer-terminal nucleotide to activate the attacking 3-hydroxyl

(Steitz and Steitz, 1993; Steitz, 1999). MgB binds carboxylates and

the triphosphate moiety of NTP to stabilize the leaving PPi. If the

leaving PPi cannot leave, the likelihood of pyrophosphorylysis

increases, which could effectively inhibit polymerization (Wang

and Konigsberg, 2022). We have carried out MD simulations

with RMP at primer positions i, i + 1, i + 2, and i + 3 and analyzed

the MD-derived electron density maps to see the effect of RMP at

each primer position on releasing of PPi. Our results show that

the MgB-bound PPi is the most stable in the complex after RMP

is translocated to primer position i + 3 when compared to those

without RMP or those with RMP at other positions, forming

multiple hydrogen bonds with R553, R555 and K621, and thereby

preventing PPi release.
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FIGURE 2
MD-derived EDmaps. (A–C)MD-derived EDmaps carved for the PPi and the (i + 1), (i + 2), and (i + 3) base pairs in the context of RNA duplexes.
The electron densities for PPi, RMP and U which formWatson-Crick interactions are shown in mesh. (D) Close-up view of the MD-derived EDmaps
carved for the RMP in two contour levels (low contour level in silver mesh and high contour level in gold surface). (E) Close-up view of RMP at
i+3 complex. PPi, (i + 1), (i + 2), and (i + 3) base pairs and surrounding residues are shown in sticks. Mg2+ ions are shown in spheres.
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Computational methods

The cryo-EM RTC structure of SARS-CoV-2 (6xez) was

used as a starting point for our MD simulations after removing

nsp13 helicase (Chen et al., 2020). Two Mg2+ ions (MgA and

MgB) and PPi were added to the model. In addition, two Zn2+

ions were included in the structure as part of the Zn-Cys motif

important for the stability of the nsp12. One reference set of

MD simulations was carried out with three AMPs at position

i + 1, i + 2, and i + 3 of the RNA duplex, followed up by three

sets of MD simulations with one RMP replaced at each of the

three positions (Figure 1). MD simulations of RMP/PPi and

RTP at position i will be described elsewhere. Each set was run

with two replicas. Schrödinger Maestro (Schro€dinger, 2022)

was used to prepare the complex structures. Protein

Preparation Wizard of the suite was used to assign bond

orders and protonation states and add missing side chains

and hydrogens. These model complexes were placed in water

boxes with a 15 Å cushion for the complex and Na+ ions were

added to neutralize the systems. The parameter/topology files

were created by the LEaP program from the AmberTools

package (Cornell et al., 1995). MD simulations were run

using NAMD (Kalé et al., 1999; Phillips et al., 2005). The

system was equilibrated at 310 K in three steps before

production run: the equilibration minimization of 1)

solvent, 2) solvent and side chains, and 3) the whole system.

The MD simulation systems contained 21,695 atoms before

addition of water molecules and counterions, and

~276,852 atoms afterwards. About 70 Na+ ions were added as

counterions to neutralize the whole system. The remdesivir

parameters were generated by optimizing the molecule with

B3LYP/6-31G* first, and then calculating the electrostatic

potential for partial atomic charges (Gaussian09; Frisch et al.,

2016). RESP calculation was run by antechamber to atomic

partial charges whereas atomic charges of the nucleobase were

kept to the same as those of ATP (Bayly et al., 1993). The 2 Mg2+

ions and PPi were parameterized using MCPB program in

AmberTools, which can be used for building bonding

interactions for ligand-binding metalloproteins, and which

used Gaussian09 to idealize the geometry and to calculate the

force constants and electrostatic potentials (Cornell et al., 1995;

Meagher et al., 2003; Li and Merz, 2016). NPT ensemble was

used. RMSD analysis was carried out for 100-ns MD trajectories.

For a 100-ns MD simulation production run, a 2-fs time step

was used. The electron density (ED) maps derived from MD

trajectories were calculated for the complex structure using

CCP4 as previously described (Wang et al., 2022a; Wang

et al., 2022b; Wang et al., 2022c; Winn et al., 2011), from

which equilibrium structures were derived by fitting into and

refining against MD-derived ED maps. To determine the

consequences of RMP substitution in each position relative to

AMP, ED map differences were calculated between the RMP-

and AMP-bound complexes of MD trajectories, using the

CCP4 suite (Winn et al., 2011). VMD was used to analyze the

distribution of both the PPi positions (RMSD trajectory tool) and

hydrogen-bond interactions (Hydrogen Bonds tool) (Humphrey

et al., 1996). Equilibrated structures were manually fitted into

MD-derived-ED maps using Coot (Emsley and Cowtan, 2004).

FIGURE 3
Detailed H-bonding interactions for PPi. (A) A close-up
view of the MD-derived ED maps for PPi and interacting
residues. (B,C) PDFs of the H-bond distance distribution for PPi
and interacting residues with RMP (B, solid curves) and
AMP (C, dashed curves) at position i + 3.
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All figures were made from fitted equilibrated structures and

were visualized by PyMOL (Delano, 2022).

Results

Figure 2 shows that RMP forms stable base pairs at all three

positions i + 1, i + 2, and i + 3. PPi interacts with the Mg2+ ions

mainly through electrostatic interactions in all three structures,

although the strength of the interactions of PPi varies in the three

complexes. The H-bond is stronger when RMP is in position i + 3

(the i + 3 complex). The H-bond interaction analysis shows that

the PPi forms H-bonds with three surrounding amino acid

residues R553, R555, and K621 (Figure 3), forming on average

1.52, 1.74 and 2.6 H-bonds per residue throughout the MD

trajectories, respectively. For comparison, the average number

of H-bonds with those residues in complex i + 1 is reduced to

1.09, 1.35, and 2.05, respectively, and for complex i + 2 to 1.24,

0.89, and 0.31, respectively. Moreover, the H-bond probability

density functions (PDFs) for the PPi to each of its interaction

partners are sharp with peaks around 3 Å when RMP is at

position i + 3 whereas for AMP at position i + 3, the

corresponding distributions are broader with some peak

positions shifted by more than 2.0 Å (Figure 3). Therefore,

multiple H-bonding interactions between the PPi and these

residues (R553, R555, and K621) are primarily responsible for

stabilizing the bound product PPi.

Our analysis of root-mean-square fluctuations (RMSF) from

the average structure shows that the RMSF value for the PPi is 0.7

(0.3) Å and 1.3 (0.4) Å (numbers in parenthesis is uncertainty or

FIGURE 4
Iso-PDFDistribution of PPi and primer RNA strands (A,B) Iso-PDF for bases from the first three primer nucleotides, K593, and PPi for RMP (A) and
AMP (B) at position i + 3. (C) Close-up view of iso-PDF for PPi (RMP structure: solid; and AMP structure: transparent). (D) The i + 3 RMP complex
structure for showing K593, PPi, and 4 nucleotides of the primer strand. (E)Corresponding i + 3 AMP complex structure. (F) Superposition of the two
complexes.
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one standard deviation of RMSF) in the i + 3 RMP and AMP

complexes, respectively. These values are indicative of an

increased stability of RMP relative to AMP at the i +

3 position since the more stable the binding is, the smaller the

RMSF value (e.g., binding to a shallow well corresponds to large

RMSF). Results of this analysis are consistent with the calculated

iso-probability densities (Figure 4), showing that the probability

isosurface for the PPi in the AMP structure is more smeared out

(i.e., less stable configuration) than the PPi in the RMP structure.

For the i + 3 RMP complex, the RMSF analysis shows that the

RMSFs for the three nucleotides of the primer strand at positions

i to i + 2 are 0.8 (0.3) Å, 0.7 (0.2) Å, and 0.7 (0.2) Å, respectively.

In contrast, the corresponding values for AMP complexes are 1.0

(0.3) Å, 1.2 (0.3) Å, and 0.8 (0.2) Å. In addition, the RMSFs for

single RMP nucleotides at positions i + 1 to i + 3 are 0.8 (0.2) Å,

0.8 (0.3) Å and 0.8 (0.3) Å. In contrast, the corresponding values

for corresponding single AMP nucleotides increase to 1.2 (0.3) Å,

1.0 (0.4) Å and 0.9 (0.3) Å. Clearly, the incorporated RMP

increases the rigidity of the RNA duplex. Again, these results

are consistent with the iso-probability density analysis.

Therefore, incorporation of RMP stabilizes the nucleic duplex

relative to the system without RMP.

For the i + 3 complexes, the difference MD-derived ED maps

show that the largest difference in the entire map is observed on

the PPi (Figure 5), and the second largest is on the cyano group of

RMP. The largest difference on PPi is associated with both its

change in position and B-factor when comparing the two

complexes (i.e., PPi becomes much more ordered in the RMP

complex since it gets displaced into a new position where it

establishes better H-bonding interactions than in the AMP

complex). For the i + 1 and i + 2 complexes, the larger

differences are on the cyano group, while differences near the

PPi are relatively very small (i.e., there is no difference in binding

affinity of PPi between those pairs of complexes). All these

observations support our hypothesis that the PPi binds more

tightly when RMP is added to the primer strand and occupies

position i + 3, which is consistent with the paused translocation.

We analyzed the H-bond network between the RMP at

primer position i + 3 and the PPi bound at a distance of over

15 Å apart to determine how the RMP at i + 3 stabilizes the PPi

(Figure 6). We found that K593 adopted two different

conformations when comparing the two i + 3 complexes of

RMP and AMP, potentially functioning as a switch for RNA

duplex translocation. For the RMP complex, K593 interacts with

either the cyano group of the RMP or the Q815 sidechain of the

RdRp in a distributive manner but does not interact with both

residues simultaneously. Since the cyano group of RMP interacts

with K593, there is less interaction between K593 and Q815, so

FIGURE5
Differences between RMP and AMP complexes determined using difference EDmaps. (A–C)Difference EDmaps between RMP and AMP for the
three paired structures. RMP complexes are aligned to the difference map. Green mesh indicates positive and red mesh indicates negative
(contoured at ± 15σ). (D) I+3 AMP complex aligned to the difference map. (E,F) Close-up views of PPi of i + 3 and i + 2 complex.
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the sidechain of Q815 is displaced towards the backbone

carbonyl of C813 and the backbone amide of C813 is

displaced towards the sidechain of D761.

In the AMP complex (i.e., in the absence of an equivalent

cyano group), K593 interacts solely with the sidechain of

Q815 which in turn interacts along a H-bonding network

with the backbone carbonyl group of C813. These

interactions lead to a reduction of H-bonding strength

between the backbone amide of C813 and the sidechain of

D761, so D761 coordinates more strongly with MgB,

weakening the MgB-PPi interaction. The carboxyl group

of D761 repels that of D618 and changes its position. As a

result, D618 interacts less with K798 and in turn

K798 interacts more strongly with PPi, pulling PPi away

from three other positively charged residues (R553, R555 and

K621 that provide greater stabilization of the MgB-bound

PPi in the RMP complex). Therefore, we find that weakening

the interactions of PPi with R553, R555, and K621 after

switching PPi to a new interaction with K798 may be

essential for releasing PPi in this polymerase. This step is

equivalent to the reopening of the Fingers domain of

RB69 DNA polymerase (Franklin et al., 2001).

FIGURE 6
H-bonding network for allostery communication between the pol active site and the remote positions of RNA duplex. (A,B) Residues affected by
RMP and AMP at position i + 3. H-bond interactions are shown in dash lines. The H-bond between K593 and RMP is shown in red and others are
shown in yellow. The H-bond between K593 and Q815 is shown in green and others are shown in magenta. (C) Overlap of RMP (solid curves) and
AMP (dashed curves) (transparent) structures in stereodiagram. (D) PDFs of the H-bond distance distribution for interacting residues with RMP
and AMP at position i + 3. Peaks that are approximately at 2 Å are for interactions between Mg2+and amino acid residues. Others are for interactions
between amino acid residues.
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Discussion

The mechanism for stalling primer extension by RMP has been

suggested to be associated with a free energy barrier for translocation

(Bravo et al., 2021; Kokic et al., 2021). However, themolecular origin

of the proposed barrier remains unknown. Here, we find that when

RMP is located at position i + 3, the RdRp complex remains in the

pre-translocated state, which lacks the vacant NTP-binding site

observed in the post-translocation state. Therefore, it prevents

binding of the next incoming NTP. When RMP is replaced by

AMP, the RdRp complex rapidly advances to the post-translocation

state and the NTP binding site becomes vacant (Kokic et al., 2021).

Stalling has been attributed to a physical barrier between the 1′-
cyano group of RMP and the sidechain of S861 (Bravo et al., 2021),

which has been confirmed in ourMD simulations. There would be a

steric clash between S861 and the cyano group of the added RMP if

RdRp were translocated to position i + 4. Therefore, mutation of

S861 reduces the stalling effect (Wang Q. et al., 2020). In addition,

we find that even before translocation, RMP forms a H-bond with

K593, which disrupts the interactions of PPi with K798 in a cascade

of events within a H-bond network. The disrupted interactions

enhance the ability of RMP remaining at position i + 3 to stall

translocation.

Concluding remarks

RMP acts as a delayed inhibitor and slows down the primer

extension. During the first pass of viral RNA synthesis by the

SARS-CoV-2 RNA-dependent RNA polymerase. When RMP is

translocated to position i + 3, it induces a transcriptional pause

under the reduced NTP concentrations. Our computational

analysis points to a tighter binding of PPi as the physical

basis of the pause. When RMP is in position i + 3, the cyano

group of RMP forms hydrogen bonds with K593 and prevents a

switch of a H-bonding network established by protein residues

that are essential for primer/template translocation. This

increases the binding stability of the PPi product so that PPi

blocks the translocation of RNA duplex and slows primer

extension.
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