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Chidamide, a new chemically structured HDACi-like drug, has been shown to

inhibit breast cancer, but its specificmechanismhas not been fully elucidated. In

this paper, we selected ER-positive breast cancer MCF-7 cells and used RNA-

seq technique to analyze the gene expression differences of Chidamide-treated

breast cancer cells to identify the drug targets of Chidamide’s anti-breast

cancer effect and to lay the foundation for the development of new drugs

for breast cancer treatment. The results showed that the MCF-7 CHID group

expressed 320 up-regulated genes and 222 down-regulated genes compared

to the control group; Gene Ontology functional enrichment analysis showed

that most genes were enriched to biological processes. Subsequently, 10 hub

genes for Chidamide treatment of breast cancer were identified based on high

scores using CytoHubba, a plug-in for Cytoscape: TP53, JUN, CAD, ACLY, IL-6,

peroxisome proliferator-activated receptor gamma, THBS1, CXCL8, IMPDH2,

and YARS. Finally, a combination of the Gene Expression Profiling Interactive

Analysis database and Kaplan Meier mapper to compare the expression and

survival analysis of these 10 hub genes, TP53, ACLY, PPARG, and JUN were

found to be potential candidate genes significantly associated with Chidamide

for breast cancer treatment. Among them, TP53 may be a potential target gene

for Chidamide to overcome multi-drug resistance in breast cancer. Therefore,

we identified four genes central to the treatment of breast cancer with

Chidamide by bioinformatics analysis, and clarified that TP53 may be a

potential target gene for Chidamide to overcome multi-drug resistance in

breast cancer. This study lays a solid experimental and theoretical

foundation for the treatment of breast cancer at the molecular level with

Chidamide and for the combination of Chidamide.
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1 Introduction

Breast cancer is a major malignant tumor that endangers

women’s health. According to statistics, there are about

2.81 million confirmed cases of breast cancer worldwide in 2021,

accounting for 30% of all female cancer cases, and the mortality rate

reaches 15% among female malignant tumors (Siegel et al., 2021).

Nearly 85% of breast cancer patients are estrogen receptor (ER)

positive. ER is a prototypical member of the nuclear receptor

superfamily, which plays a central role in cell proliferation,

survival and invasion; it is also a transcription factor that affects

the expression of target genes through genomic and non-genomic

pathways, a process that is critical for cell growth and proliferation

and tumor cell growth, proliferation and survival (Heldring et al.,

2007; Kojetin et al., 2008; Hanker et al., 2020). In recent years, anti-

hormonal therapy targeting estrogen receptors has improved the

treatment of breast cancer to some extent. However, tumor

resistance by common clinical therapeutic agents has greatly

reduced the therapeutic efficacy (Elder et al., 2006; Huang et al.,

2017). Therefore, the search for effective targets for targeted drug

action has been a challenge for researchers (Waks andWiner, 2019;

Garcia-Martinez et al., 2021; Mehraj et al., 2021).

Chidamide, a novel structural, isoform-selective histone

deacetylase inhibitor that is a promising anticancer agent, and our

previous experiments have also demonstrated that Chidamide is a

new generation HDACi with lower toxicity and higher efficacy than

other HDACi such as SAHA (Han et al., 2017; Zhou et al., 2021), and

that it is more effective in combination therapy, especially in difficult-

to-treat advanced breast cancer, and may help overcome its drug

resistance (Munster et al., 2011; Kern, 2016; Yeruva et al., 2018).

FIGURE 1
Transcriptome analysis of MCF-7 after Chidamide treatment. (A): Quality inspection chart of initial data. (B): Mapping information of RNA-Seq;
(C): a: Gene expression density map; b: Sequencing saturation results for each sample. The horizontal coordinate indicates the amount of
sequencing data (expressed as a percentage) and the vertical coordinate indicates the number of genes detected. c: Transcript coverage
homogeneity. The horizontal coordinates of the graph indicate the gene length (expressed as a percentage) and the vertical coordinates
indicate the number of reads in the region).
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However, the research and application of the molecular mechanisms

of their antitumor pharmacological effects are still in their infancy and

cannot meet all the criteria required for targeted drugs. Therefore,

more and more in-depth studies on the antitumor effects of

Chidamide are needed to find more accurate targets of action and

explore more and better utilization of its value.

Traditional single studies are hampered by the limited number of

samples and cannot systematically analyze key genes and their

molecular functions in complex biological processes. While

bioinformatics analysis based on high-throughput platforms is a

powerful tool, whole transcriptome sequencing, also known as RNA-

seq technology, is the sequencing of all RNAs reverse transcribed into

cDNA libraries in cells using second-generation high-throughput

sequencing technology, which can effectively obtain the entire

transcript information of an organism in a specific physiological

context (Prokop et al., 2018; Van Dijk et al., 2018; Ulintz et al., 2019).

The application of RNA-seq can discover drug targets and

mechanisms of action and facilitate the progress of drug

development (Wang et al., 2016; Zhang et al., 2017).

Therefore, we selected ER-positive breast cancer MCF-7

cells and used RNA-seq to analyze the gene expression

differences of breast cancer cells treated with Chidamide,

and performed functional enrichment of potential genes to

clarify the drug targets of Chidamide for the treatment of

breast cancer, laying the foundation for the treatment of

malignant tumors, especially breast cancer, and the

development of new drugs.

2 Materials and methods

2.1 Materials

The human breast cancer cell line MCF-7 was purchased

from the American Cell Conservatory (ATCC); all cell culture

reagents, RPMI-1640 medium, fetal bovine serum, penicillin and

streptomycin were purchased from Thermo, United States ;

CHID was purchased from Sigma.

FIGURE 2
Volcano plot and Heat Map of differential expression gene. (A): Volcano plot for differential gene expression analysis between samples. The
horizontal coordinates represent the fold change of gene expression in different samples; the vertical coordinates represent the statistical
significance of the difference in gene expression, red dots indicate significantly upregulated genes and green indicates significantly downregulated
genes. (B): Heat map of differential gene expression analysis between samples. Colors represent log 10 (expression value + 1) values. (C):
Quantitative analysis of differential gene expression between samples.

Frontiers in Molecular Biosciences frontiersin.org03

Han et al. 10.3389/fmolb.2022.999582

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.999582


2.2 Cell culture

All tests were set up in triplicate wells, and three replicates of each

experiment were guaranteed. The human breast cancer cell line

MCF-7 was cultured in RPMI-1640 medium containing 15% fetal

bovine serum, 100 U/mL penicillin, and 100 μg/ml streptomycin.

Breast cancer cells at logarithmic growth stagewere collected in 15ml

centrifuge tubes, centrifuged at 1,000 rpm for 5 min, resuspended in

medium containing 15% fetal bovine serum, and the cell suspension

was adjusted to 5.0 × 105 cells inoculated in 6-well plates. The final

concentration of Chidamide was adjusted to 20 μmol/l, and the cells

were collected after receiving Chidamide for 24 h in a control group

with an equal volume of cell culture medium.

2.3 Establishment of transcriptome
libraries

Total RNA was isolated from cells using Trizol (invitrogen)

and RNA purity was assessed using the ND-1000 Nanodrop. Each

RNA sample had an A260:A280 ratio above 1.8 and an A260:

A230 ratio above 2.0. RNA integrity was assessed using an Agilent

2,200 Tape Station (Agilent Technologies, United States ) and each

sample had a RIN above 7.0.

Subsequently, the purified RNA was fragmented to

approximately 200 bp according to the instructions of the

NEBNext® Ultra™ RNA Library Prep Kit for Illumina (NEB,

United States ).), the purified RNA was subjected to first- and

second-strand cDNA synthesis, followed by splice ligation and

low-circulation enrichment.

2.4 Transcriptome data analysis

A large amount of sample double-end sequencing data was

obtained through the Illumina platform. Given the impact of data

error rate on the results, Fast QC was used to check the quality of the

initial RNA-Seq data, Trimmomatic softwarewas used to pre-process

the rawdata for quality, to remove joints and lowquality reads, and to

summarize the statistics of the number of reads throughout the

quality control process. The Clean Reads were sequenced against the

specified reference genome using hisat2 (http://daehwankimlab.

github.io/hisat2/download/) to obtain information on the position

of the reference genome or gene, as well as information on sequence

characteristics specific to the sequenced samples.

2.5 Differential expression analysis

The statistically significant DE genes were obtained by an

adjusted p-value threshold of <0.05 and |log2 (fold change)| >
1 using the DEGseq. Finally, a hierarchical clustering analysis was

performed using the R language package gplots according to the

TPM values of differential genes in different groups. And colors

represent different clustering information, such as the similar

expression pattern in the same group, including and colors

represent different clustering information, such as the similar

expression pattern in the same group, including similar functions

or participation in the same biological process.

2.6 Gene ontology terms and KEGG
pathway enrichment analysis

All differentially expressed mRNAs were selected for GO and

KEGG pathway analyses. GO was performed with

KOBAS3.0 software. GO provides label classification of gene

function and gene product attributes (http://www.geneontology.

org). GO analysis covers three domains: cellular component

(CC), molecular function (MF) and biological process (BP).

The differentially expressed mRNAs and the enrichment of

different pathways were mapped using the KEGG pathways

with KOBAS3.0 software (http://www. genome.jp/kegg).

Visualize the results using the R language package gplots.

2.7 Protein interaction network and hub
gene identification

The protein interaction network of DEGs was analyzed using the

STRING (https://string-db.org/) online database; then the PPI

network was visualized using Cytoscape software (version 3.6.0)

and key targets (hub genes) were calculated from the network

using CytoHubba, a plug-in for Cytoscape (Chin et al., 2014).

There are 11 topological analysis methods in CytoHubba, and we

chose the Degree Method to select the top 10 genes in terms of the

number of nodes (nodes in a protein interaction network represent

proteins, edges represent interactions between proteins, and the

number of edges connecting a node to other nodes represents the

importance of that node in the protein interaction network) as

potential key genes for regulation.

2.8 Validation of central genes in clinical
samples

To confirm the expression of hub genes in clinical samples, we

screened 10 hub genes for expression in the online platform Gene

Expression Profiling Interactive Analysis (GEPIA), a web server for

analyzing RNA-sequencing expression data of 9,736 tumors and

8,587 normal samples from the TCGA and GTEx projects, using

standard processing pipelines. p-values < 0.01 and fold

changes >1 were considered thresholds for expression between

tumor and normal samples. In addition, survival curves for the

survival of hub genes between high and low expression patients were

validated in the Kaplan Meier plotter (http://kmplot.com/analysis/).
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The Kaplan Meier plotter is a meta-analysis-based tool for the

discovery and validation of survival biomarkers. It was able to assess

the impact of 54 k genes on survival in 21 cancer types. The largest

datasets include breast cancer (n = 6,234) and lung cancer (n =

3,452) (Nagy et al., 2018).

2.9 Single nucleotide variants and pathway
activity of validated genes

UALCAN (http://ualcan.path.uab.edu/) is an online platform

for cancer data analysis and mining mainly for The Cancer

Genome Atlas (TCGA) database. UALCAN provides easy and

fast access to the publicly available TCGA canceromics data, as

well as the identification of tumor biomarker molecules or online

simulation validation of target gene expression in tumors and

prognostic survival analysis.

The Genomic Cancer Analysis (GSCA) database is a web-based

platform for genomic cancer analysis (http://bioinfo.life.hust.edu.cn/

web/GSCALite/). The platform integrates cancer genomics data

from TCGA for 33 cancer types as well as normal tissue data

from GTEx. Hub genes validated by GEPIA and Kaplan Meier

mapper were further validated for expression in breast cancer and

corresponding normal tissues using theUACLAN andGSCA online

databases, and further analyzed by GSCA for genetic alterations and

methylation (Tang et al., 2017).

2.10 Statistical analysis

All statistical analyses were performed in R (v3.5.2), and p <
0.05 was considered statistically significant. Fisher’s exact test

and likelihood ratio test were employed for comparison of

variables.

FIGURE 3
GO enrichment analysis of DEGs. (A): Differential Gene GO Enrichment Distribution Map. Differential Gene GO Enrichment Directed Acyclic
Graph. The darker the color, the higher the enrichment level. (B) GOmolecular function analysis; (C)GO biological process analysis; (D) GO cellular
component analysis.
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3 Results

3.1 Raw sequencing data quality and
transcriptome sequencing statistics

The results showed that the base quality of most of the

sequences was above 30, indicating good sequencing quality. The

four lines of sequencing samples were parallel and close to each

other, and no base shift was observed. The percentage of GC was

more than 45% (Figure 1A).

The total number of reads in MCF-7 Basal group and MCF-7

CHID group were obtained as 43,622,966 and 45,661,510,

respectively; the percentage of clean reads obtained by filtering

the lower quality data was 97.2% and 97.2%, respectively (Figure 1A).

The sequencing data were compared with the reference

genome using HISAT2 software to make a comprehensive

evaluation of the coverage area and depth of coverage of the

sequencing data. The results showed that more than 66% of

the sequences were matched to the reference genome, 64% of

the sequences were matched to only one position, and more

than 76% of the reads were matched to exonic regions

(Figure 1B).

3.2 Analysis of differentially expressed
genes

The TPM density distribution pattern was used to examine

the gene expression pattern of the samples as a whole; the TPM

density distribution pattern showed that moderately expressed

genes accounted for the majority, and low and high expressed

genes accounted for a small proportion. Sequencing saturation

analysis showed that the relative error decreased as the sampling

proportion increased, and the regions of sequencing results were

saturated; the distribution of sequencing Reads on gene coverage

showed an overall distribution trend of lower sequencing

coverage at the 5′ end and 3′ end, and higher in the middle,

with credible sequencing results (Figure 1C).

Differential analysis of gene expression was performed by

DESeq (version 1.18.0). The statistical results of differentially

expressed genes showed that, compared with the control group,

the statistical results of differentially expressed genes showed that the

MCF-7 CHID group expressed 320 upregulated genes and

222 downregulated genes (Figure 2). The volcano and heat maps

were also able to show that theMCF-7 CHID group expressed more

upregulated genes than downregulated genes in the control group.

3.3 Differential gene ontology energy set
analysis

The results of GO enrichment analysis revealed that in the

MCF-7 CHID group (Figure 3), a total of 685 GO entries were

enriched in GO molecular function (MF), and in the Top10, and

the enriched molecular functions mainly included binding

activity (laminin binding, insulin-like growth factor binding,

protein kinase C binding, protease binding, cytokine binding,

growth factor binding, extracellular matrix binding), enzymatic

activities (ligase activity, intramolecular oxidoreductase activity),

and structural components of the extracellular matrix, suggesting

that CHIDmay be involved in supporting and protecting MCF-7

cell tissues as well as in cell growth and adhesion; 443 GO Term

were enriched in the GO cellular component (CC), and among

the Top 10, the cellular components with relatively high number

of enriched genes mainly included vesicle-containing lumen;

cytoplasmic vesicle lumen; secretory granule lumen; vacuolar

lumen; clathrin−coated vesicle; lysosomal lumen;

clathrin−coated vesicle membrane; followed by external side

of plasma membrane; extracellular matrix components; and

collagen-containing extracellular matrix, indicating that CHID

affects gene expression in a variety of cellular vesicle lumen and

extracellular matrix in MCF-7 cells. A total of 4231 GO Terms

were enriched in the GO Biological process (BP), and among the

Top10, they mainly included immune regulation (response to

type I interferon; cellular response to type I interferon; type I

interferon signaling pathway) response to ketones; defense

response to viruses; immune cell proliferation (mononuclear

cell proliferation; leukocyte proliferation; lymphocyte

proliferation); extracellular structural organization;

extracellular matrix organization and other biological

processes, suggesting that CHID-treated MCF-7 cells may

affect a variety of immune-modulatory response processes.

3.4 KEGG pathway enrichment analysis

The metabolic and signaling pathways involved in

differential genes were analyzed using KEGG enrichment,

where the vertical coordinate is the KEGG Pathway entry, the

horizontal coordinate is the Rich factor, the size of the dot in the

graph indicates the number of differential genes annotated to the

pathway, and the color indicates the pathway’s significant

p-value.

The MCF-7 CHID group was enriched in 265 signaling

pathways, with the top 30 signaling pathways being enriched

(Figure 4). Among the enriched Top 30 signaling pathways, 50%

were related to cytology of the human diseases, 30% to

environmental signaling, and the remainder to metabolic and

biological systems, with these signaling pathways being primarily

engaged in human diseases. (e.g., Malaria, Small cell lung cancer,

Bladder cancer, Colorectal cancer, Thyroid cancer,

Transcriptional misregulation in cancer, Type I diabetes

mellitus, Epstein-Barr viral infections, Anti-folate resistance,

Human T−cell leukemia virus 1 infection, Legionellosis,

Inflammatory bowel disease (IBD), Fluid shear stress and

atherosclerosis, Non-small cell lung cancer, Rheumatoid
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arthritis, Prostate cancer, etc.), environmental signaling-related

pathways (e.g., Focal adhesion, ABC transporters, ErbB signaling

pathway, cell adhesion molecules (CAMs), p53 signaling

pathway, PI3K-Akt signaling pathway, MAPK signaling

pathway, ECM-receptor interaction, etc.), metabolism (e.g.,

Phenylalanine metabolism, Other glycan degradation, One

carbon pool by folate, etc.), biological systems (e.g.,

Neurotrophin signaling pathway, Protein digestion and

absorption, etc.), genetic signaling processes

(Aminoacyl−tRNA biosynthesis), etc. This suggests that MCF-

7 CHID is engaged in a wide range of cellular biologic activities.

Several signaling pathways in Top30 are closely related to cell

proliferation, implying that CHID may participate in MCF-7 cell

regulatory processes via cell proliferation-related signaling

pathways.

3.5 Protein interaction network and
functional annotation analysis

To understand the interaction of DEGs at the protein level,

protein-protein interaction (PPI) networks were constructed by

Multiple Protein in the online database STRING. 542 proteins

encoded by DEGs were able to form a complex protein

interaction network (Figure 5A). Cytoscape was used to

visualize and analyze the PPI network (Figure 5A).

CytoHubba is a plug-in for Cytoscape to calculate the hub

genes in the network.TP53, JUN, CAD, ACLY, IL-6, PPARG,

CXCL8, THBS1, IMPDH2, and YARS were identified as hub

genes of the network based on high scores (Figure 5B).

3.6 Validation of key genes in clinical
samples

To verify the aberrant expression of the identified DEG in

breast cancer cells, we determined the expression of pivotal genes

in clinical samples from GEPIA (Figure 6A). The mRNAs of

TP53, CAD, ACLY, IMPDH2, and YARS were found to be highly

expressed in tumor cells among these genes and down-regulated

by Chidamide treatment; the mRNAs of THBS1 and

CXCL8 were highly expressed in tumor cells, and the

expression was higher after treatment with Chidamide. The

mRNAs of JUN, IL-6 and PPARG were reduced in tumor

cells and up-regulated by Chidamide treatment. Therefore, we

hypothesized that the regulation of TP53, CAD, ACRY,

IMPDH2, YARS, JUN, IL-6, and PPARG by Chidamide is

beneficial to the treatment of breast cancer.

To determine the impact of DEGs on the prognosis of breast

cancer patients, the Kaplan-Meier mapper was used to predict

the prognostic value of 10 hub genes. Our study found that high

expression of TP53, ACLY, THBS1 and YARS was associated

with worse overall survival (OS) in breast cancer patients

(Figure 6B); while low expression of JUN, PPARG and

IMPDH2 was associated with worse OS in breast cancer

patients; while expression of CAD, IL6 and CXCL8 was not

FIGURE 4
KEGG pathway enrichment analysis of DEGs. (A): Differentially expressed gene KEGG pathway bubble map. The horizontal coordinates indicate
the proportion of enriched differential genes to the background genes of the pathway, and the vertical coordinates indicate the name of the pathway;
the size of the dots in the graph indicates the number of enriched differential genes, and the color indicates the p-value. The size of the dots in the
graph indicates the number of enriched differential genes, and the color indicates the p-value. (B): Distribution of differentially expressed gene
KEGG pathway enrichment.
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associated with OS in breast cancer patients (CAD, p = 0.27. IL6,

p = 0.12; CXCL8, p = 0.43).

3.7 Single nucleotide variants and pathway
activity of validated genes

Combining the results validated in clinical samples with

those obtained from previous differential gene screens

(Supplementary Figure S1), we considered TP53, ACLY,

JUN, and PPARG as potential candidate genes.

Subsequently, analysis of the expression of these genes in

breast cancer and corresponding normal tissues using the

UACLAN and GSCA online databases revealed that the

results were consistent with those obtained by GEPIA and

Kaplan Meier mapper (Supplementary Figure S2,

Supplementary Figure S3), further suggesting that TP53,

ACLY, JUN, and PPARG ACLY, JUN, and PPARG genes

have the potential to become therapeutic candidates.

Subsequently, the GSCA online database was used to analyze

the differential expression of these genes at different stages of

breast cancer development (Supplementary Figure S4).

Next, the genetic alterations and methylation of the above

candidate genes were further analyzed by GSCA. Single

nucleotide variants (SNVs) were detected in 4 hub genes in

275 samples. The frequency of SNVs in TP53 was the highest

among the 4 hub genes, reaching 96% in 275 samples. Missense

mutations were the most important type of mutation

(Figure 7A). In addition, we considered the effect of hub

genes on pathway activity. The results showed that Hub genes

are involved in the regulation of DNA damage response,

apoptosis, EMT and hormone signaling pathways, which are

important signaling pathways for tumorigenesis and

development (Figure 7B).

FIGURE 5
(A): Protein-Protein Interaction Network Analysis Chart. PPI network exported from STRING and visualized in Cytoscape. A node represents a
gene. The genes increased in MCF-7 by Chidamide were shown in pink color; at the same time, the genes that down-regulated in MCF-7 by
Chidamidewere posted in triangles. (B): Selection of hub genes. PPI networkwas analyzed by CytoHubba, a plugin of Cytoscape. A node represents a
gene. The hub genes with higher scores were demonstrated with the larger sizes.
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FIGURE 6
(A): The expression of hub genes in BREAST samples of TCGA. (B): Kaplan-Meier curves displaying OS of BREAST.
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4 Discussion

The effective investigation of the pharmacological

mechanism of action using contemporary sequencing

technology has become one of the dominant development

paths of current research, with the penetration of high-

throughput sequencing technology into numerous fields

(Sumner et al., 2007; Wang et al., 2009; Shi et al., 2010). Drug

screening has entered the high-throughput age, and an increasing

number of novel targets and prospective targets have been found,

largely attributable to the advancement of genetic databases and

database analysis by automated bioinformatics operating systems

(Kim et al., 2013; He et al., 2015; Ujihira et al., 2015; Zheng et al.,

2016). In this study, for the first time, we analyzed the gene

expression of histone deacetylase inhibitors in breast cancer cells

and controls using RNA-seq, and found that the difference in

gene expression of Chidamide was more significant in breast

cancer cells compared to SAHA, which is consistent with our

previous experimental results (Han et al., 2017; Zhou et al., 2021).

Since nearly 85% of breast cancer patients were ER positive and

recent results showed that ER transcription factors are strongly

associated with breast cancer metastasis and invasion, we finally

selected Chidamide for subsequent analysis of MCF-7 cells.

Differential analysis of gene expression by DESeq showed

that the MCF-7 CHID group expressed 320 upregulated genes

and 222 downregulated genes as compared to the control

group. The volcano and heat maps also revealed that the

MCF-7 CHID group had more up-regulated genes than the

control group. According to the findings, CHID influences the

biological activity of breast cancer cells through controlling the

expression of these differential genes.The analysis of the

biological process (BP), cellular component (CC), and

molecular function (MF) of up-regulated and down-regulated

DEGs suggested that CHID may perform multiple functions by

regulating different DEGs, thus participating in the regulation of

biological processes such as apoptosis, adhesion and immune

regulation.

Among these genes, TP53, JUN, CAD, ACLY, IL-6, PPARG,

THBS1, CXCL8, IMPDH2, and YARS were identified as key

differential genes for Chidamide treatment of breast cancer based

on high scores. To verify whether the identified differential genes

are aberrantly expressed in breast cancer cells and the impact on

the prognosis of breast cancer patients, we examined the

expression of pivotal genes in clinical samples from GEPIA

and performed survival analysis of the above-mentioned

pivotal genes, as well as for different stages of breast cancer

disease progression, and identified TP53, ACLY, PPARG and

JUN as potential candidate genes significantly associated with

Chidamide treatment of breast cancer. Subsequent analysis of the

expression of these genes in breast cancer and corresponding

normal tissues using the UACLAN and GSCA online databases

was found to be consistent with the results obtained above,

further suggesting the potential of TP53, ACLY, JUN, and

PPARG genes to be candidate therapeutic genes.

Abnormal tumor cell growth and proliferation require a large

number of biomolecules that build cellular components, of which

FIGURE 7
GSCA online database was selected to analyze the single nucleotide variation and pathway activity of validated genes. (A): Waterfall plots, give a
single nucleotide variation in BREAST gene sets. (B): Effects of the validated gene on cell pathway activity, gene expression was divided into 2 groups
(High and Low) by median expression, the difference of pathway activity score (PAS) between groups was defined by student t-test, p-value was
adjusted by FDR, FDR ≤0.05 was considered as significant. The pathway activity module presents the correlation of gene expression with
pathway activity groups (activation and inhibition) that are defined by pathway scores.
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fatty acid anabolism has a particularly important role (Wakil and

Abu-Elheiga, 2009; Currie et al., 2013). Increased fatty acid

synthesis has been shown to be strongly associated with poor

prognosis in a variety of tumors (Corbet et al., 2016; Li and

Zhang, 2016). While normal tissues and cells rely primarily on

exogenous lipid intake to meet their needs, tumor cells prefer to

use acetyl coenzyme A for ab initio fatty acid synthesis (Santos

and Schulze, 2012; Cheng et al., 2018). In many tumors such as

lung, prostate, bladder, breast, and colon cancers, ACLY is

pathologically overexpressed or has enhanced enzymatic

activity (Khwairakpam et al., 2015; Granchi, 2018; Icard et al.,

2020). In addition, its catalytic production of acetyl CoA is also a

donor of acetyl groups, and acetylation modification of histones

plays an important role in the regulation of gene expression,

DNA replication and DNA damage repair (Wellen et al., 2009;

Chen et al., 2019; Orsó and Burkhardt, 2020). Therefore,

inhibition of ACLY activity or interference with ACLY can

effectively inhibit the ab initio synthesis of lipids and histone

acetylation, thereby inhibiting tumor cell growth, making ACLY

targeting for tumor inhibition a potential research hotspot (Feng

et al., 2019; Chen et al., 2020). Our study showed that Chidamide

could inhibit the highly expressed ACLY mRNA in breast cancer

cells, therefore, it is speculated that ACLY could be a potential

drug target for Chidamide in the treatment of breast cancer.

Another drug target we have identified for the treatment of

breast cancer is peroxisome proliferator-activated receptor

gamma (PPARG), a ligand-dependent transcription factor that

is a member of the nuclear hormone receptor superfamily and

plays an important role in regulating glucose and lipid

metabolism in vivo. The activation of PPARG has been

increasingly shown to inhibit the proliferation, migration and

invasion of breast cancer cells, while its down-regulation

promotes the progression of cachexia in breast cancer patients

(Janani and Ranjitha-Kumari, 2015; Yang et al., 2020; Kandel

et al., 2021). This is consistent with our results in clinical samples

compared in the GEPIA database, where mRNA for PPARG was

lowly expressed in breast cancer cells compared to normal

individuals. Kaplan-Meier mapper prediction studies also

confirmed that low expression of PPARG was associated with

worse OS in breast cancer patients. In contrast, the expression of

PPARG was significantly increased in breast cancer cells treated

with Chidamide. In addition, it has been shown that PPARG

agonists also enhance the activity of Histone deacetylase

Inhibitors (HDACi), which may act as epigenetic regulators to

exert anti-cancer effects (Mishra et al., 2014; Aouali et al., 2015).

Therefore, we speculate that the histone deacetylase inhibitor

Chidamide could positively feedback PPARG to act as an

inhibitor of breast cancer cells.

The most interesting of these genes is the TP53 gene. TP53 is

the gene most closely related to human tumors discovered so far,

with two isoforms: wild type (Wtp53) and mutant type (Mtp53).

Wild type TP53 plays an important role in maintaining normal

cell growth and inhibiting malignant proliferation, while in

contrast, mutant TP53 gene affects normal cell division and

promotes abnormal proliferation of tumor cells, eventually

leading to carcinogenesis, and human malignant tumors are

most commonly of the mutant type (Bourdon, 2007; Hong

et al., 2014; Stein et al., 2019). We compared TP53 gene

expression in clinical samples using the GEPIA database and

found that TP53 mRNA was highly expressed in breast cancer

cells compared to normal individuals. Kaplan-Meier mapper

prediction study found that high TP53 expression was

associated with worse OS in breast cancer patients. When

analyzed in the GSCA database, the SNV frequency of

TP53 was found to be the highest among the four hub genes,

reaching 96% in 275 breast cancer samples, with missense

mutations being the most important type of mutation. The

positive expression of the mutant TP53 gene is closely related

to the recurrence and prognosis of breast cancer, and its

overexpression suggests strong proliferative activity, poor

differentiation, high malignancy, invasive ability and high

metastasis of lymph nodes in tumor cells. Most scholars

believe that in many different types of tumor cells, activation

of wild-type P53 can make them sensitive to some

chemotherapeutic drugs; while mutant P53 can specifically

activate MDR-1/P-gp initiation and can increase the

expression of MDR-1, MRP genes and make tumor cells

produce multidrug-resistant (MDR) (Breier et al., 2013; Chen

et al., 2014; Zhang et al., 2020). The high expression rate of

mutant TP53 gene suggests that breast cancer cells are insensitive

to third-generation aromatase inhibitors (Zhao et al., 2017;

Bellazzo et al., 2018; Zhou et al., 2019). Therefore, targeting

therapy against TP53 has become one of the main directions of

cancer treatment research at present. It has been shown that

Chidamide inhibits the transcription and translation of mutant

TP53 (Li et al., 2019; Zhang et al., 2022). In progressive diffuse

large B-cell lymphoma (DLBCL) patients with Rituximab-

resistant TP53 mutations, Chidamide may play a chemo-

sensitizing role by inhibiting the transcription and translation

of mutant TP53 and up-regulating the surface expression of

CD20 antigen in lymphoma cells (Li et al., 2019). Our results also

confirm the ability of Chidamide to inhibit the expression of

mutant TP53 mRNA in breast cancer cells. It is worth

mentioning that some other studies have shown that

Chidamide is able to cause the onset of cell cycle arrest by

stimulating TP53 expression, which eventually triggers

apoptosis (Liu et al., 2016; Yuan et al., 2019; Cao et al., 2021).

This result, which is highly consistent with our previous

experiments, showed that Chidamide-induced breast cancer

cell death is closely related to apoptosis and transitional cell

autophagy, and TP53 plays a central role in this process. And the

related experimental results are also reflected in the experimental

results of other HDACI such as SAHA that we have studied (Feng

et al., 2017; Zhou et al., 2021). Another report showed that

Chidamide in combination with Doxorubicin (DOX) induced

p53-mediated cell cycle arrest and apoptosis and inhibited MDR
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in breast cancer cells (Cao et al., 2021). The combination of

Decitabine and Chidamide not only had a powerful beneficial

effect on acute myeloid leukemia (AML) symptoms but also

restored TP53 mutations in AML patients (Zhang et al., 2022).

Does this suggest that Chidamide can inhibit the gene activity of

mutated TP53 and restore the gene activity of wild-type

P53 thereby overcoming breast cancer MDR. TP53 may be a

potential target gene for Chidamide to overcome breast

cancer MDR.

Several HDACIs, including Chidamide, are currently in

clinical trials, both as monotherapy and in combination with

other agents. As single agents, they show promise in the

treatment of hematologic malignancies, but they are not as

effective in solid tumors due to acquired drug resistance and

impact on the target site. Identifying the target of a single drug is

a prerequisite for designing a multidrug combination approach.

The restoration of mutant TP53 wild-type function in breast

cancer cells by Chidamide identified in our study provides a

theoretical basis for the combination of Chidamide.

In conclusion, Chidamide, as a chemically new HDACi-like

drug with a novel structure, has been shown to inhibit breast

cancer, but its specific mechanism has not been fully elucidated.

In this study, we identified four hub genes to the treatment of

breast cancer with Chidamide through bioinformatics analysis,

and clarified that TP53 may be a potential target gene for

Chidamide to overcome MDR in breast cancer. This study

lays a solid experimental and theoretical foundation for the

treatment of breast cancer with Chidamide at the molecular

level and for the combination of Chidamide.
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