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Chronic liver diseases from varying etiologies generally lead to liver fibrosis and
cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly
one-quarter of theworld population, thus representing amajor and increasing public
health burden. Chronic hepatocyte injury, inflammation (non-alcoholic
steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver
cancer, particularly hepatocellular carcinoma (HCC), being the third most
common cause for cancer-related deaths worldwide. Despite recent advances in
liver disease understanding, therapeutic options on pre-malignant and malignant
stages remain limited. Thus, there is an urgent need to identify targetable liver
disease-driving mechanisms for the development of novel therapeutics. Monocytes
and macrophages comprise a central, yet versatile component of the inflammatory
response, fueling chronic liver disease initiation and progression. Recent proteomic
and transcriptomic studies performed at singular cell levels revealed a previously
overlooked diversity of macrophage subpopulations and functions. Indeed, liver
macrophages that encompass liver resident macrophages (also named Kupffer cells)
and monocyte-derived macrophages, can acquire a variety of phenotypes
depending on microenvironmental cues, and thus exert manifold and sometimes
contradictory functions. Those functions range from modulating and exacerbating
tissue inflammation to promoting and exaggerating tissue repair mechanisms
(i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis).
Due to these central functions, liver macrophages represent an attractive target
for the treatment of liver diseases. In this review, we discuss the multifaceted and
contrary roles of macrophages in chronic liver diseases, with a particular focus on
NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches
targeting liver macrophages.
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1 Introduction

The liver is a vital organ with essential metabolic and
immunological functions. Located at the crossroads between the
systemic and the gut-derived blood circulation, it represents a
privileged site for multifactorial inter-organ interactions.
Furthermore, and due to its particular histological features, the
liver is an organ with intense cell-cell interactions. A typical
multifactorial condition is non-alcoholic fatty liver disease
(NAFLD). (Peiseler et al., 2022) NAFLD is defined by hepatic
steatosis (accumulation of fat in hepatocytes) independent from
alcohol consumption or other medical conditions, it may progress
to non-alcoholic steatohepatitis (NASH, incidence 2%–5% in the
general population) and liver cirrhosis. Due to the global increase
of obesity and metabolism-related diseases, NAFLD/NASH is
expected to become the prime risk factor for hepatocellular
carcinoma (HCC). (Ioannou, 2021; Riazi et al., 2022) Primary liver
cancers are the third leading cause of cancer-related death worldwide
despite only ranking as the sixth most frequently diagnosed cancer
overall. (Llovet et al., 2021; Sung et al., 2021) Reasons for the high
mortality are that liver cancer is often diagnosed at an advanced stage
when resection or transplantation, the only curative approaches, are
not options anymore. HCC is the most prevalent form of primary liver
cancer and predominantly develops in fibrotic or cirrhotic livers in a
setting of chronic inflammation. (Forner et al., 2012) A recent study
predicted that the incidence of liver cancer will increase by 55.0%
between 2020 and 2040, with a predicted 1.3 million deaths from liver
cancer in 2040 (+56.4% compared to 2020) globally. (Rumgay et al.,
2022a) The main reason for the expected increased incidence of HCC
is the NAFLD/NASH epidemic, urging for a better understanding of
the underlying mechanisms of hepatocarcinogenesis in this metabolic
and inflammatory condition. (Riazi et al., 2022) Noteworthy, and
mainly due to unhealthy life habits, about one-quarter of the world
population presents varying degrees of NAFLD. Despite recent
advances in liver disease understanding, therapeutic options for
NAFLD patients remain limited and there is currently no effective
therapeutic option for HCC. (Llovet et al., 2021) Thus, there is an
urgent need to identify targetable liver disease-driving mechanisms for
the development of novel therapeutics.

The liver may to some extent be regarded as an immunological
organ, as it serves as the primary gateway for gut-derived (food- or
microbiota-derived) antigens and is densely populated with immune
cells, most notably myeloid cells in forms of liver resident
macrophages during homeostasis, also named Kupffer cells (KCs).
It is important to point out that KCs roughly represent 15% of total
liver cells, pointing towards their central contributions to organ
functions. (Lopez et al., 2011) Nonetheless, the remarkable diversity
of liver myeloid cells was previously overlooked, both during
homeostasis and (pre-) malignant liver diseases. Indeed, recent
studies using multiplexed proteomic or transcriptomic studies
highlighted the heterogeneity of the macrophage compartment, as
exemplarily pointed out by Mulder et al. as part of the “monocyte and
macrophage universe” (MoMacs-verse). (Mulder et al., 2021) Upon
acute and chronic liver diseases, and this is particularly true in
NAFLD/NASH, the “liver macrophage” compartment undergoes

drastic changes both in terms of cellular origin, and in terms of
phenotypic activation. Those changes primarily correspond to
protective mechanisms against, for instance, pathogens or
metabolism-related tissue injury, but are also responsible for
disease progression when exacerbated. In this review, we aim at
providing a current state-of-the-art view on the monocyte/
macrophage landscape in healthy and diseased liver, and how this
influences liver malignancies.

2 The manifold faces of “liver
macrophages” in the liver at steady state

Whendiscussing the roles of livermacrophages, it is important tofirstly
define what we refer to as “liver macrophages”. Indeed, in recent years a
certain number of dogmas were challenged by multiplexed and high-
dimensional approaches such as single liver cell transcriptome analysis, flow
cytometry, cell tracing and multiplex immunohistochemistry. These
approaches revealed a previously underestimated diversity and
heterogeneity of the liver macrophage pool at a given time in disease
course, as well as at a given location in the liver.

2.1 The liver sentinels: Kupffer cells

Viewing the liver as an immunological organ acknowledges its
central role in controlling local and systemic immune responses,
notably through the release into the main bloodstream of alarmins
and complement factors by hepatocytes. (Bogdanos et al., 2013) Most
importantly, a yolk sac derived macrophage population remains in the
liver and gives rise to self-renewing liver resident macrophages, the
KCs. In the adult liver, KCs are located within the sinusoid capillaries
and present large cytoplasmic expansions, and are thus ideally located
to sense changes in the circulating blood. KCs exert key functions in
liver homeostasis maintenance, and tolerance to harmless food- or
gut-derived antigens entering the liver via the portal vein, as well as
clearing the systemic blood from exogenous or endogenous particles
(e.g., pathogens, dead cell debris, red blood cells). (David et al., 2016;
Gola et al., 2021; Guilliams et al., 2022) KCs were also shown to
directly control T cell activation, although not as efficiently as
dendritic cells and most often as a tolerogenic mechanism. (You
et al., 2008; Heymann et al., 2015) KCs also possess the ability to
repress dendritic cell-induced T cell activation, as demonstrated by
lower T cell proliferation when KCs were introduced into T cell and
dendritic cell co-cultures. In line, earlier studies demonstrated that the
liver is a privileged site for CD8+ T cell apoptosis. (Huang et al., 1994;
Bertolino et al., 1995) On the other hand, KCs also act as the immune
system sentinels, and are among the first responders to pathogen- or
damage-associated molecular patterns (PAMPs and DAMPs,
respectively). Upon liver injury and despite their immunotolerant
functional roles, KCs represent a major source of chemoattractants for
circulating immune cells, including bone-marrow derived
macrophages. Similarly to other immune cell populations, multiple
KC subtypes have been identified, with varying functions during
homeostasis and disease. (Bleriot et al., 2021; Guilliams et al., 2022)
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2.2 The task force: Monocyte-derived
macrophages

Monocyte-derived macrophages (MoMFs) represent a complex
yet very intriguing compartment of the innate immune system, as
naïve and freshly recruited MoMFs can rapidly accumulate at the
injury sites and be directed towards a plethora of activated phenotypes
depending on microenvironment-derived signals, ranging from pro-
to anti-inflammatory, and pro- to anti-fibrotic. MoMFs can also either
exacerbate pathological processes leading to tissue injury or play
crucial roles in supporting tissue repair. Recent findings from
single cell transcriptome sequencing and spatial proteomics
evidenced the diversity of MoMF phenotypes even at a given time
in a singular tissue, and will be detailed below with a particular focus
on liver cancer. (Ramachandran et al., 2019; Krenkel et al., 2020;
Guilliams et al., 2022; Hundertmark et al., 2022) Thus, MoMF
populations represent very dynamic and astonishingly flexible
immune cells. A specific MoMF population was shown to be
present preferably around bile ducts during homeostasis, identified
as Gpnmb-expressing and termed lipid-associated macrophages
(LAMs), in reference to the monocytes that were shown to
accumulate during liver steatosis. (Remmerie et al., 2020; Guilliams
et al., 2022)

2.3 Additional sources of liver macrophages

Peritoneal macrophages represent an alternative source of
macrophages, as described by Wang and Kubes in a mouse model
of focal and superficial thermal-induced liver injury. (Wang and
Kubes, 2016) In this study, the authors described a non-vascular
route of macrophage infiltration towards the injury sites, and an active
participation of GATA6-positive peritoneal macrophages in inducing
tissue repair. The authors hypothesize peritoneal macrophages
migrating through the liver capsule may be implicated in liver
cancer as well, but this remains to be demonstrated. Similarly,
some studies demonstrated the presence of capsular area-specific
macrophages. The capsular macrophages were defined as negative
for CLEC4F and TIMD4 but positive for CD11b and F4/80 in mice.
(David et al., 2016; Sierro et al., 2017) Peritoneal macrophages were
also shown to express CD207, similarly to some macrophages located
at the central vein. (Guilliams et al., 2022) A function attributed to the
capsular macrophages was to limit the propagation of peritoneal
pathogens to the liver, by inducing neutrophil recruitment to the
liver. (Sierro et al., 2017) Overall, the implications of capsular
macrophages in NAFLD and HCC remain to be elucidated.

3 The sword of damocles: Focus on the
roles of liver macrophages in NAFLD/
NASH as a pre-malignant condition

Primary liver cancers are mainly of two cellular origins:
hepatocytes (leading to HCC, which accounts for 80% of primary
liver cancers), or cholangiocytes (leading to cholangiocarcinoma,
CCA, 15% of primary liver cancers). (Rumgay et al., 2022b) Liver
cirrhosis or even chronic liver diseases at earlier stages, are regarded as
major risk factors for HCC. On the other hand, risk factors for CCA
remain to be clarified, since CCA has higher risks to arise in healthy

livers without any apparent risk factor as compared to HCC. (Banales
et al., 2020) NAFLD encompasses a large range of chronic liver disease
conditions, notably characterized by varying degrees of steatosis
(i.e., excess fat accumulation in hepatocytes), inflammation, and
fibrosis. In the last decades, much knowledge has been gathered
that demonstrate liver macrophage implications in virtually all the
aspects of NAFLD initiation and progression, comforting earlier
hypotheses of multiple parallel hits. Nevertheless, the multifaceted
yet contradictory macrophage functions render macrophage-targeting
strategies challenging. For all these reasons, this section describes the
current knowledge on the intricate roles of liver macrophages that may
have pro- or anti-tumoral roles in NAFLD- and NASH-associated
HCC. (Ueno et al., 2022)

3.1 An adapting (im) balance between resident
KCs and MoMFs mobilization and spatial
distribution

The healthy liver is primarily populated by liver resident
macrophages (KCs) and patrolled by MoMFs. We and others have
demonstrated that in mouse models of NAFLD/NASH, there is a
global disruption in the liver macrophage compartment, notably
visualized by a massive infiltration of MoMFs and a reduction in
KC numbers. (Heymann et al., 2015; Reid et al., 2016; Guillot et al.,
2020; Mulder et al., 2021) The changes observed in the balance
between the distinct macrophage populations have dramatic
implications for the local immune milieu, considering the major
functional differences attributed to specific macrophage pools
(i.e., KCs versus MoMFs). The histological changes observed during
NAFLD progression also include a marked accumulation of immune
cells, notably MoMFs, within the peri-lobular areas, marked with
active fibrogenesis and inflammation. (Guillot et al., 2023) This has
several consequences on the inflammatory status of the liver, especially
considering that the portal areas represent the primary sites of entry
for gut-derived antigens, usually captured by KCs without the
initiation of an inflammatory response, as opposed to MoMFs that
are prone to respond to bacterial antigens by the secretion of pro-
inflammatory mediators. (Knolle et al., 1995) Thus, the disturbed KC/
MoMF balance together with a preferential localization of MoMFs in
portal areas, may further enhance a sustained and detrimental
inflammation in the liver.

3.2 Liver macrophages as inflammation
orchestrators

KCs are regarded as the liver sentinels, generally playing the role of
immunotolerant cells that prevent excessive inflammation to harmless
antigens. For instance, it is long-known that KCs respond to
lipopolysaccharides by releasing IL-10, thus reducing the local
secretion of pro-inflammatory IL-6 and tumor necrosis factor-
alpha (TNF-α). (Knolle et al., 1995) However, the transcriptomic
profiles of myeloid cells present in the liver, but also their precursors
found in the bonemarrow, were shown to be drastically altered and for
a prolonged time upon steatohepatitis. This was notably demonstrated
by single cell sequencing that showed a reduced S100a9+ myeloid cell
population in Western diet fed mice. In the same study, bone marrow
transfer from normal chow to Western diet fed mice resulted in
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increased liver injury upon exposure to acetaminophen, revealing a
potentially protective macrophage phenotype against excessive
inflammatory response to hepatic injury. (Krenkel et al., 2020)
Accordingly, it was shown that macrophage depletion prior to or
when starting a methionine/choline deficient diet model of NASH,
meaning at a point where the liver is mostly populated with KCs,
resulted in decreased steatosis and monocyte recruitment to the liver.
(Tosello-Trampont et al., 2012; Reid et al., 2016) Guilliams et al.
suggested a rather anti-inflammatory role of LAMs, which also
accumulate in a mouse NAFLD model. (Guilliams et al., 2022)
Indeed, in this study, the authors showed that LAMs found in
Western diet fed mice had lower gene expression of pro- (e.g.,
Tnfa, Il1b) and anti-inflammatory (e.g., Il10) cytokines compared
to their counterparts found in the healthy liver. Furthermore, the
authors reported on the presence of similar macrophage phenotypes in
human steatotic liver, although this was observed in a limited number
of patient samples and needs further validation, particularly on
establishing the functional relevance of this macrophage
heterogeneity. Besides, liver macrophages were shown to respond
to, and also to direct, T cell response in homeostasis, but also
during liver disease. (Mulder et al., 2021) More specifically,
macrophages play central roles in amplifying interleukin-17A (IL-
17A)-driven inflammation and fibrosis in the liver. (Guillot et al.,
2014) Indeed, IL-17A-receptor is ubiquitously expressed and has been
shown to have multiple roles in inflammatory disease progression. IL-
17A treatment directly increased pro-inflammatory cytokine
expression on macrophages, and enhanced myofibroblast collagen
expression.

3.3 Liver macrophage roles in the installment
of liver steatosis

KCs and macrophages in general, are characterized by their ability
to sense and phagocytose particles or molecules in their surrounding
environment. As such, toll-like receptors (TLRs) represent a family of
membrane or cytoplasmic receptors triggering signaling cascades
responsible for directing further immune responses. TLR4 is a
known receptor for lipopolysaccharides, and its activation leads to
the release of potent pro-inflammatory cytokines. Furthermore,
TLR4 also binds free fatty acids, leading to NF-κB activation and
TNF-α/IL-6 release. (Shi et al., 2006) Noteworthy, macrophages may
actively influence the global metabolism. This was for instance
evidenced by a manuscript from Jourdan et al., in which KC-
specific cannabinoid-receptor type 1 deficient obese mice had
improved glucose tolerance and insulin sensitivity yet similar liver
fat content compared to their wild-type counterparts. (Jourdan et al.,
2017) These effects were attributed to an Il-6, Ccl2 and Tnf-α gene
expression reduction by KCs in obese mice, and reduced oxidative
stress in KCs. In the same study, conditioned medium from KCs
inhibited the hepatocyte response to insulin, which was abrogated in
cannabinoid receptor type 1 deficient KCs. Lipid-associated
macrophages (LAMs) have been described as a population of
macrophages accumulating in the adipose tissue of obese humans
and mice and displaying lipid metabolism and phagocytosis related
gene signatures. Lipid accumulation in these metabolically active
macrophages was further evidenced by staining of neutral lipids
with BODIPY, CD9 and TREM2 staining. (Jaitin et al., 2019)
Similarly, MoMFs isolated from Western diet fed mice were shown

to have decreased S100a8 and S100a9 expression but increased Plin2,
suggesting MoMFs are similarly implicated in lipid metabolism.
(Krenkel et al., 2020) In the liver, LAMs have been described as
Trem2-expressing macrophages observed in a high-fat diet murine
model and in NASH and obese patients. (Jaitin et al., 2019; Hendrikx
et al., 2022) Furthermore, a large body of evidence demonstrated that
TREM2+ macrophages have an anti-inflammatory role. (Jaitin et al.,
2019; Remmerie et al., 2020; Zhang et al., 2022; Zhou et al., 2022)
Conversely, Ramachandran et al. described scar-associated
macrophages in human cirrhotic liver that co-expressed LAM
signature genes, such as TREM2, GPNMB, CD9 and SSP1, but also
mitogens for fibroblasts such as PDGFB and TNSFS12 (TWEAK) and
displayed a pro-fibrotic phenotype. (Ramachandran et al., 2019)
TREM2 is a transmembrane receptor of the immunoglobulin
superfamily that recognizes lipids and apolipoproteins, and
promotes immune tolerance during NAFLD. (Colonna, 2003)
Mechanistically, TREM2 is associated with and signals via DAP12,
which downregulates the transcription of inflammatory genes like
TNFA, IL1B, and NOS2. (Takahashi et al., 2007) TREM2+

macrophages seem to be a highly conserved population, as
macrophages with closely similar gene signatures have been
described in different tissues and diseases, such as adipose tissue,
atherosclerosis and Alzheimer disease. (Jaitin et al., 2019) Thus,
TREM2 has emerged as a marker for an immunosuppressive lipid-
associated macrophage subset in fatty liver. (Jaitin et al., 2019;
Remmerie et al., 2020; Zhang et al., 2022) The fatty acid
translocase CD36 is a scavenger receptor that binds and
internalizes fatty acids and lipoproteins and can stimulate pro-
inflammatory as well as anti-inflammatory functions in
macrophages. In atherosclerosis and fatty liver disease,
internalization of modified lipids, such as oxidized LDL, by CD36-
expressing macrophages resulted in formation of inflammatory foam
cells. (Rahaman et al., 2006; Bieghs et al., 2012) Interestingly, the pro-
inflammatory functions of CD36 are dependent on co-activation of
TLRs. On the contrary, CD36 expression is increased on restorative
macrophages and participates in anti-inflammatory functions, like
efferocytosis and the uptake of fatty acids, acting as ligands for anti-
inflammatory nuclear receptors (i.e., PPARs) or substrate for fatty acid
oxidation. (Canton et al., 2013; Puengel et al., 2022a) Furthermore,
Cd36 targeted silencing in KCs but not in MoMFs led to decreased
liver oxidative stress (reduced malondialdehyde and reactive oxygen
species accumulation) although this did not affect liver total
triglyceride levels in obese mice. (Bleriot et al., 2021)

3.4 The impact of liver macrophages on
fibrogenesis

The progression of liver diseases is typically characterized by the
extent of liver fibrosis. Liver fibrosis is defined by the excessive
accumulation of extracellular matrix (ECM) proteins, predominantly
produced by activated hepatic stellate cells (HSC) or myofibroblasts.
Other mesenchymal cell populations such as portal fibroblasts may
contribute to ECM production as well. (Lei et al., 2022) Liver
macrophages, including both KCs and MoMFs, represent major
sources of HSC-/myofibroblast-activating cytokines including TGF-β,
TNF-α, IL-1β and IL-6. (Pradere et al., 2013; Trautwein et al., 2015)
Oncostatin M (OSM) is another pro-fibrotic cytokine released by
macrophages, that promotes liver fibrosis particularly by inducing the

Frontiers in Molecular Biosciences frontiersin.org04

Kohlhepp et al. 10.3389/fmolb.2023.1129831

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1129831


expression of tissue inhibitor of metalloproteinase 1 (Timp-1). (Matsuda
et al., 2018) This study notably showed that in the absence of underlying
tissue injury, OSMoverexpression is sufficient to initiate liver fibrogenesis.
This fibrogenesis was attributed to the strong accumulation of MoMFs in
the fibrotic areas and higher IL-6, TNF-α, and IL-1ß levels in the liver.
Macrophage Mer Tyrosine Kinase (MerTK) has also been shown to play
an indirect role in HSC activation in NASH, notably by inducing ERK1/
2 phosphorylation and TGF-β1 release by KCs after Gas6 stimulation.
(Cai et al., 2020) Moreover, this study also described that macrophage
MerTK induced palmitate-treated hepatocyte cell death through TGF-β, a
mechanism potentially aggravating not only liver fibrosis but also tissue
injury in NASH. In accordance with the contradictory functions of liver
macrophages, it was shown that increased TREM2+ macrophage
recruitment in fibrotic NASH livers and higher soluble TREM2 levels
in circulating blood, were associated with better outcome in patients,
suggesting protective functions of TREM2+macrophages notably through
lipid-metabolism regulatory functions. (Ramachandran et al., 2019;
Hendrikx et al., 2022) Interestingly, TREM2+ macrophages accumulate
in the tissue areas with active fibrogenesis, oxidative stress and
inflammation. Recent developments have allowed us to go beyond the
“classical”, well-established molecular crosstalk between liver
macrophages and fibrogenic cells, and new therapeutic targets of
interest for fibrosis resolution through macrophage phenotype
modulation towards a fibrolytic phenotype, or targeting pathways that
are specific for fibroblast activation and proliferation (for example
PDGFRA and TNFSF12A on scar-associated mesenchymal cells) are
expected to be identified in the near future. (Krenkel et al., 2019;
Ramachandran et al., 2019; Ramachandran et al., 2020; Cheng et al.,
2021; Guilliams et al., 2022; Lee et al., 2022; Tada et al., 2022) Importantly,
most macrophage-derived cytokines or macrophage polarizing factors
affectmultiple cell populations. This is particularly exemplified by IL-17A,
whichwas shown to exert potent pro-inflammatory and fibrogenic effects,
by acting directly on virtually all liver and immune cells. (Guillot et al.,
2014; Li et al., 2021) Intriguingly, it has been suggested that the combined
measurement of high alpha-foetoprotein and IL-17A could be predictive
of future HCC development in cirrhotic livers. (Liang et al., 2021)

4 Turning the steatohepatitis-driven
immune activation into a tumor
promoting environment

Macrophages display an astonishingly high plasticity and ability to
adapt to environmental cues in order to react to a variety of unfavorable
conditions threatening the organism. The tumor stroma also called the
tumor microenvironment (TME) exhibits peculiar conditions that
conveniently coerce the macrophage phenotype towards a tumor-
promoting state (Figure 1). In this section, we will discuss the TME
specificities, and how it is shaped by and influences macrophages.

4.1 The tumor microenvironment influences
macrophage functions

4.1.1 The fibrotic and steatotic neoplastic
niche—shaping the macrophage milieu?

Advanced liver fibrosis, a pathological wound-healing reaction
towards chronic liver injury and inflammation, represents a
considerable risk factor for HCC. (Li et al., 2021) Indeed, about 90%

of all HCC develop in the background of a fibrotic or cirrhotic liver,
characterized by excess ECM. (58) The functions of the ECM go beyond
merely providing structural support. The composition of the ECM is
dynamic and complex and can influence adhesion, signaling and
proliferation of the adjacent cells. Importantly, increased matrix
stiffness induces signaling pathways driving HCC development.
(Levental et al., 2009) The hepatic TME is enriched in activated
fibroblasts mainly originating from HSCs. (Affo et al., 2017) In a
recent study, Filliol et al. described two subsets of HSCs with dual
roles in mouse models of HCC. On the one hand, collagen-I
producing activated myofibroblastic HSCs that promoted proliferation
and tumor development through activation of TAZ in premalignant
hepatocytes and discoidin domain receptor 1 in tumors. A subset of
cytokine-producing and quiescent HSCs, on the other hand, carried out a
tumor-limiting role by producing protectivemediators such as hepatocyte
growth factor (HGF). Interestingly, collagen-I producing fibroblasts
accumulated predominantly around the HCC nodules but not within
the tumor, suggesting their predominant role in establishing a tumor
promoting preneoplastic niche. (Filliol et al., 2022) Activated HSCs are
not only themain producers of ECM in the liver but also a source of TGF-
β, and chemokines like CCL2 that attract CCR2+ monocytes. (Levental
et al., 2009; Affo et al., 2017) Besides recruitment, activated HSCs are also
implicated in skewing macrophage phenotype towards
immunosuppression. (Ji et al., 2015) This is at least in part mediated
through direct cell-cell contact between HSCs and monocytes involving
CD44, as shown in vitro using CD14+ human blood monocytes. (Hochst
et al., 2013). In this study, the authors demonstrated that coculture with,
but not conditionedmedium from activatedHSCs rendered human blood
monocytes immunosuppressive, characterized by reduced HLA-DR
expression and the ability to suppress CD8 T cell proliferation
through arginase 1 (ARG1), an effect that could be abrogated by
CD44 blockade. CD44 proteins belong to a family of ubiquitously
expressed cell surface adhesion proteins, and are important mediators
of cell-cell contact and adhesion but also regulate many biological
activities. CD44 binds to several extracellular matrix proteins, among
others hyaluronic acid, collagens and osteopontin. (Senbanjo and
Chellaiah, 2017) Hepatic macrophages, on the other hand, can activate
quiescent HSCs via TGF-β and promote survival of myofibroblasts
through the secretion of IL-1 and TNF, thereby facilitating fibrosis
(Pradere et al., 2013; Fabregat and Caballero-Diaz, 2018) In a study
on patients with non-viral HCC, the TME of steatotic HCC subtypes was
enriched in immune cells and cancer-associated fibroblasts (CAFs),
alongside with an increased CCL2 expression and an over activated
TGF-β pathway compared to other HCC subclasses. (Murai et al.,
2022) Similarly, TGF-β was upregulated in diet-induced NASH-HCC
in mice. Interestingly, TREM2+ LAMs expressed Tgfrb1 and in vitro
stimulation of murine bone marrow derived macrophages with TGF-β
induced Trem2 mRNA expression, along with other TREM2+

macrophage markers such as Gpnmb and Tgfbr1. (Zhang et al., 2022)
Activated fibroblasts from steatotic and fibrotic livers and CAFs are not
only a source of CCL2 and involved in the recruitment of CCR2+ myeloid
cells (such as TREM2+macrophages), but also produce TGF-β, suggesting
a link between the accumulation TREM2+macrophages in fibrosis,
steatosis and HCC. (Yang et al., 2016; Affo et al., 2017; Schwabe et al.,
2020; Guilliams et al., 2022)

Even though most NASH-HCCs arise in a cirrhotic liver, HCC can
also develop in steatotic livers without advanced fibrosis or cirrhosis.
(Paradis et al., 2009; Alexander et al., 2013) Interestingly, pathologically
activated STAT1 signaling promotes inflammation and fibrosis in high-
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fat diet fed mice, while enhanced IL-6-STAT3 signaling is instrumental in
eliciting tumor development, reaffirming previous findings describing an
essential role for the IL-6-STAT3 axis in obesity-related HCC. (Park et al.,
2010; Grohmann et al., 2018) Trans-signaling of IL-6 has been linked to
the expansion of progenitor cells in mouse models of chronic injury,
thereby favoring the development of combined hepatocellular-
cholangiocellular carcinomas. (Rosenberg et al., 2022) Although an
autocrine loop for IL-6/STAT3 in hepatocytes has been suggested,
activated KCs and infiltrating macrophages are also a vital source of
IL-6 and TNF-α, which is also elevated in NAFLD/NASHmouse models.
(Park et al., 2010; Yu et al., 2019) Alterations in lipid composition and
metabolism are a common feature in primary liver cancer and promote
tumor growth and progression. (Satriano et al., 2019) Lipids are essential
for the synthesis of cell membranes and other structures, but are also
stored and used as energy source, serving as substrate for fatty acid
oxidation (FAO) in mitochondria. Importantly, lipids also act as signaling
molecules and substrates for bioactive molecules. (Paul et al., 2022)
Although not utilizing lipids for FAO, malignant liver cells have an
increased demand for lipids to build cell membranes and mediators
that promote tumor progression. (Paul et al., 2022) Subsequently,
genes included in FFA uptake and in particular de novo lipogenesis are
upregulated in HCC. (Luo et al., 2021) As a result, the HCC TME is
enriched in fatty acids and lipid derivatives, an environment that can
promote a pro-tumoral phenotype in tumor-associated macrophages
(TAM), characterized by the expression of CD206, IL-6, vascular
endothelial growth factor A (VEGF-A), matrix metalloproteinase

(MMP) 9 and ARG1. (Wu et al., 2019a; Broadfield et al., 2021) Lipid-
binding nuclear receptors such as peroxisome proliferator activated
receptors (PPAR) and liver X receptor (LXR) are important regulators
of macrophage metabolism and polarization. (Odegaard et al., 2007;
Pourcet et al., 2016) PPAR-γ has a particularly decisive role for TAM
metabolism. PPAR-γ activity induces FAO in macrophages and
upregulates CD36 expression. (Nagy et al., 1998; Odegaard et al., 2007)
On the other hand, cleavage of PPAR-γ by caspase 1 allows its binding to
the mitochondrial protein medium-chain acyl-CoA dehydrogenase
(MCAD) resulting in reduced FAO and increased production of
lactate, indicative of glycolytic activity. (Niu et al., 2017; Wu et al.,
2020; Bogdanov et al., 2022) LXR, a nuclear receptor involved in
cholesterol regulation, was suggested to contribute to the phenotype of
TREM2+ macrophages in HCC. (Zhou et al., 2022) Interestingly, the
transcriptomic profile of TREM2+ macrophages in NASH liver closely
resembles TREM2+ TAMs found in HCC, in both patients and mouse
models. (Zhang et al., 2022; Zhou et al., 2022) Evenmore intriguingly, gene
signatures of human TREM2+ macrophages are also reminiscent of those
from murine TREM2+ macrophages, suggesting a highly conserved (and
thus pivotal) role for this macrophage population. (Mulder et al., 2021)

4.1.2 The hypoxic and acidic tumor environment
Tumor cells acquire a drastically deregulated metabolism, which is

not only an adaptation to an unfavorable environment often
characterized by hypoxia and nutrient deprivation, but also affects
the metabolism and phenotype of macrophages and impairs their

FIGURE 1
Immune cells of multiple origins influence the course of NAFLD and HCC. Liver resident and infiltrating immune cells from the circulation are directly
implicated in NAFLD and HCC initiation and progression. Abbreviations, ECM, extracellular matrix; HSC, hepatic stellate cell; MoMF, monocyte-derived
macrophage; NAFLD, non-alcoholic fatty liver disease; PBMCs, peripheral blood mononuclear cells. Created with BioRender.com.
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immune competence. Tumor cells actively contribute to generating an
acidic microenvironment by aerobic glycolysis, notably through the
generation of lactate. (Hanahan and Weinberg, 2011; Bogdanov et al.,
2022) This acidic environment induces the immunosuppressive
protein cyclic AMP element modulator (CREM) and enables
binding of the myeloid-derived acidic pH selective V-domain
immunoglobulin suppressor of T cell activation (VISTA) to its
receptor on T cells, suppressing cytotoxicity. (Sawka-Verhelle et al.,
2004; Lines et al., 2014; Johnston et al., 2019) In addition, aerobic
glycolysis reduces glucose availability for macrophages, thus limiting
one of the metabolic pathways leading to the generation of reactive
oxygen species (ROS) and the release of inflammatory cytokines.
(Freemerman et al., 2014) Increased lactate concentrations further
stabilize hypoxia-inducible factor (HIF)-1α, thereby driving a tumor-
promoting phenotype in bone marrow-derived, tumor-educated
TAMs, characterized by enhanced expression of arginase and
VEGF. (Colegio et al., 2014) Hypoxia resulting from insufficient
oxygen supply, is a typical phenomenon in acute and chronically
injured tissue and is a critical inducer of regenerative processes,
primarily orchestrated by the major hypoxia sensing transcription
factor HIF-1α. (Ruthenborg et al., 2014) These wound healing
processes are also abundant but dysregulated in tumors, where
hypoxia is a result of an inadequate oxygenation due to rapid
tumor cell proliferation and defective vascularization. (Byun and
Gardner, 2013; Lv et al., 2017; Abou Khouzam et al., 2020)
Macrophages play a critical role in both physiological and
pathological wound healing and their functional activation is
influenced by hypoxia. Indeed, HIF-1α signaling was shown to
upregulate PD-L1 expression in murine splenic and tumor-
associated myeloid cells (MDSCs). (Noman et al., 2014)
Accordingly, CD8+ T cells from highly hypoxic HCC tissue areas
displayed an increased expression of PD-1 along with a decreased
expression of Granzyme B, compared to CD8+ T cells from tumor
regions with low hypoxia, indicative of an anergic, less cytotoxic
phenotype. (Suthen et al., 2022) Using a murine model of
orthotopic HCC, another study demonstrated that HIF-1α not only
induces PD-L1, but also promotes Triggering receptor expressed on
myeloid cells 1 (TREM-1) expression on TAMs. Strikingly, TREM-1
signaling upregulated CCL20 expression in TAMs, resulting in
recruitment of CCR6+ Tregs to hypoxic areas and thus
participating in tumor resistance against PD-L1 blockade. (Wu
et al., 2019b)

HIF-1α signaling in TAMs induces not only numerous genes
involved in epithelial-mesenchymal transition (EMT),
immunosuppression and regeneration, but also genes involved in
glucose metabolism, such as Glucose transporter 1 (GLUT1) and
hexokinase 2 (HK2), shifting TAM metabolism towards aerobic
glycolysis further amplifying this phenomenon and maintaining a
TAM anti-inflammatory phenotype. (Puthenveetil and Dubey, 2020;
de-Brito et al., 2020)

4.2 The diverse origins and roles of tumor-
associated macrophages in the tumor
microenvironment

4.2.1 Defining the tumor-associated macrophages
As illustrated by their diverse roles in immune homeostasis and

tissue injury as well as in repair mechanisms, macrophages are

equipped with a plethora of anti-inflammatory and pro-
regenerative properties, which can be exploited by a tumor. The
predominant, detrimental role of TAMs is to protect the
malignancy from the host anti-tumor immunity. However, TAMs
are also involved in the formation of new blood vessels, the supply with
growth factors, the support of epithelial to mesenchymal transition
and tumor cell dissemination, as well as resistance towards
chemotherapies, which are considered important hallmarks of
cancer progression. (Hanahan and Weinberg, 2011; Hanahan, 2022)

While the accumulation of oncogenic mutations and the
attainment of proliferative independency is the basis of
carcinogenesis, the tumor stroma provides a critical supportive and
protective niche for the developing tumor. The TME comprises non-
malignant acellular and cellular components such as secreted factors,
ECM as well as cancer associated fibroblasts, endothelial cells, and
heterogeneous innate and adaptive immune cells. (Hanahan and
Weinberg, 2011; Anderson and Simon, 2020) The composition of
the TME varies greatly depending on the tumor type, underlying
mutations, tumor stage and metabolic conditions within the tumor.
(Hanahan and Weinberg, 2011; Anderson and Simon, 2020; Llovet
et al., 2021) The immune compartment of the TME contains various
immune cells that either actively support the tumor (for instance,
macrophages, neutrophils, regulatory T cells (Treg), regulatory B cells)
or that are potentially tumoricidal but rendered ineffective by the anti-
inflammatory environment (such as macrophages, T cells, dendritic
cells, NK cells, NKT cells). (Binnewies et al., 2018) Besides Treg cells,
myeloid cells represent a major immunosuppressive compartment in
the tumor stroma, and are composed of granulocytes, TAMs and
immature myeloid cells, often referred to as myeloid-derived
suppressor cells (MDSCs). (Binnewies et al., 2018) Monocytes/
MDSCs and TAMs constitute a major part of the tumor stroma in
solid tumors and are often indicative of a poor prognosis.

Monocytic MDSCs (M-MDSCs) are described as CD11b+Gr1/
Ly6ChighLy6G− cells in mouse and CD11b+CD14+HLA-DR−/loCD15-

cells in humans. Granulocytic or polymorphonuclear MDSCs (PMN-
MDSCs) are defined as CD11b+Gr1/Ly6ClowLy6G+ in mouse, while
human PMN-MDSCs are mostly described as
CD11b+CD14−CD66b+CD15+. However, as MDSCs express
identical surface markers as classical monocytes and neutrophils,
functional assays or additional markers are needed to identify
MDSCs. Moreover, the use of the term MDSC is disputed in the
literature and many studies do not clearly distinguish between TAMs,
classical monocytes or monocytic MDSCs. While some authors
advertise MDSCs as a coequal immune cell population, other
researchers regard the concept of MDSCs as oversimplified and
outdated. (Bronte et al., 2016; Guilliams et al., 2018; Veglia et al., 2018)

Accumulation of macrophages in patients with HCC was reported
to be generally associated with disease progression or aggressiveness.
(Ding et al., 2009; Yeung et al., 2015) Although the majority of TAM
exert anti-inflammatory and tumor supporting functions,
macrophages also have the inherent ability to initiate an anti-
tumor response and eliminate malignant cells directly by
phagocytosis or indirectly by eliciting a Th1 response. (Martinez
et al., 2008; Mantovani et al., 2017) In a well-noticed study of
macrophages in patients with colon cancer, a high density of
TAMs correlated with a better clinical outcome. (Forssell et al.,
2007) Because of the dual roles of TAM and the observation that
tumor-promoting macrophages express phenotypic markers
resembling to some extent the so-called M2-macrophages, while
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anti-tumoral macrophages share functional markers with the so-called
M1-polarized macrophages, TAMs were classified according to the
M1/M2 dichotomy. However, over the last years it became evident,
that TAMs and liver macrophages in general are phenotypically and
functionally much more heterogeneous than previously assumed, and
that distinct phenotypes may even coexist within a singular tumor,
thus the M1/M2 paradigm is too simplified and should not be applied
anymore. (Cassetta et al., 2019; Donadon et al., 2020) Still, in some
human studies, TAMs with an inflammatory phenotype are referred to
as M1-like TAMs or TAM1, whereas TAMs with tumor-promoting
properties are described as M2-like TAMs or TAM2. Tumoricidal
TAM1 are mostly identified by immunogenic markers like CD68 and
CD80, CD86, MHC class II or iNOS. (Movahedi et al., 2010) Tumor-
promoting TAM2 are generally defined by the expression of scavenger
receptors (e.g., CD204, CD206, CD163 or CD169) or ARG1.
(Christofides et al., 2022) However, this nomenclature ignores that
some of the inflammatory “M1” characteristics, like iNOS or TNF-α
production can also fuel cancer progression. (Greten and Grivennikov,
2019)

In a recent cross-tissue meta-analysis of human macrophage
single-cell datasets, Mulder et al. identified at least four distinct
TAM populations in HCC, one of them being uniquely found in
liver cancer, while another population of inflammatory IL-1β+
monocytes present in other cancer entities was not accumulating in
HCC. (Mulder et al., 2021) In particular, they identified and described
a subset of IL-4I1+ TAMs conserved across all cancer entities including
lymph node metastasis. While IL-4I1+ TAMs were characterized by
increased levels of the immunosuppressive markers IDO and PD-L1,
they also expressed immunostimulatory “M1”-like markers, such as
HLA-DR, CD86 as well as interferon (IFN)-yR and CD40, indicative
of an interactions with T cells. The authors demonstrated that
interactions with CD40L+ CD4 T cells together with CD8+ T cell
derived IFN-y programmed the IL-4I1+ TAMs towards an
immunosuppressive phenotype. Another TAM subset, characterized
by expression of TREM2 and SPP1 resembling recently identified
fibrosis associated macrophages, was present in all primary tumors but
not in metastasis. (Mulder et al., 2021) A further subpopulation of
TAMs was found to express the Notch target HES1 and high amounts
of CD206 and CD163 and to interact preferentially with Tregs.
(Sharma et al., 2020; Mulder et al., 2021) Interestingly, HES1+

TAMs in HCC express the folate 2 receptor FOLR2 and resemble
fetal liver macrophages. (Sharma et al., 2020) TAM subpopulations
seemingly not only differ in gene expression signature but also in their
localization in the TME. HES1+ TAMs and TREM2+ TAMs were
preferentially located in the tumor tissue while IL-4I1+ TAMs were
enriched at the tumor periphery. (Mulder et al., 2021)

The M1/M2 and MDSC concept is controversial, oversimplified
and in many aspects inaccurate in regards of TAM subpopulations,
therefore we will not refer to this nomenclature in the following
section but rather describe the functional and phenotypical features of
macrophages and monocytes in the TME.

4.2.2 The origin of TAMs in liver cancer
Although alternative routes exist, CCL2 is considered as the major

chemokine responsible for the recruitment of classical/pro-
inflammatory monocytes in manifold inflammatory conditions. In
the diseased liver, CCL2 is expressed by activated HSCs and
fibroblasts, activated KCs, endothelial cells, injured biliary epithelial
cells, and premalignant hepatocytes. (Eggert et al., 2016; Ehling and

Tacke, 2016; Guillot et al., 2021) However, malignant cells frequently
overexpress CCL2 as well, and high expression of CCL2 in human
HCC correlates with a poor prognosis. (Li et al., 2017a)

In a model of Hepa 1-6 cell-derived liver tumors, developed in
otherwise unchallenged mouse livers, CCL2/CCR2 blockade attenuated
tumor growth, altered TAM phenotype and restored CD8+ T cell
activity. (Li et al., 2017a) Similarly, in a model of DEN + CCl4-
induced fibrosis-HCC, disruption of the CCL2/CCR2 axis reduced
tumor burden and pathological vascularization. (Bartneck et al.,
2019) The role of TAM recruitment in NAFLD/NASH associated
HCC on the other hand is yet unclear. In mouse models of NASH-
HCC, CCR2 deficiency did not ameliorate tumor development
suggesting alternative sources of TAMs or alternative recruitment
pathways involved in fatty liver disease progression. (Wolf et al., 2014)

Indeed, besides CCL2, there are many other chemokines and
cytokines involved in the recruitment and accumulation of
monocytes/MDSCs and TAMs at the tumor site. For example,
CCL5 and CCL3, binding to their cognate receptors CCR1 and
CCR5 on monocytes, have been shown to attract tumor promoting
myeloid cells, supporting HCC progression and metastasis,
respectively. (Ehling and Tacke, 2016) Additionally, cytokines such
as M-CSF (CSF-1) and VEGF-A have been implicated in the
recruitment and differentiation of TAMs in murine HCC models.
(Zhu et al., 2019; He et al., 2021) Also, sustained release of
inflammatory mediators such as GM-CSF, CXCL12, and G-CSF by
chronic inflammation in tumors causes emergency myelopoiesis, an
enhanced expansion of the myeloid niche in bone marrow and spleen,
and the release of immature myeloid cells with an immunosuppressive
phenotype into the circulation, potentially giving rise to TAMs.
(Arvanitakis et al., 2022)

Although TAMs are mostly derived from circulating CCR2+

monocytes, it is known that they can proliferate within the tumor
site and that tissue resident macrophages (i.e. KCs) can contribute to
the TAM pool, as well. (Mantovani et al., 2022) For example, local
proliferation of TAMs in human HCC was linked to tumor-derived
adenosine, acting synergistically with autocrine GM-CSF. (Wang et al.,
2021) Also, binding of CSF-1 to its receptor CD115 on macrophages is
known to mediate macrophage survival and proliferation. (Yu et al.,
2012; Krenkel and Tacke, 2017)

Using RNA velocity, recent scRNAseq studies revealed that a
TAM population with an embryonic signature in human liver cancer,
characterized by high expression of HES1, FOLR2, CD163 and
CD206 was at least partially derived from tissue resident
macrophages, while other TAM subsets (TREM2+ TAMs and IL-
4I1+ TAMs) were identified to be monocyte-derived. These results
were confirmed using an elegant fate-mapping mouse model based on
Ms4a3Cre-RosaTdT reporter mice. (Sharma et al., 2020; Mulder et al.,
2021) Interestingly, the aforementioned HES1+ TAM population was
mainly located within the tumor, while the monocyte-derived TAM
subpopulations rather accumulated in the tumor periphery, which is
in good agreement with previous observations that CCR2+ TAMs with
an inflammatory and pro-angiogenic gene signature accumulated at
the tumor border, while CD163+ TAMs were predominantly found in
the tumor center. (Bartneck et al., 2019; Mulder et al., 2021)

4.2.3 Phagocytosis and scavenging—the role of anti-
inflammatory markers

Removal of unwanted and dead material is a central function of
macrophages and can be immunogenic in case of tissue damage and
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inflammation and is then called phagocytosis, or non-immunogenic to
preserve tissue homeostasis, a process termed efferocytosis.
Phagocytosis of tumor cells and debris by macrophages not only
eliminates tumor cells but induces cytokine production and cross-
presentation of tumor antigens to CD8+-T cells, hence holding an
important role in tumor control. (Biswas and Mantovani, 2010) The
phagocytic activity of macrophages is tightly regulated by the balance
between “eat me” and “do not eat me”-ligands on cells that are
screened by patrolling macrophages. (Lecoultre et al., 2020) Typical
“eat me” signals that induce phagocytosis include opsonizing
antibodies binding to FcyR on TAMs and the exposure of
calreticulin on the surface of cancer cells. (Obeid et al., 2007;
Cassetta et al., 2019) “Do not eat me” ligands, like CD47 and PD-
L1, are frequently upregulated in tumors and protect the malignant
cells from phagocytic elimination. (Lecoultre et al., 2020) Binding of
the ubiquitously expressed molecule CD47 to its receptor signal-
regulatory protein alpha (SIRPα) on TAMs, effectively inhibits
phagocytosis. CD47 is frequently increased in HCC and strongly
overexpressed in cholangiocarcinoma, where blockade of CD47/
SIRP1a interaction enhanced phagocytosis and reduced tumor
progression. (Xiao et al., 2015; Chen et al., 2019a;
Vaeteewoottacharn et al., 2019) Macrophage-driven cell clearance
(efferocytosis/phagocytosis) has gained increasing attention in
NAFLD/NASH. A recent study demonstrated that the prolonged
hypernutrition in fatty livers leads to the impairment of TREM2-
dependent macrophage efferocytic activity, thereby exacerbating liver
inflammation and NASH progression. (Wang et al., 2023)
Additionally, another finding indicated that the CD47-SIRPα axis
blockade can reverse the inhibition of macrophage-driven cell
clearance, and decrease liver fibrosis. (Shi et al., 2022) Neoplastic
cells in HCC can express PD-L1, which was shown to impede T cell
activity. (Calderaro et al., 2016) Of note, murine and human TAMs
were reported to express PD-1. PD-1+ TAMs displayed a reduced
phagocytic activity against PD-L1+ tumor cells, which could be
restored in mouse models of cancer by blocking the PD-1/PD-
L1 axis. (Gordon et al., 2017) While reinforcing phagocytosis is an
interesting therapeutic target, phagocytosis is a process intimately
linked to inflammation resolution andmight promote macrophages to
differentiate towards an anti-inflammatory phenotype. (Wang et al.,
2014) Apoptotic cell death is characterized by the exposure of the “eat
me” signal phosphatidylserine on the surface of the dying cells.
Phosphatidylserine is recognized by various engulfment receptors
of the “TAM family” (Tyro3, Axl and Mer) on macrophages and
induces non-immunogenic phagocytosis termed efferocytosis.
(Lecoultre et al., 2020) Unlike phagocytosis, efferocytosis does not
induce antigen cross-presentation but mediates an anti-inflammatory
effect and has been implicated in tumor support. (Lecoultre et al.,
2020) However, while overexpression of the efferocytosis receptor
MerTK on humanHCC cells was linked to tumor growth, there is little
data available about the role of efferocytosis in TAMs for primary liver
cancer. (Liu et al., 2022)

Similarly, removal of potentially harmful or excess molecules by
scavenger receptors is a crucial function of macrophages in
homeostasis and mostly assigned to an anti-inflammatory
macrophage phenotype. Scavenger receptors are a diverse group of
membrane-bound receptors that recognize and internalize a wide
range of exogenous and endogenous ligands. The scavenger receptors
CD206, CD163 and CD204 are upregulated on pro-tumoral TAMs in
HCC and correlate with a poor prognosis. (Yeung et al., 2015; Li et al.,

2017b; Ding et al., 2019; Mulder et al., 2021) Although CD204,
CD206 and CD163 are commonly used as markers for tumor-
promoting TAM, the exact role of these receptors in tumor
promotion is not well understood. A high intra-tumoral density of
CD204, also named scavenger receptor A 1 (SR-A1) or macrophage
scavenging receptor 1 (MSR-1), is associated with a poor overall
survival of patients with HCC. (Ding et al., 2019) Interestingly,
CD204 can signal through MerTK to facilitate uptake of apoptotic
material, a typical trait of a tolerogenic macrophage phenotype. (Todt
et al., 2008; Lecoultre et al., 2020) On the other hand, Guo et al.
demonstrated that in vitro engagement of CD204 resulted in JNK-
induced upregulation of inflammatory genes, like Tnfa, Il1b and Ccl2,
in IL-4 primed alternatively activated murine macrophages,
suggesting a role in macrophage polarization. (Guo et al., 2019)
The mannose receptor CD206 binds a wide array of pathogen-
derived fragments and endogenous ligands including tumor-derived
mucins, and is widely used as a phenotypical marker for anti-
inflammatory macrophages and TAMs, both in human and mice.
Emphasizing its immunosuppressive nature, CD206 is mainly found
on immunoregulatory cells and triggering of CD206 promotes IL-10
production and induces a tolerogenic phenotype in activated CD8+ T
cells. (Allavena et al., 2010; van der Zande et al., 2021) Contrarily, in
models of melanoma and colon cancer high CD206 expression on
TAMs was associated with improved cross presentation of tumor
neoantigens to CD8+ T cells resulting in better tumor control. (Modak
et al., 2022) The expression of the scavenger receptor CD163 is
restricted to macrophages and to a lesser extend monocytes and
closely linked to an anti-inflammatory phenotype. (Skytthe et al.,
2020) CD163 binds haptoglobin-hemoglobin complexes and removes
toxic free hemoglobin and damaged erythrocytes from the circulation
thereby stimulating the production of anti-inflammatory heme-
metabolites. (Canton et al., 2013; Skytthe et al., 2020) Sharma et al.
demonstrated that high expression of CD206 and CD163 is a hallmark
of TAMs with an onco-fetal-like phenotype in humanHCC, which can
be induced by tumor-associated endothelial cells through DLL4-
NOTCH signaling. These TAMs showed increased interactions
with immunosuppressive Tregs and expressed the angiogenic factor
CXCL12. (Sharma et al., 2020) As mentioned above,
CD36 upregulation and lipid accumulation has also been described
on pro-tumoral TAMs and infiltrating CD11b+ Ly6C(Gr1)+ myeloid
cells from different cancer entities in mice. TAMs thus engage in fatty
acid oxidation to generate energy, a metabolic profile associated with
immunosuppressive characteristics. (Al-Khami et al., 2017;
Puthenveetil and Dubey, 2020; Su et al., 2020) In mouse models of
liver metastasis, Yang et al. demonstrated that tumor cells release fatty
acid-loaded vesicles that are captured and internalized through the
lipid transporter CD36 on CD206+ metastasis associated macrophages
(MAMs). MAMs as well as bone marrow-derived TAMs, co-cultured
with different tumor cell lines, displayed an increased capability to take
up long chain fatty acids. Of note, uptake and accumulation of fatty
acids induced macrophage polarization towards an
immunosuppressive phenotype. (Yang et al., 2022)

4.2.4 TAMs directly fuel a tumor-promoting
inflammatory response

Tumor-promoting inflammation is an enabling hallmark of
cancer and primary liver cancers are a typical example of inflamed
tumors. Inflammatory processes are involved in tumor initiation,
promotion and progression. Tumor-promoting inflammation
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includes not only the recruitment of immune cells by the tumor and
TME-derived chemokines but also the release of inflammatory
cytokines that support tumor growth. During tumor initiation,
premalignant cells require an inflammatory environment to
undergo oncogenic transformation and gain additional mutations.
While inflammatorymediators produced by premalignant cells can act
in an autocrine manner, the released chemokines activate tissue
resident macrophages and attract monocytes and granulocytes from
the circulation. Recruited myeloid cells produce ROS and reactive
nitrogen species further driving mutations in the tumor cells but at the
same time produce inflammatory cytokines that activate pro-survival
pathways in tumor cells. (Greten and Grivennikov, 2019)

Tumor initiation in the liver is largely dependent on pro-
inflammatory activated hepatic macrophages, as demonstrated in
murine models. During chronic liver inflammation, oxidative stress
and the associated ROS accumulation in hepatocytes induce the
release of factors that activate liver macrophages. (Yuan et al.,
2017) The IL-6/STAT3 and TNF-α/NF-κB pathways are key
drivers of hepatocarcinogenesis. In particular, obesity-promoted
HCC initiation depends on increased levels of IL-6 and TNF-α.
(Park et al., 2010) In a murine model of endoplasmic reticulum
stress and steatosis, macrophage-derived TNF promoted
aggravation of steatohepatitis and HCC development. (Nakagawa
et al., 2014) TNF-α not only facilitates tumor initiation but it also
promotes tumor cell survival and proliferation via NF-κB activation.
(Luo et al., 2004; Nakagawa et al., 2014; Yuan et al., 2017) IL-6 is a
multifunctional NF-κB-regulated cytokine that activates the
STAT3 pathway and promotes hepatocyte survival and
proliferation. (Campana et al., 2018) Using hepatoma cell lines,
Chen et al. demonstrated that IL-6 secretion by TAMs derived
from primary human monocytes can induce upregulation of
CD47 on tumor cells, protecting the tumor from phagocytosis and
thus enhancing tumor development. During tumor progression,
inflammation triggers cancer cell stemness via STAT3 dependent
pathways. (Greten and Grivennikov, 2019) Cancer stem cells are a
small subpopulation of dedifferentiated or stem-like tumor cells, with
a high potency for self-renewal, contributing to therapy resistance,
cancer relapse and intratumoral cell heterogeneity. (Huang et al., 2020;
Walcher et al., 2020)

TAMs can directly facilitate HCC growth by the secretion of
growth factors, such as HGF, epithelial growth factor receptor
(EGFR)-ligands, fibroblast growth factor (FGF), platelet-derived
growth factor PDGF, insulin-like growth factor-1 (IGF-1) and
TGF-β. In vitro, HGF and IGF secreted by CD163+ macrophages
were sufficient to induce hepatoma cell proliferation. (Sprinzl et al.,
2015; Dong et al., 2019) TGF-β is frequently overexpressed in the TME
of HCC where it promotes de-differentiation andmetastasis, but also a
tumor-supporting phenotype of TAMs. (Dituri et al., 2019)
RAW264.7 derived TAMs displayed an elevated expression of
TGF-β in comparison to other macrophage phenotypes,
highlighting their participation in these processes. (Fan et al., 2014)

TREM2 is highly expressed in TAMs in over 200 different human
tumors but is absent or weakly expressed in most healthy tissues.
(Molgora et al., 2020) In murine tumor models, genetic ablation of
TREM2 decreased the number of intra-tumoral immunosuppressive
TAMs and noticeably improved the efficacy of an anti-PD-
1 treatment. (Katzenelenbogen et al., 2020; Molgora et al., 2020;
Binnewies et al., 2021) Furthermore, TREM2+ TAMs were
described to co-express various factors that facilitate tumor

immune evasion, such as Arg1, Gpnmb or Spp1. (Sharma et al.,
2020; Lazaratos et al., 2022) Likewise, anti-inflammatory TREM2+

TAMs were reported in primary liver cancers of patients and in mouse
models. (Zhang et al., 2019a; Mulder et al., 2021; Zhou et al., 2022).

Interestingly, in a scRNAseq study of murine NASH livers,
proliferating macrophages were predominantly co-expressing
Trem2, Gpnmb and Spp1. (Zhang et al., 2022) Spp1 encodes the
protein osteopontin (OPN), which is also involved in tumor
promotion and predicts a poor outcome in HCC. OPN induces
expression of CSF1, and a global Spp1 knock-out decreased
numbers of TAMs and suppressive monocytes/MDSCs suggesting a
role for TREM2+ TAMs in macrophage survival and proliferation.
(Zhu et al., 2019)

4.2.5 Immunosuppression/interaction with T cells
The host’s immune surveillance is one of the major obstacles for a

developing malignancy. Cytotoxic T cells and NK cells are highly
efficient in killing tumor cells and are supported by anti-tumoral
macrophages that phagocytose tumor cells and cross-present tumor-
antigens to T cells. (Martinez-Lostao et al., 2015; Lecoultre et al., 2020)
In the early phase of HCC development, macrophages act as sentinels
and are indispensable for the CD4+ T cell mediated clearance of
premalignant hepatocytes. (Kang et al., 2011) Premalignant
hepatocytes can enter a state of growth arrest termed oncogene-
induced senescence, a stress response to aberrant function of
oncogenes, in which they acquire a secretory phenotype and release
inflammatory cytokines and chemokines, amongst others CCL2 to
recruit immune cells and initiate their own removal. However, once a
tumor succeeds in growing and establishes an inflammatory TME,
monocyte-derived macrophages recruited via the CCL2/CCR2 axis are
rapidly reprogrammed and protect the growing tumor by NK cell
inactivation. (Eggert et al., 2016)

Immunosuppression is a crucial mechanism to prevent an
overshooting immune response resulting in auto-aggression. TAMs
produce the anti-inflammatory cytokine IL-10, that induces and
promotes regulatory T cells and efficiently inhibits the
differentiation of cytotoxic T cells as well as the expression of
inflammatory cytokines. (Mannino et al., 2015) In addition, TAMs
can release chemokines, such as CXCL9, 10, and 11, and CCL22 that
attract Tregs through CXCR3 and CCR4, respectively. (Ehling and
Tacke, 2016; Mulder et al., 2021) Furthermore, strong evidence from
imagingmass cytometry in humanmelanoma, suggest that CXCL9 is a
major chemoattractant for cytotoxic CD8+ T cells, and CXCL9 and
CXCL10 expressing cells accumulating in areas of active anti-tumor
activity. (Hoch et al., 2022) Similar phenotypes in liver cancer are yet
to be demonstrated.

Immunosuppressive myeloid cells can inhibit cytotoxic T cells
either directly by cell-cell-interactions or by withdrawing essential
metabolites needed for cytotoxic activity. For instance, TAMs express
high amounts of ARG1, an enzyme that catabolizes arginine, a critical
amino acid needed for T cell activation. By removing arginine from the
microenvironment, TAMs effectively inhibit the T cell-driven anti-
tumor response. Similarly, the expression of the enzymes indoleamine
2,3-dioxygenase 1 (IDO1) and interleukin-4-induced 1 (IL-4I1) are
increased in a subpopulation of both human and murine TAMs in
HCC. (Mulder et al., 2021) IDO1 and IL-4I1 are involved in the
enzymatic conversion of tryptophan to kynurenin and other
metabolites, which engage the aryl hydrocarbon receptor (AhR).
AhR activation facilitates immune tolerance in a variety of immune
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cells, especially T cells, by promoting Treg differentiation and
upregulating PD-1 on cytotoxic T cells. (Mezrich et al., 2010; Liu
et al., 2018; Sadik et al., 2020) Thus, in TAMs, AhR activation induces
the expression of IL-6, which in turn enhances the activity of IDO1.
(Cheong and Sun, 2018) Another well-known mechanism of tumor
escape involves the PD-1/PD-L1 axis. Noteworthy, similarly to cancer
cells, TAMs highly express the immune checkpoint ligand PD-L1.
Binding of those molecules to PD-1 on activated T cells attenuates
T cell cytotoxic activity. (Kuang et al., 2009) Likewise, PD-L1+ TAMs
are primarily found in the peritumoral stroma of HCC patients, where
cytotoxic T cells accumulate. (Kuang et al., 2009; Mulder et al., 2021)
Another inhibitory checkpoint ligand expressed by macrophages is
VISTA, which interacts with its receptor PSGL1 on T cells and inhibits
their proliferation and cytokine production, while inducing Foxp3 and
favoring Treg function. (Lines et al., 2014; Johnston et al., 2019).

Although many cells within the TME produce cytokines, TAMs
are considered as major source of tumor-promoting NF-κB-regulated
cytokines, such as IL-6, IL-23, IL-1β, IL-10, TNF-α and TGF-β, that
can activate oncogenic pathways like STAT3 in cancer cells but also
participate in the establishment of a pro-tumoral microenvironment.
(Greten and Grivennikov, 2019) Although IL-10 is produced by a
variety of cells, TAMs are a significant source of IL-10 in the TME.
Increased levels of IL-10 in human HCC are associated with poor
survival. (Zhang et al., 2019b) For instance, IL-10 inhibits the
expression of MHC-II and inflammatory cytokines and was shown
to induce PD-L1 expression on macrophages, an effect that is
potentiated by TNF-α and prostaglandin E2 (PGE2), also produced
by TAMs. (Kuang et al., 2009; Pu and Ji, 2022) Moreover, CCL22 and
CCL17 secreted by TAMs attract Th2 T cells and induce
Th2 polarization of naive T helper cells. (Gieseck et al., 2018)
Th2 T cells are ineffective against tumors but produce cytokines
like IL-4 and IL-13 that promote wound healing and fibrosis and
skew macrophages towards a restorative, pro-tumoral phenotype.
(Balkwill, 2004; Barron and Wynn, 2011) Bacterial components, as
typically observed in the liver in pre-neoplastic conditions such as
NAFLD, also participate in tumor promoting inflammation. IL-23, a
pro-inflammatory cytokine, is secreted by macrophages in response to
lipopolysaccharide exposure. (Peral de Castro et al., 2012) IL-23
induces Th17 polarization of T cells, recruitment of neutrophils
and activation of DCs and TAMs. While in colorectal cancer, IL-23
aggravated tumor progression, there is only little evidence for a crucial
role of TAM-derived IL-23 in HCC. (Grivennikov et al., 2012; Heredia
et al., 2022) However, as shown in in vitro studies and an ectopic
tumor model using immunodeficient mice TAM-driven
Th17 lymphocyte activation participates in HCC progression.
(Gasmi et al., 2022) IL-1β, a prototypic pro-inflammatory cytokine,
is involved in metabolic liver diseases and is activated by caspase-1 via
the NLRP3 inflammasome. (Knorr et al., 2020) Paradoxically, IL-1β
promotes tumor immune evasion and tumor progression. IL-1β
produced by inflammatory macrophages increases PD-L1, as well
as HIF-1α-dependent CSF-1 expression in hepatoma cells, facilitating
TAM accumulation. (Zong et al., 2019; He et al., 2021)

4.2.6 The roles of macrophages in angiogenesis
To maintain their growth and survival, tumor cells need nutrients

and oxygen, normally provided by the hosts blood system. Insufficient
oxygen supply by blood vessels due to the rapid growth, high nutrient
demand and sheer mass of tumor cells results in hypoxia, a state of
pathologically low levels of oxygen. (Abou Khouzam et al., 2020)

Hypoxia is a common phenomenon in malignant tumors. It is
predominantly sensed by the transcription factor HIF-1α in
malignant and stromal cells and induces a plethora of target genes
that promote reprogramming of tumor and TME metabolism, as well
as angiogenesis to adapt to the hypoxic environment. Important
angiogenic factors induced by hypoxia are angiopoietin 2 (Ang2),
CXCL12 (also known as SDF-1) and VEGF-A. (Abou Khouzam et al.,
2020) The key role of TAMs in angiogenesis is well-established and
removing proangiogenic TAMs abrogates tumor vascularization, and
impairs tumor growth in murine tumor models. (Zhang et al., 2010;
Bartneck et al., 2019) Indeed, TAMs accumulate in hypoxic areas and
express several pro-angiogenic factors, such as VEGF-A, CCL18 and
MMP9. (Song et al., 2020; Lu et al., 2022)

In 2005, De Palma et al. identified a subset of pro-angiogenic
monocytes expressing Tie2, a receptor binding Ang2 that gave rise to
pro-angiogenic TAMs. (De Palma et al., 2005) HCC is a hypervascular
tumor characterized by elevated levels of Ang2. (Mitsuhashi et al.,
2003) In line with this, Tie2+ circulating monocytes and Tie2+ liver
macrophages were increased in HCC patients and microvessel density
in human HCC correlated with frequency of pro-angiogenic Tie2+

macrophages. (Matsubara et al., 2013) Tie2+ expressing pro-
angiogenic monocytes and macrophages express high levels of the
CXCL12 receptor CXCR4, and the anti-inflammatory macrophage
marker CD206, MMP9 and VEGF-A. (Coffelt et al., 2010) CCR2+

monocyte-derived macrophages particularly favor pathogenic
angiogenesis (“arterialization”) in mouse models of primary HCC
in a fibrotic environment. (Bartneck et al., 2019)

Pro-angiogenic TAM were reported to promote resistance to
chemotherapy and vascular-disrupting therapies as they are
recruited through CXCR4 to CXCL12-enriched hypoxic regions of
tumors where they stimulate revascularization. (Welford et al., 2011;
Nakasone et al., 2012) In a scRNA-seq study including samples from
seven viral hepatitis related human HCCs, Song et al. described a
subset of TREM2+ CD206+ TAMs expressing CCL18, a chemokine
involved in angiogenesis. (Lin et al., 2015; Song et al., 2020)
Interestingly, this TAM cluster displayed a pathway activity
enriched for hypoxia, iron transport and lipid metabolism and was
enriched in CREM (also known as ICER), a protein induced by tumor
acidosis that inhibits TLR-dependent NF-κB signaling. (Sawka-
Verhelle et al., 2004; Harzenetter et al., 2007; Song et al., 2020)

The tumor endothelium in HCC is characterized by a high
expression of CXCR4, a marker for neoangiogenesis. (Xu et al.,
2017) Meng et al. demonstrated that TAM derived TNF-α and to a
lesser extend other pro-inflammatory cytokines promoted
CXCR4 expression on tumor endothelium, which suggests that
TAMs induce a pro-angiogenic phenotype in tumor-associated
endothelial cells. (Meng et al., 2018)

4.2.7 Macrophages regulate the dissemination of
cancer cells

Invasive growth and dissemination characterize aggressive
tumors, and metastatic cancer causes approximately 90% of cancer-
related death. (Ganesh and Massague, 2021) Epithelial to
mesenchymal transition (EMT) is a crucial mechanism during
development and tissue regeneration but it is also the initial step of
metastasis. During EMT, epithelial cells lose their typical epithelial
expression and downregulate adhesion proteins like E-cadherin to
detach from neighboring cells. At the same time, they upregulate
mesenchymal markers like vimentin and acquire an invasive,
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migratory phenotype. Important transcription factors regulating EMT
are Snail, Slug and Twist. (Yan et al., 2018; Li et al., 2022) Similarly to
what was observed during tissue regeneration, pathological EMT in
tumors is regulated by macrophages. TAMs accumulate at the invasive
borders of the tumor and secrete growth factors, cytokines andMMPs,
that in concert facilitate EMT and metastasis of tumor cells. One of the
most powerful EMT inducing factors produced by TAMs is TGF-β,
which has a dual role in liver cancer. While TGF-β is known to inhibit
proliferation of mature hepatocytes and to suppress early stages of
tumorigenesis, it facilitates cancer stemness and metastasis in
advanced tumors via the YAP/TAZ pathway and Snail. (Fan et al.,
2014; Moon et al., 2017; Yan et al., 2018) TAMs can secrete TGF-β
directly but can also activate latent TGF-β in the ECM by releasing
serine proteases and MMPs (e.g., MMP2, MMP9). (Kessenbrock et al.,
2010; Fan et al., 2014; Fabregat and Caballero-Diaz, 2018) MMPs
secreted by TAMs do not only release growth factors deposited in
extracellular fibers but are also important for the degradation of the
basement membrane and ECM, thereby enabling invasive growth and
tumor cell migration. (Hynes, 2009; Yan et al., 2018) Moreover,
CCL22 produced by CD163+ TAMs binds to CCR4 on tumor cells
which induces EMT and promotes HCC invasiveness in patients.
(Yeung et al., 2015) TNF-α is another major pro-metastatic factor
secreted by TAMs. (Kim et al., 2009) A role for TNF-α in promotion of
EMT was shown in CCA and hepatoma cell lines by increasing the
expression of Snail and reducing E-Cadherin, and stabilizing ß-
Catenin. (Techasen et al., 2012; Chen et al., 2019b) Interestingly,
TAM-derived TNF-α was also suggested to be involved in EMT-
independent mechanisms for metastasis, characterized by CXCR4-
overexpressing endothelial cells evident in murine and human HCC
termed “vessels that encapsulate tumor clusters” (VETC). (Xu et al.,
2017; Meng et al., 2018) VETC consist of nests of primary tumor cells
surrounded by a sinusoidal network. Using a xenograft and an
orthotopic HCC model in mice it was shown that those clusters
were able to enter the bloodstream and metastasize within the liver
and to the lung independently of Snail or Slug expression. (Fang et al.,
2015) In summary, TAMs do not only support tumor growth, but also
facilitate tumor cell invasiveness and metastasis.

5 Finding new macrophage-targeting
therapies for NASH-HCC

NASH and HCC and, consequently, NASH-driven HCC,
represent clinical challenges due to the current lack of effective
therapeutic interventions. The multi-kinase inhibitor sorafenib has
been the standard of palliative care for advanced HCC for decades,
although sorafenib beneficial effects were limited to about 3 months of
extended survival as compared to the best supportive care, and came
with a high frequency of adverse events. (Forner et al., 2012; Pang
et al., 2022) One of the most described immune escape mechanisms
relies on the expression of programmed-death ligand 1 (PD-L1) by
tumor- and immunosuppressive immune cells. Antibodies blocking
the interaction between PD-L1 and its receptor PD-1, expressed by
cytotoxic CD8+ T cells, prevented T cell anergy and restored anti-
tumor activity, and have been approved for HCC treatment. (Llovet
et al., 2021) More recently, a combination therapy of the PD-L1
blocking antibody Atezolizumab and the VEGF neutralizing antibody
Bevacizumab resulted in an improvement of overall and progression-
free survival superior to sorafenib, and thus represent the current

standard of care as first line therapy in patients with advanced HCC.
(Finn et al., 2020; Llovet et al., 2021) However, a recent study
consisting of a meta-analysis of three large randomized controlled
phase III trials of immune checkpoint therapies in patients with
advanced HCC, suggested that only patients with viral hepatitis-
related HCC benefited from PD-(L) 1-targeted immunotherapy,
while patients with non-viral HCC may not. A small cohort of
patients with NAFLD-related HCC displayed even worse overall
survival, possibly linked to the unique inflammatory
immunopathology of NAFLD/NASH. (Dudek et al., 2021; Pfister
et al., 2021).

Given that myeloid cells (especially macrophages) play
predominant roles in the pathogenesis and progression of NAFLD,
particular therapeutic approaches targeting macrophages rather than
lymphoid cells in NAFLD-HCC might prove to have better clinical
outcomes. In this review, we elaborated on the peculiar hepatic
inflammatory milieu during NAFLD progression and transition to
HCC. In a nutshell, the current dogma is that prolonged inflammatory
and fibrogenic responses fueled by loss of KC immunotolerant
functions, increases MoMF recruitment and HSC activation, drives
liver disease progression and ultimately, liver cancer. (Kumar et al.,
2021) Therefore, understanding key molecular alterations in
macrophage-associated inflammation, fibrosis and carcinogenesis is
crucial for developing new therapeutic strategies for NAFLD/NASH
and NASH-HCC (Figure 2).

5.1 Targeting recruitment of monocyte-
derived macrophages

The recruitment of MoMFs actively participates in NAFLD/NASH
progression, and is largely dependent on an array of chemokine
receptors (e.g., CCR2, CCR5, CXCR3). (Tomita et al., 2016; Tacke,
2017; Tacke, 2018) Thus, MoMF recruitment blockade is regarded as a
promising therapeutic approach in the management of disease
progression.

Intensive studies have suggested targeted chemokine interference
as a therapy for NAFLD/NASH. For instance, treatment with C-C
chemokine receptor (CCR) antagonists to reduce infiltration of
inflammatory leukocytes have been proposed as a therapy for
NASH. (Parthasarathy and Malhi, 2021; Zhang and Yang, 2021)
Cenicriviroc (CVC) is an oral dual CCR2/CCR5 antagonist, which
has shown promising results in murine NAFLD models and was
further evaluated in NASH-related clinical trials. (Friedman et al.,
2018; Tacke, 2018) The phase IIb clinical trial revealed that the one-
year CVC treatment demonstrated improvement in fibrosis and no
worsening of NASH compared with placebo. In vitro studies on TGF-
β-stimulated primary mouse HSCs indicated that fibrogenic gene
signatures could be directly suppressed by CVC. (Kruger et al.,
2018) Furthermore, CVC ameliorated insulin resistance, hepatic
inflammation, and fibrosis attributed to an efficient inhibition of
CCR2+ monocyte recruitment. (Krenkel et al., 2018; Luci et al.,
2020) CCR5 inhibition by CVC could hamper the activation,
migration and proliferation of HSCs. Of note, Ccl2 was also
suggested to be expressed by fibroblasts in the steatotic mouse
liver. (Guilliams et al., 2022) CVC treatment is also reported to
effectively inhibit the migration of primary mouse MoMFs and
lymphocytes (e.g., NK, CD4+ and CD8+ T cells). (Puengel et al.,
2017; Huh et al., 2018) However, although both preclinical and
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phase 2 clinical studies were promising, CVC trials were interrupted in
phase 3 due to a lack of efficacy in treating NASH upon a planned
interim analysis (AURORA NCT03028740). (Anstee et al., 2020)
Nonetheless, recent studies also provided evidence on alternative
CCR2 and/or CCR5 inhibitors in NAFLD/NASH murine models
that may represent more effective alternatives. The CCR2 inhibitor
CCX-872 was shown to attenuate the infiltration of
CD11b+CD11c+F4/80+ monocytes into the liver, thus improving
glycemic control and liver inflammation, injury and fibrosis in a
murine NAFLD model (high-fat/high-fructose diet). (Parker et al.,
2018) Alternatively, the CCR5 inhibitor Maraviroc was able to arrest
cell proliferation and decrease collagen production in a human HSC
line. (Coppola et al., 2018) More recently, the novel dual CCR2/
5 inhibitor BMS-687681 was proved to block hepatic infiltration of
inflammatory monocytes in murine NASH models. (Puengel et al.,
2022b) In addition to CCR2 and CCR5, the effect of chemokine
blockade was investigated on several other chemokine axes.
Administration of CCX282-B (a CCR9 antagonist) hampered the
development of steatohepatitis, making it a promising candidate
treatment for NASH patients. (Morikawa et al., 2021) Deactivation
of liver CX3CL1/CX3CR1 signaling was shown to dampen NASH
progression. (Ni et al., 2022)

CD44 is known as a cell-surface protein mainly expressed by immune
cells. Human and experimental data suggest CD44 as a key player in
NAFLD to NASH progression. CD44 promotes hepatic macrophage
infiltration and polarization towards pro-inflammatory phenotypes,
hence CD44-deficient macrophages were prone to polarize to anti-
inflammatory phenotypes. Therefore, targeting CD44 may be taken as
a potential therapeutic strategy. (Patouraux et al., 2017) In a high-fat diet
(HFD)mouse model, IM7 (an anti-CD44monoclonal antibody) injection
suppressed fasting blood glucose levels, weight gain, liver steatosis, and
insulin resistance, even superior to metformin and pioglitazone. (Kodama
et al., 2015) These studies indicate that interferingwithMoMF recruitment
exerts promising roles for the prevention of NAFLD/NASH progression.

5.2 Targeting liver macrophage activation in
NASH

Several approaches have been investigated for interfering with
liver macrophage activation, such as targeting inflammatory signaling
pathways like NF-kB, apoptosis signal-regulating kinase 1 (ASK1),
JNK, or p38. Promising results showed improvement of
steatohepatitis, liver fibrosis and HCC. (Weiskirchen and Tacke,

FIGURE 2
Macrophage-centered view on the molecular mechanisms implicated in NAFLD and HCC pathogenic pathways. Liver macrophages are involved in
virtually all NAFLD and HCC-related pathogenic signaling pathways, giving them a central role of disease course orchestrators, with sometimes contradictory
beneficial and detrimental functions. Abbreviations, CCRs, chemokine receptors; DAMPs, damage-associated molecular patterns; EMT: epithelial-
mesenchymal transition; HSC, hepatic stellate cell; KC, Kupffer cell; IL, interleukin; MFB,myofibroblast; PAMPs, pathogen-associatedmolecular patterns;
ROS, reactive oxygen species; TLRs, toll-like receptors. Created with BioRender.com.
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2016; Tacke, 2017) Selonsertib (an ASK1 inhibitor) treatment has been
shown to influence hepatocyte metabolism and macrophage
activation. Indeed, Selonsertib was determined to reduce liver
fibrosis in NASH patients with advanced fibrosis (stage 2-3) in a
randomized phase 2 trial. (Loomba et al., 2018) However, the further
phase III clinical trial including more than 800 participants concluded
that forty-eight weeks of Selonsertib monotherapy had no antifibrotic
effects in NASH patients with bridging fibrosis or cirrhosis. (Harrison
et al., 2020) Intriguingly, blockade of NLRP3 inflammasome activation
in KCs and MoMFs contributed to the amelioration of NASH, by
attenuating hepatic lipid accumulation. (Huang et al., 2021) MCC950
(a NLRP3 selective inhibitor) attenuated IL-1β production through
inflammasome suppression, which improved NAFLD pathology and
fibrosis in obese diabetic mice. (Mridha et al., 2017) STING functions
as a mitochondrial DNA sensor in the KCs of liver under lipid
overload and induces NF-κB-dependent inflammation in NASH.
(Yu et al., 2019) The Macrophage scavenger receptor 1 (MSR1,
CD204), which is overexpressed in hepatic lipid-laden foamy
macrophages, plays a critical role in lipid-induced inflammation.
(Govaere et al., 2022) The anti-CD163–IgG–dexamethasone
strategy was applied on a rat high-fructose NASH model leading to
significant reduction of inflammation, hepatocyte ballooning, fibrosis,
and glycogen deposition. (Svendsen et al., 2017) E7046 (a PGE2/
EP4 antagonist) significantly inhibited HSC autophagy mediated by
anti-inflammatory macrophages, thus improving liver fibrosis and
histopathology in NAFLD mice. (Cao et al., 2022) According to
evidence from animal models, dopamine receptor D2 antagonism
promotes liver regeneration over fibrosis, by selectively mediating
fibrogenic crosstalk between macrophages and the vascular niche.
(Qing et al., 2022) p38α-deficiency in macrophages resulted in
attenuated hepatic steatosis, due to reduced secretion of pro-
inflammatory cytokines (TNF-α, CXCL10 and IL-6). (Zhang et al.,
2019c) Overall, although clinical benefits remain debatable, important
links have been established between macrophage activation profiles
and NAFLD/NASH progression from multiple preclinical studies.

5.3 Targeting macrophages in HCC

The liver macrophage pool is highly diverse in both pre- and
malignant liver diseases. Nonetheless, several TAM-targeting therapies
have been investigated. Therapeutic blocking of the CCL2/CCR2 axis
counteracts the tumor-induced immunosuppression and leads to the
activation of a CD8+ T cell anti-tumor response, attributed to the
inhibition of MoMF infiltration and TAM polarization. The results
suggest the CCL2/CCR2 antagonist RDC018 as a novel treatment of
HCCs. (Li et al., 2017a) CD26/DPP4 was shown to aggravate
immunosuppression in liver and adipose tissue via dysregulation of
macrophage polarization. Thus, CD26/DPP4 targeting strategies, such
as SerpinB3 (a DPP4 inhibitor) may serve as therapeutic approaches for
NASH-associated HCC. Myeloid-specific IRE1α deletion results in
functional alterations in hepatic macrophages and dampens NASH-
HCC development. (Van Campenhout et al., 2020) Inhibiting
APOC1 can promote the polarization of TAMs towards inflammatory
macrophages via the ferroptosis pathway, thereby restoring an antitumor
immune microenvironment and improving anti-PD1 immunotherapy
for HCC. (Hao et al., 2022) Serum IgA levels were associated with fibrosis
progression and HCC development. In line, in vivo inhibition of IgA
signaling decreased the number of tumor-infiltrating IgA+PD-L1high

macrophages and increased the infiltration of CD69+CD8+ T cells,
eventually leading to anti-tumoral effects in a Cell-Derived tumor
Xenograft (CDX, Hepa 1-6 cells) model. (Sung et al., 2022) Apart
from selective inhibitors, other families of chemicals/drugs were
included in macrophage-related therapeutic HCC studies. Bufalin for
instance, suppresses HCC by reversing the polarization of TAMs towards
tumor-inhibitory macrophages, activating a T cell-driven anti-tumor
immune response. (Yu et al., 2022) Similarly, metformin significantly
drive beneficial macrophage polarization and T cell infiltration, which
suggests therapeutic effects of metformin on tumor surveillance. (de
Oliveira et al., 2019)

6 Concluding remarks

In recent years, in-depth characterization of physiological and
pathological mechanisms at the singular cell level led to unprecedented
insights into cellular diversity in a complex microenvironment.
Consequently, earlier macrophage classification (e.g., the dichotomous
M1/M2 paradigm) appear outdated. Indeed, the granularity of recent
datasets allowed us to recognize a wide range of diversity, with
complementary or opposite roles observed simultaneously in multiple
subpopulations. Recent data also emphasized the importance of spatial
contextualization, providing crucial hints into the effective functions of
definedmyeloid subsets. Nevertheless and despite such diversity, numerous
studies also highlighted the central roles of liver macrophages as key
orchestrators of not only the immune response, but also of disease
progression, from initiation to malignancies. Thus, targeted strategies
aiming at shaping a specific macrophage landscape, or spatially-resolved
interventions aiming at favoring beneficial macrophage populations must
be further explored. There is much left to discover on the events marking
the transition between a hot, largely pro-inflammatory immune landscape
observed during liver disease progression, and a cold tumor immune
microenvironment. Thus, therapies should aim at limiting the effects of
an over-reacting immune system on one hand, while preventing tumor
favorable immunological conditions.
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