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Determining the three-dimensional structure of proteins in their native functional
states has been a longstanding challenge in structural biology. While integrative
structural biology has been the most effective way to get a high-accuracy structure
of different conformations and mechanistic insights for larger proteins, advances in
deep machine-learning algorithms have paved the way to fully computational
predictions. In this field, AlphaFold2 (AF2) pioneered ab initio high-accuracy
single-chain modeling. Since then, different customizations have expanded the
number of conformational states accessible through AF2. Here, we further
expanded AF2 with the aim of enriching an ensemble of models with user-
defined functional or structural features. We tackled two common protein
families for drug discovery, G-protein-coupled receptors (GPCRs) and kinases.
Our approach automatically identifies the best templates satisfying the specified
features and combines those with genetic information. We also introduced the
possibility of shuffling the selected templates to expand the space of solutions. In our
benchmark, models showed the intended bias and great accuracy. Our protocol can
thus be exploited for modeling user-defined conformational states in an automatic
fashion.
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Introduction

X-ray crystallography and cryogenic electron microscopy (cryo-EM) are two widely used
techniques for determining the detailed structures of biomolecules at the atomic level (Vénien-Bryan
et al., 2017; Wang and Wang, 2017). For structure-based drug discovery and design, having at least
one high-accuracy structure is essential (Congreve et al., 2020). Despite recent advances in
technology have made more protein structures available (Callaway, 2020), their experimental
determination is still a difficult and costly process with a high risk of failure (Lyumkis, 2019). In fact,
experimental protein structures represent only a small fraction of the complete set of known protein
sequences (The Uniprot Consortium, 2019; Burley et al., 2021). Furthermore, one structure only
represents a snapshot of a certain protein state, and may not necessarily be sufficient to understand
the overall mechanism of operation. This limitation has important implications for drug discovery,
especially for common drug targets such as G-protein-coupled receptors (GPCRs) and kinases,
which are known to modulate cellular behavior by switching among multiple structurally different
functional states (Attwood et al., 2021; Yang et al., 2021).
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The 14th edition of Critical Assessment of protein Structure
Prediction (CASP14) has recognized AlphaFold2 (AF2) for its
impressive accuracy in predicting monomeric protein structures de
novo (Jumper et al., 2021). AF2 makes it straightforward to predict a
protein structure from a protein sequence and has provided millions of
protein models with estimated accuracy (Tunyasuvunakool et al., 2021).
Since the emergence of AF2, a number of deep learning-based methods
have been developed with the same goal of predicting protein structures at
experimental accuracy (AlQuraishi, 2021; Baek et al., 2021; Chowdhury
et al., 2022; Lin et al., 2022). Among them, RoseTTAFold was the first
approach that was able to predict both active and inactive GPCR
conformations by using templates in a uniform functional state,
outperforming comparative homology modeling methods (Baek et al.,
2021). This achievement has sparked interest in developing workflows to
predict multiple native conformations of a protein target with the state-of-
the-art AF2 implementation.

To date, a number of AF2 customizations that adopted different
concepts are available (Del Alamo et al., 2022; Heo and Feig, 2022;
Stein and Mchaourab, 2022; Wayment-Steele et al., 2022). Del Alamo
and co-authors took advantage of a shallow multiple sequence
alignment (sMSA) to collect an ensemble of structures, among
which multiple native conformations of GPCRs and transporters
were identified (Del Alamo et al., 2022). Alternatively, SPEACH_
AF (hereafter SPEACH) masked multiple positions in the multiple
sequence alignment (MSA) to switch the prediction toward alternative
conformational states that were less represented in theMSA (Stein and
Mchaourab, 2022). Another protocol removed the MSA (noMSA) and
prepared a local database of state-annotated GPCRs to perform
AF2 template-based modeling (Heo and Feig, 2022). These
methods for sampling conformational changes in proteins have
shown great potential, but also have some limitations, such as a
reduced breadth of sampled conformations or a high dependence
on the structural features of selected templates.

Here, we update our previous protocol (sMSA) to facilitate the
collection of templates with user-defined functional or structural
properties of GPCRs and kinases. Templates are automatically
filtered and retrieved from an annotated database in accord with

the specified functional or structural criteria. Through a calibrated
balancing of genetic and template-based features, our protocol
samples equal or better active GPCR states than all the peer-
reviewed methods for sampling alternative states. On a difficult
target, randomizing templates to explore the available structural
space significantly improved accuracy. In modeling kinase
conformations, our protocol enriched the predicted ensemble with
models carrying user-defined structural features.

Methods

We updated our previous modified ColabFold version (Del Alamo
et al., 2022; Mirdita et al., 2022) and our python interface to allow users
to specify functional or structural properties of templates for modeling
GPCRs and kinases. The new implementation and accompanying
documentation can be found at https://github.com/meilerlab/AF2_
GPCR_Kinase.

GPCRs benchmark

Target PDBs for Lutropin-choriogonadotropic hormone receptor
(LSHR), Melatonin receptor type 1A (MTR1A), Prostaglandin E2
receptor EP4 subtype (PE2R4), Beta-1 adrenergic receptor (ADRB1),
Parathyroid hormone/parathyroid hormone-related peptide receptor
(PTH1R) and Frizzled-7 (FZD7) were 7FII, 7VGY, 7D7M, 7JJO,
6NBF and 6WW2 respectively (Su et al., 2020; Duan et al., 2021;
Nojima et al., 2021; Wang et al., 2022). The protein regions
corresponding to transmembrane helices (TM-RMSD) were retrieved
from GPCRdb (Kooistra et al., 2021). Four workflows were evaluated to
predict the active state of GPCRs: ActTemp+sMSA was run with eight
sequence clusters and 16 extra cluster sequences combined with the
automatic detection of “Active” templates not belonging to the same
subfamily. Those number of sequences were chosen to provide evolution-
based structural information without changing the activation state
inferred from templates. In particular, the script takes the

SCHEME 1
Schematic representation of themethod. The protein sequence is used to collect MSA and templates. A subset of sequences and templates are collected
by randomly subsampling the MSA and by interrogating webservers to filter templates with user-defined structural properties. The predicted ensemble of
structures is biased toward the intended conformation.
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AF2 generated list of templates ranked by sequence identity and filters out
all the PDBs not matching the user-defined activation state in accord to
GPCRdb annotation. Here, the top 4 templates were used. For LSHR,
MTR1A, PE2R4, ADRB1, PTH1R and FZD7 those were (sequence
identity in parenthesis): 6H7L_A (20.6%)-6IBL_A(15.9%)-6K41_
R(23.1%)-6K42_R(23.7%), 6H7L_A(26.6%)-7P00_R(23.7%)-6IBL_
A(19.9%)-7RMG_R(22.7%), 7E32_R(21.9%)-7CKY_R(20.4%)-7CKW_
R(19.2%)-7JVP_R(20.4%), 6MXT_A(37.1%)-7CKY_R(36.8%)-7CKW_
R(36.8%)-7JVP_R(37.4%), 7F16_R(35.8%)-6M1I_A(26.0%)-6P9Y_
R(30.5%)-6VN7_R(32.0%) and 6XBM_R(25.7%)-6XBK_R(19.0%)-
6OT0_R(27.2%)-7D76_R(18.3%) respectively. Other AF2 parameters

were kept as in our previous pipeline - named sMSA - that used
16 sequence clusters and 32 extra cluster sequences without any
template and no recycling (Del Alamo et al., 2022). To remove the
MSA (noMSA run), the same implementation published previously was
adopted (Heo and Feig, 2022). These runs were then carried out using the
GPCRdb API (Application Programming Interface) rather than a local
GPCR database to avoid mismatches between the pool of available
templates. The SPEACH protocol was applied with a sliding window
of 10 masked residues (Stein andMchaourab, 2022). Thus, the number of
models collected with SPEACH was higher than the 50 models collected
with other protocols. Unfolded models were discharged.

FIGURE 1
AF2 accuracy in predicting active state GPCRs with different protocols. ActTemp+sMSA was predicted with templates in the active state and a shallow
MSA, sMSA with a shallow MSA only, noMSA without a MSA for templates aligned regions, SPEACH with a sliding window masked MSA. TM-RMSD between
experimental active and inactive structures is shown as a dashed line.
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To assess the impact of randomizing templates, the inactive state
structure of Leukotriene B4 receptor 1 (LT4R1, PDB 7K15) was used
as a target (Michaelian et al., 2021). The MSA for the aligned regions
was removed, and 50 models were generated with and without
randomizing templates. The templates used for the models without
randomization were 6VI4_A(27.5%)-4ZUD_A(20.0%)-4YAY_
A(20.1%)-4N6H_A(20.2%).

EIF2AK4 kinase benchmark

All the experimental structures available were absent from the
AF2 training set. Models were predicted by using exactly the same
ActTemp+sMSA protocol adopted for GPCRs predictions but with
20 templates instead of 4. The DFG, aC_helix, and Salt bridge KIII.17

and EαC.24 structural features as well as the activation loop orientation
used to collect templates were defined according to the KLIF database
(Kanev et al., 2021). Unfolded models were discarded.

Results

The original pipeline that was developed to sample alternative
conformations was expanded to improve the prediction of GPCRs and
kinases in a specific conformational state. Here, templates are selected
through structural filters and the resulting structures are combined
with genetic information coming from a subset of the MSA to predict
models carrying the desired structural properties at high accuracy
(Scheme 1). In particular, users can now specify the activation state of
GPCRs and the script will look for templates that match that state or
are bound to a signaling protein. To do so, one of the following labels
must be declared: “Active”, “Inactive”, “Intermediate”, “G protein”,
“Arrestin”. For kinases, users can select specific structural feature
values and the script will search for templates that match those criteria.
Allowed values for the corresponding structural feature are 1) DFG:
“out”, “in”, “out-like”, “all”; 2) aC_helix: “out’, “in”, “all”; 3) Salt bridge
KIII.17 EαC.24: “yes”, “no”, “all” (McClendon et al., 2014). Optionally, the
list of templates that pass the sequence and structural filters can be
randomized to explore the available structural space.

In the sections below, we demonstrate how selecting templates in
accord with functional or structural properties and combining those
with genetic information can influence the predicted structural
features of the models. We also show the results of randomizing
templates on a difficult target.

Combining a shallow MSA with state-
annotated templates achieves state-of-the-
art accuracy in predicting GPCRs active state

Our new pipeline was used to predict GPCRmodels by combining
a very shallow MSA with the automatic detection of the best 4 active
templates from GPCRdb (ActTemp+sMSA). The benchmark set of
these GPCRs consisted of six proteins: LSHR, MTR1A, PE2R4,
PTH1R, FZD7 and ADRB1. The first three class A receptors were
predicted with the lowest accuracy in a broad benchmark in which the
active state was modeled without MSA (Heo and Feig, 2022). PTH1R
and FZD7 are members of class B and class F family, respectively.
Instead, the active state of ADRB1 was included because the inactive

state was part of the neural networks training set. Thus, we targeted the
active state with the specific aim of assessing the ability of our
implementation to overcome the neural networks preference for
the inactive state. For each method, we measured the accuracy as
Cα-RMSD (root-mean-square deviation) of the transmembrane
helices (TM-RMSD) as well as of the loops with respect to the
experimentally determined structure. Our implementation was
compared to AF2 workflows designed to sample alternative protein
conformations. ActTemp+sMSA consistently generated models with
near or subangstrom accuracy for all the GPCRs TM helices, showing
state-of-the-art accuracy (Figure 1). Interestingly, our approach and
noMSA were the only methods able to overcome the ADRB1 inactive
state bias and accurately model the active state with an average
accuracy of 0.5 Å on TM helices and 1 Å on loops. On the
remaining targets, loops were in general better modeled by
protocol leveraging on genetic information than those on
templates. In particular, SPEACH—that does not reduce the MSA
depth—has shown a consistent good accuracy. By comparing the two
methods that leverage on templates (ActTemp+sMSA and noMSA),
loops were on average better modeled by the former probably due to
the contribution of genetic information compensating for missing or
poorly conserved loops in the selected templates.

Given the separated evaluation of TM helices and loops accuracy,
we measured the pTM score per model and assessed Spearman
correlation between pTM and global RMSD for each ensemble
(Figure 2). Overall, ActTemp+sMSA generated equally or better
active state models than noMSA mainly due to higher accuracy in
loops modeling. Within each ensemble, correlation is often reasonable
and more importantly the best models are often assigned with the
highest pTM scores with very few exceptions. However, pTM scores
between the two protocols do not seem correlating well with accuracy.
In other words, pTM scores often cannot correctly discriminate which
protocol generated best active structures.

Shuffling templates in a homogenous
functional state can improve accuracy

Given that subsampling the sequence space (i.e., the MSA) returns
different models, we hypothesized that randomly selecting a subset of
templates can potentially yield more accurate models. To test this, we
removed the genetic information within the AF2 pipeline and generated
50 models with and without randomizing inactive templates. For each
model, our script selected 4 random inactive state structures from
GPCRdb that passed the sequence similarity filter. Accuracy was
measured as TM-RMSD from the inactive state structure of LT4R1
(PDB 7K15). The exploration of the structural space defined by the
ensemble of all the inactive templates resulted in more accurate models
compared to using the top 4 templates (Figure 3A).

The superposition of the best model in the two ensembles shows
improved fitting of the long TM7 helix and better modeling of
TM1 and TM6 when using random templates (Figure 3B).

User-defined structural features to bias
kinase modeling

The concept of allowing users to define structural features of
GPCR templates was also applied to kinases using the KLIF webserver
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(Kanev et al., 2021). We implemented the possibility to choose
templates differing on three conformational properties: DFG, αC-
helix (ac_H), and salt bridge KIII.17EαC.24. The script automatically
selects and retrieves templates satisfying user-defined values for these
three structural criteria. We assessed the effect on the predicted
conformations by modeling the EIF2AK4 (GCN2) kinase. We
generated four ensembles of 50 models each with the following

templates biased features: 1) “DFG=all/ac_H=all”, i.e. all templates
are allowed; 2) “DFG=in/ac_H=in” and 3) ‘DFG=in/ac_H=out’ which
differ in the αC-helix position regardless of its rotation, i.e. templates
have DFG=in but differ in the ac_H conformation; 4) “DFG=out/ac_
H=all”, all the selected templates have DFG=out but ac_H is allowed in
any conformation. Because DFG is a multi-criteria parameter, instead
of measuring whether the predicted DFG corresponds to the selected

FIGURE 2
Correlation between pTM and global RMSD per target. Spearman correlation for each ensemble is indicated below each violin plot.

FIGURE 3
Accuracy in predicting the LT4R1 inactive state with and without randomizing templates. (A) TM-RMSD distribution of models. TM-RMSD between
experimental active and inactive structures is shown as a dashed line. (B) Superposition of the best model from the random templates ensemble (green) and
without randomizing templates (orange) to the experimental structure (gray).
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DFG templates bias, we evaluated the activation loop (a_loop) position
which is well-defined and mostly corresponds to DFG. Without
biasing the prediction (DFG=all/ac_H=all), most of the models
were found in the “a_loop=in/ac_H=out” conformation, while 20%
of the pool was in the “a_loop=in/ac_H=in” conformation, and only
one model was found with “a_loop=out” (Figure 4A). By biasing the
prediction through the selection of ac_H=in and ac_H=out templates
in two different ensembles (DFG=in/ac_H=in and DFG=in/ac_
H=out), AF2 generated most of the models in agreement with the
templates ac_H position. Accordingly, “DFG=in” templates generated
only “a_loop=in” conformations (blue and orange bars) while in the
only “DFG=out” ensemble we found a significant number of models
carrying the “a_loop=out” conformation (green bar). The
superimposition of “a_loop=out” and “a_loop=in” models onto the
corresponding experimental “DFG=out” (PDB 7QWK) and
“DFG=in” structures (PDB 7QQ6) shows an excellent fitting of
DFG loops, with a small discrepancy for ‘DFG/a_loop=out’ likely
due to the presence of the inhibitor in the experimental structure
(Figure 4B) (Maia de Oliveira et al., 2020).

Discussion

The prediction of user-defined conformational states of proteins
has been a challenge even after the advent of AF2. Previous
workflows attempting to solve this problem either do not
explicitly predict user-defined structural properties or require the
creation of state-annotated local structure databases (Del Alamo
et al., 2022; Heo and Feig, 2022; Stein and Mchaourab, 2022;
Wayment-Steele et al., 2022). In this work, we propose a pipeline
that biases AF2 predictions toward the intended functional state of
GPCRs or specific structural properties of kinases. One key aspect of
our method is its simplicity in use. By leveraging on the API
(Application Programming Interface) of two popular web servers,
GPCRdb and KLIFS (Kanev et al., 2021; Kooistra et al., 2021), our

script filters templates according to pre-defined structural or
functional parameters, allowing for a fully automatic selection of
templates without the need for manual inspection or for
downloading and updating of databases.

Our results in predicting the active structures of several
challenging GPCRs show that combining a shallow multiple
sequence alignment (MSA) with templates in a user-defined
activation state (i.e. structure annotated as Active, Inactive or
Intermediate) outperforms existing AF2 workflows. A direct
comparison with models predicted without an MSA (noMSA)
suggests that the balanced combination of genetic (MSA) and
structural (templates) features may be crucial for achieving high
accuracy, especially on loops that are usually less conserved and
feature higher structural variance. This balanced mixture enables
structural refinement of the desired conformational state while
avoiding the overwhelming effect coming from a deep MSA, as
previously reported (Del Alamo et al., 2022). Another advantage of
a balanced mixture of genetic and structural information is its reduced
sensitivity to neural network biases, i.e. the conformational preference
of the neural network. In our benchmark, target conformations were
four class A and one class B1 GPCRs for which inactive structures were
more prevalent than active ones in the AF2 training set. Furthermore,
the inactive structure of ADRB1 was directly part of the AF2 training
set, thus representing a very strong bias. Indeed, protocols relying
solely on genetic information (sMSA and SPEACH) were on average
less accurate and completely missed the target conformation for
ADRB1. On the other side, ActTemp + sMSA and noMSA depend
on the presence of high-accuracy templates. Indeed, ADRB1 was
predicted with an astonishing low RMSD value due to the high
accuracy of the active state templates on both TM helices and loops.

Shuffling templates to predict the inactive state structure of
LT4R1 generated better models than by taking the top four
sequence identity templates in the inactive state. Regions that were
better modeled were indeed different in the top four templates.
Suggesting that despite a lower sequence identity, templates

FIGURE 4
(A) Enrichment of eif2k4 kinase models with structural properties corresponding to the biased template features used. The four ensembles were
calculated with a different “DFG/ac_H” templates bias. For each ensemble, the number of models with the three “a_loop/ac_H” conformational feature
combinations are shown with a different color bar. (B) Superposition of two models with a_loop=in and a_loop=out to the two corresponding “DFG=in” and
“DFG=out” experimental structures. DFG residues of models with “out” and “in” orientations are shown in green and orange, respectively. Experimental
structures of eif2k4 are shown in gray.
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randomly chosen from the remaining pool of inactive state structures
may have been more suitable to model this conformational state. This
kind of approach can be used to expand sampling without changing
the desired structural features, like the activation state of a GPCR.

Our efforts to bias the prediction of a kinase toward user-
defined structural properties exploited two important structural
components that define its activation state: DFG and αC-helix.
While the latter was easier to direct toward the intended position,
the former was more difficult likely due to the neural network bias
in the training set composition. Despite this, we successfully
generated multiple models with “DFG=out” conformation.
Given that “DFG=out” structures are needed for structure-based
drug design and discovery of type-II inhibitors (Ung and
Schlessinger, 2015), our script is well positioned to generate
models carrying this crucial structural feature. Frequency of
sampling the desired structural features may change protein by
protein due to multiple factors such as neural network biases,
templates features and MSA composition.

Our work expands the portfolio of AlphaFold2 customizations
developed with the aim of predicting multiple conformational states of
proteins. Our python interface facilitates the prediction of intended
functional or structural properties of GPCRs and kinases and can be
further extended to include more properties as needed. We also
emphasize the importance that structure- and function-annotated
databases had for this work. The expansion of existing databases to
include additional annotations and the development of new protein
family-based databases would improve or enable automatic calibrated
modeling, respectively. This is particularly relevant for receptors and
transporters that are known to span multiple conformations in their
functional cycle. Together, curated databases and machine learning
offer a powerful combination for high throughput modeling at high
accuracy and, ultimately, for structure-based drug discovery (Sala
et al., 2022).
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