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Data-Dependent and Data-Independent Acquisition modes (DDA and DIA,
respectively) are both widely used to acquire MS2 spectra in untargeted liquid
chromatography tandemmass spectrometry (LC-MS/MS)metabolomics analyses.
Despite their wide use, little work has been attempted to systematically compare
their MS/MS spectral annotation performance in untargeted settings due to the
lack of ground truth and the costs involved in running a large number of
acquisitions. Here, we present a systematic in silico comparison of these two
acquisition methods in untargeted metabolomics by extending our Virtual
Metabolomics Mass Spectrometer (ViMMS) framework with a DIA module. Our
results show that the performance of these methods varies with the average
number of co-eluting ions as the most important factor. At low numbers, DIA
outperforms DDA, but at higher numbers, DDA has an advantage as DIA can no
longer deal with the large amount of overlapping ion chromatograms. Results
from simulation were further validated on an actual mass spectrometer,
demonstrating that using ViMMS we can draw conclusions from simulation
that translate well into the real world. The versatility of the Virtual
Metabolomics Mass Spectrometer (ViMMS) framework in simulating different
parameters of both Data-Dependent and Data-Independent Acquisition (DDA
andDIA)modes is a key advantage of this work. Researchers can easily explore and
compare the performance of different acquisition methods within the ViMMS
framework, without the need for expensive and time-consuming experiments
with real experimental data. By identifying the strengths and limitations of each
acquisition method, researchers can optimize their choice and obtain more
accurate and robust results. Furthermore, the ability to simulate and validate
results using the ViMMS framework can save significant time and resources, as it
eliminates the need for numerous experiments. This work not only provides
valuable insights into the performance of DDA and DIA, but it also opens the
door for further advancements in LC-MS/MS data acquisition methods.
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1 Introduction

Liquid chromatography tandem mass spectrometry (LC-MS/
MS) is one of the dominant analytical platforms for untargeted
metabolomics. LC-MS/MS acquisition strategies can be categorised
as either Data-Dependent Acquisition (DDA) or Data-Independent
Acquisition (DIA). In the former, MS2 scans are scheduled to target
particular ions observed in full scan (MS1) survey scans. After each
MS1 survey scan, a small number of ions will be prioritised
(normally based upon their intensity) and fragmented in a series
of MS/MS (MS2) scans. This will be followed by another MS1 survey
scan from which the next batch of fragmentation events will be
decided. In DIA, fragmentation is not based upon ions observed in
survey scans but instead fixed m/z windows are isolated and
fragmented, regardless of the ions present. The m/z windows can
range from the whole m/z range (All-Ion Fragmentation, or AIF) or
can be broken into a series of smaller windows that are iterated over
in consecutive scans (e.g., Sequential Window Acquisition of all
Theoretical Mass Spectra, or SWATH) (Gillet et al., 2012). DIA
therefore removes the need to choose which ions to target at
acquisition time at the cost of introducing an additional
deconvolution step into the data analysis pipeline. Note that in
this paper, we use the term “DIA” to refer to all data-independent
acquisition methods, including both SWATH and AIF.

Various different DDA and DIA strategies have been introduced
(Kaufmann and Walker, 2016; Guan et al., 2020; Davies et al., 2021;
Guo et al., 2021) and although each new method is compared with
other approaches, no clear consensus has emerged as to which
overall strategy is best in which situation (Fernández-Costa et al.,
2020; Guo and Huan, 2020a; Guo and Huan, 2020b). An advantage
of DDA is thatMS2 spectra are generated nearly ready to use, as each
MS2 spectrum targets a particular ion, and we can be reasonably
confident that the fragment ions observed do indeed come from the
targeted ion. Sometimes multiple ions can end up in the same
isolation window (Lawson et al., 2017), but this, in general, is not
considered to be a major problem, as most of the times there is one
dominant ion species giving rise to the mass fragments. Critics of
DDA point to the lack of reproducibility (i.e., due to its stochastic
nature, different peaks will be fragmented if the same sample is
injected twice) and the low coverage–only a subset of the ions
present in the sample are fragmented (Zhang et al., 2020). On the
other hand, DIA offers chromatographic traces for all detected
fragment ions, which can be useful in the identification of
complex samples, particularly those containing isomers, where
chromatographic information can help distinguish between them.
The increased fragmentation capabilities of DIA can also be
beneficial in the case of nearby-eluting isomers, where DDA
might trigger only one MS2 spectrum due to dynamic exclusion.
As DIA does not prioritise based on the contents of MS1 survey
scans, it is more reproducible (we know beforehand exactly the
properties of any scan). It also, at least in theory, overcomes the
coverage issues as it is able to assign MS2 fragments to any detected
MS1 ion.

The analysis of complex samples using DIA presents a unique
set of challenges. In DIA, multiple ions from different compounds
are fragmented during each MS2 scan, leading to complex spectra
that require deconvolution to identify individual components. This
can be particularly challenging in untargeted metabolomics where

the compounds present and their fragmentation patterns are
unknown prior to analysis, making it difficult to set up a pre-
determined table of metabolites of interest to compare their
fragmentation spectra to. Deconvolution, using software such as
MS-DIAL (Tsugawa et al., 2015), is a process that separates the
complex spectra generated by the fragmentation of multiple
compounds into individual components, enabling the
identification of the compounds present in the sample. However,
deconvolution is a complex process and it is widely recognised that
the high coverage provided by DIA comes at the cost of lower quality
spectra (Bern et al., 2010).

Although there have recently been two studies (Guo and Huan,
2020a; Guo and Huan, 2020b) that compare DDA with DIA for its
use in untargeted metabolomics, in general comparisons between
the two acquisition strategies are still lacking. This is mainly due to
the lack of ground truth for real experimental matrices and the cost
of running large numbers of injections. While validation on real
injections is vital, simulation can also play an important role in
answering such questions. For example, the number of ions that can
be targeted in a DDA analysis is a complex function of scan times,
chromatographic peak widths, and the number of peaks eluting at a
particular time. Similarly, the number of spectra that can be
accurately deconvoluted in a DIA analysis depends on the
number of co-eluting ions in the same isolation window, and
how correlated their chromatographic profiles are. In both cases,
analysis on real injections is hampered by a lack of knowledge of the
true make-up of that sample, or samples being overly simplistic if
they consist of just a handful of known standards. Simulation can
overcome these limitations by permitting complete control over the
ground truth in terms of both the fragment spectra present, the
number of chemical ions in the sample, and how and when they
elute.

In our previous work we introduced ViMMS (Wandy et al.,
2019;Wandy et al., 2022), a virtual metabolomics mass spectrometry
simulator framework, and demonstrated how it could be used to
develop new, and improve existing DDA strategies. One of the main
advantages of using ViMMS to develop new strategies lies in its
ability to develop methods without the overhead costs of using a real
mass spectrometer (MS). Within the ViMMS framework, it is
possible to prototype methods and optimise them in silico before
transferring the developed method for validation to an actual
instrument. New DDA methods, such as WeightedDEW and
SmartROI, have been developed on top of ViMMS and shown to
outperform Top-N in terms of the number of peaks that were
fragmented in both simulated and real experiments (Davies et al.,
2021). More recent work has used ViMMS to develop improved
methods for multi-sample and -injection DDA strategies (McBride
et al., 2023).

In the current work we utilised ViMMS as a method for
accurately benchmarking DIA and DDA through simulations.
We firstly introduce two DIA controllers (SWATH and AIF) into
the ViMMS framework, before conducting extensive simulated
experiments to evaluate the comparative performance of DIA
and DDA (Top-N) across a range of different simulated
conditions, effectively creating a “digital twin” of the real
situation. The DIA methods prototyped on the simulator were
transferred with ease to run on an actual MS instrument with no
code changes in the implementation–evidencing the capability of
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ViMMS to develop DIA methods in a simulated-to-real setting. As
such, we used ViMMS to validate the in silico experiments using
complex beer samples in real LC-MS/MS experiments. The real
experimental results were first benchmarked using an online
reference spectral library (GNPS/NIST14) to assess spectral
matches to a database of known molecules. This approach
follows that of Guo and Huan (2020a), but importantly compares
SWATH as well as AIF. Improving upon Guo and Huan (2020a), we
also more systematically compare the results for DDA (Top-N) and
DIA (SWATH and AIF) by evaluating our results against a database
created on the specific sample using a recently developed, but
computationally expensive multiple injection data acquisition
method (McBride et al., 2023). This multi-injection dataset was
constructed specifically to evaluate the maximum spectral coverage
from a realistic experimental setting, complementing the standard
approach of evaluating against a database of known molecules.

Our results found that over a wide range of experimental
conditions, DIA is generally more effective at fragmenting more
features, both in simulations and reality. However, DDA
outperforms DIA in terms of the number of chemical ions for
which high-quality spectra are recovered. Based on simulated and
real instrumental results, we were able to provide a clear, actionable
guideline on when a particular acquisitionmethod (whether DDA or
DIA) should be used.

In summary, the contributions of this paper are as follows.

1) We have introduced two new DIA controllers (SWATH, AIF)
into the ViMMS framework.

2) We have conducted extensive simulated experiments to evaluate
the performance of DDA (Top-N) vs. DIA with a known in silico
ground truth.

3) We have validated the simulated results through benchmarking
on the actual instrument using two reference datasets: the GNPS/
NIST14, and our own Multi-Injection libraries.

2 Materials and methods

2.1 DDA and DIA data acquisition

To validate performance on a real instrument, we performed
DDA and DIA acquisition using six beer samples. Each beer sample
was acquired once using the Fullscan, Top-N, AIF and SWATH
controllers in ViMMS when connected to an actual mass
spectrometer (more details in Section 2.4). To create the Multi-
Injection reference library (described in Section 2.5), each beer
sample was further injected ten times repeatedly for acquisition
using the Intensity Non-overlap method in ViMMS (McBride et al.,
2023).

For sample extraction, chloroform and methanol were added to
beer samples (detailed names in Supplementary Section S1) in a 1:1:
3 ratio and mixed with a vortex mixer. The mixture was centrifuged
to remove protein and other precipitates, and the supernatant was
stored at −80°C. Chromatographic separation was performed with a
Thermo Scientific UltiMate 3000 RSLC liquid chromatography
system and a SeQuant ZIC-pHILIC column. The gradient elution
used 20 mM ammonium carbonate and acetonitrile. 10 μL of each
sample was injected with an initial 80% acetonitrile concentration,

maintaining a linear gradient from 80% to 20% acetonitrile over
15 min, and finally a wash of 5% acetonitrile for 2 min, before re-
equilibration at 80% acetonitrile for 9 min. The flow rate was 300 μL/
min and the column oven temperature was 40°C.

A Thermo Orbitrap Fusion tribrid-series mass spectrometer was
used to generate mass spectra data, controlled through Thermo
Instrument Application Programming Interface (IAPI) managed by
ViMMS (more details in Section 2.4). Full scan spectra were
acquired in positive mode at a resolution of 120,000 and a mass
range of 70–1,000 m/z. Fragmentation spectra for both DDA and
DIA were acquired using the Orbitrap mass analyser at resolution
7,500. In DDA mode, precursor ions were isolated using 0.7 m/z
width and fragmented with fixed HCD collision energy of 25%. The
AGC was set as 200,000 for MS1 scans and 30,000 for MS2 scans. N
was set to 10 Top-N. The dynamic exclusion window (DEW) was set
to 15 s to prevent repeated fragmentation of the same ion. A
minimum intensity threshold of 5,000 was also used before a
precursor ion can be selected for MS2 fragmentation. For DIA
(AIF), an MS1 source CID energy of 25% was used. For DIA
(SWATH), a window of 100 m/z was used with no overlap
between the windows.

2.2 Developing DIA methods using ViMMS

In previous work (Davies et al., 2021), ViMMS was used to
develop DDA methods, but the capability of the framework is not
limited to that. Here we introduced two new methods, SWATH and
AIF, on top of the framework, demonstrating that DIA methods can
also be developed on top of ViMMS. Rather than prioritising ions for
fragmentation based on their abundance as is commonly done for
DDA, DIA methods operate by fragmenting all precursor ions
within a large m/z window. In AIF, all precursors in the entire
m/z range are fragmented, whereas in SWATH, a series of smaller
and potentially overlapping windows are used to fragment ions in
the window. Both AIF and SWATH were implemented as
controllers in ViMMS, allowing their performance to be
benchmarked in the simulator and validated on an actual
instrument easily, as previously done with DDA methods (Davies
et al., 2021).

Figure 1 shows a schematic of the DIAmethod implementations
in ViMMS illustrating how the new DIA methods were introduced.
The ViMMS framework can be divided into two parts: a “Simulated
Environment” where simulated scans are generated by querying
synthetic chemicals, and a “Real Environment” where actual scans
are generated through measurements using an LC-MS instrument.
In the Simulated Environment (Figure 1A), the Virtual MS is seeded
with synthetic molecules that are created by either sampling
chemical databases or extracted from existing experimental
mzML files. Once generated, molecules can be used to produce
scans during virtual mass spectrometry. Scans are generated based
on which molecules elute at a particular retention time, and
generated chemicals are dispatched to the appropriate controllers.
In ViMMS, a controller class is a specific implementation of an
acquisition method in Python that follows a predefined Python
interface to receive scans and schedule the next MS1 and MS2 scans.
The new DIA methods are implemented as the SWATH and AIF
controller classes in ViMMS (solid purple box in Figure 1A),
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extending from the base Controller class (blue box in Figure 1A).
Different experiments can be performed in the Simulated
Environment, allowing for different data characteristics to be
explored.

Once tested and optimised, the developed DIA controllers can
be transferred to run on an actual mass spectrometer instrument
with no change to their implementations. This is accomplished by
swapping the Simulated Environment to a Real Environment
(Figure 1B), where an IAPI MS is used in place of the Virtual
MS. The IAPI MS class has the same interface as the Virtual MS to
ensure code compatibility, however the IAPI MS relies upon the
Instrument Application Programming Interface (IAPI) (Thermo
Fisher Scientific, 2022) to communicate with an actual Thermo
Orbitrap Fusion instrument. All developed controller
implementations, whether DDA or DIA that were initially tested
against the Simulated Environment in ViMMS, can run without any
change in the Real Environment (for the new DIA methods, this is
the dashed purple box in Figure 1B). In this manner, real
experimental data can be seamlessly acquired using the AIF and
SWATH controllers initially developed in the simulator.

2.3 Simulating DDA and DIA methods

2.3.1 Generation of simulated data
Simulations allow us to flexibly define different scenarios to

validate hypotheses without costly instrument time. To compare the
two types of acquisition methods, we use the Simulated
Environment in ViMMS (Figure 1A) to generate simulated data
with an increasing number of co-eluting chemicals present to test
the limit of deconvolution empirically. While these chemicals are
purely synthetic, they allow us to know the ground truth and

evaluate the results of the different methods more accurately
without being reliant on inconsistent database matching.

In the simulated study, each chemical is generated by first
choosing a formula randomly from the HMDB database,
ensuring that its observed monoisotopic mass is between
100–1,000 Da (the mass distribution of e.g., the 5,000 sampled
chemicals is shown in Supplementary Section S5). Next the
chemical is assigned a uniformly-sampled retention time value
between 0–400 s. The choice of uniform distribution here is
motivated by the narrow retention time range used. When the
number of chemicals are high (e.g., 5,000), this results in dense
regions of co-eluting ions throughout the entire simulated injection,
which could challenge spectral deconvolution and potentially
demonstrate the limit of such approaches.

Finally for each chemical, a chromatogram is generated. The
maximum intensity value of the apex of the chromatogram was
sampled from a uniform distribution between 1E4–1E7. A Gaussian
chromatographic peak shape with a mean centered at the chemical’s
RT value, and a standard deviation of 5 s is assumed. This
chromatographic peak shape assumption matches that of MS-
DIAL, thus making the task of peak picking easier. Each
chemical’s observed MS2 spectra are also generated randomly by
sampling fragment peaks’ m/z uniformly between 70 m/z to the
exact mass of the formula (assuming a positive charge of +1). The
intensity of a fragment peak is also set to be between the specified
minimum (0.1) and maximum (0.8) proportions of the chemical’s
apex intensity. The number of fragment peaks in an MS2 scan is
generated by sampling from a Poisson distribution with the mean
10. This Poisson mean was chosen to produce sufficient expected
numbers of fragment peaks perMS2 scan for spectral matching later.

Simulated samples containing the specified number of chemicals
are generated in a case-vs-control setup, where each sample set

FIGURE 1
The overall schematic of the ViMMS framework. (A) The Simulated Environment in ViMMS allows for new acquisition methods to be developed
against a Virtual MS that takes simulated molecules as input. The new DIA methods, e.g., SWATH and AIF (solid purple box), as well as existing DDA
methods (faded orange box), are implemented as controllers and initially tested here in the Simulated Environment. A controller is a specific Python
implementation of an acquisition method in ViMMS. (B) Acquisition methods can be run for method validation on the Real Environment in ViMMS,
connected to a ThermoOrbitrap Fusion instrument via IAPI, to acquire real experimental scans. Controllers developed in the Simulated Environment can
be transferred to the Real Environment easily (shown by the dashed purple line). As different environments abstract the low-level scan generation
process, the underlying Python controller codes for the new DIA methods remain unchanged when transferred from the Simulated to the Real
Environment (dashed purple box).
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consists of 5 case and five control samples, and each sample contains
observation from the specified number of chemicals. To reduce the
influence of peak picking and alignment during data processing of
DIA data, chemicals were generated such that the same chemical has
identical m/z and RT values across samples, although their intensity
values change across the case and control groups. While simple, this
setup represents a realistic case that captures the essence of many
real biological mass spectrometry-based experiments. Varying
numbers of chemicals are generated during simulation, ranging
from 10, 20, 50, 100, 200, 500, 1,000, 2000, and 5,000. The entire
experiment is repeated 5 times, resulting in multiple experimental
replicates. DDA (Top-N) and DIA (AIF, SWATH) controllers were
run for every sample that was simulated, resulting in an mzML file
for each acquisition run. Parameters of these controllers were set to
be the same as that used for real data acquisition (detailed in
Section 2.1.

2.3.2 Processing of simulated data
Once simulated data has been generated in Section 2.3.1,

chemicals need to be mapped to their respective fragmentation
spectra. For DDA, the association between observed fragmentation
scans to chemicals is known unambiguously as their mapping can be
read from the simulation state directly. For DIA, spectral
deconvolution needs to be performed to assign the deconvoluted
fragment peaks to chemicals. We chose MS-DIAL (Tsugawa et al.,
2015) for peak picking and spectral deconvolution on the resulting
mzML files produced by simulating DIA methods (see
Supplementary Section S2 for the MS-DIAL parameter settings).
MS-DIAL was chosen as it was widely used by the community for
processing DIA data.

From MS-DIAL output, we can extract for each sample set a
list of features that were detected and aligned across the DIA
mzML files (5 cases and five controls). Each feature is potentially
associated with a fragmentation spectra, which has been
deconvoluted by MS-DIAL. To assign fragmentation spectra,
we matched simulated chemicals to features using the m/z
tolerance of 5 ppm and RT tolerance of 10 s, therefore linking
chemicals to their deconvoluted spectra. If there are multiple
possible candidates during matching, the feature closest in m/z
value to the chemical’s monoisotopic peak will be chosen. Finally
for each simulated chemical, its true fragmentation spectra are
known. This can be used to construct a library of true reference
spectra for matching. Observed (and deconvoluted, in the case of
DIA) spectra are matched to the true spectral library using cosine
similarity. For matching, a bin width of 0.05 Da is used and a
minimum of at least three matching peaks is required.

2.4 Validation on a real instrument

2.4.1 Generation of real data
The Real Environment in ViMMS was used to validate that the

simulated results translate to real experiments (Figure 1B). This
environment can be connected to a ThermoOrbitrap Fusion tribrid-
series mass spectrometer, allowing us to perform data acquisition on
a series of beer samples using the fullscan, Top-N, and the newly
introduced SWATH and AIF controllers. The result from data
acquisition is a series of mzML files, one for each beer sample

and controller used. For more details on real data acquisition, refer
to Section 2.1.

2.4.2 Processing of real data
Peak picking and alignment was performed using MS-DIAL on

the real experimentally-derived fullscan mzML files. Unlike in
simulations, here the exact chemical composition of the sample is
unknown. As such, fullscan features from peak picking on the
fullscan data are used as a proxy for chemicals. The fullscan data,
which contains the most MS1 information and therefore the best
chromatographic peak shapes, was chosen for feature extraction
using MS-DIAL. MS-DIAL parameters were chosen by hand to give
a reasonable number of peaks comparable to what we have seen
from past experiments using this kind of sample on the same
instrument (details in Supplementary Section S3). The result
from this is a list of fullscan features detected and aligned from
the fullscan beer mzML files.

Next DDA fragmentation spectra were to be assigned to fullscan
features, with the following procedure employed to bypass the need
to do further peak picking on the DDA mzML files (which can be
problematic due to the lower number of MS1 scans in fragmentation
files). pymzML (Bald et al., 2012) was used to load MS2 scans from
each DDAmzML file. For each MS2 scan, we used its precursor m/z,
isolation window and RT values to assign the scan (and therefore
fragmentation spectra) to its corresponding fullscan feature. This
assignment was done based on whether the isolation window and
RT values of a chemical overlap with the feature’s bounding box
from peak picking. If a fullscan feature had multiple MS2 scans
associated with it, the scan that was fragmented at the highest
intensity within the feature’s bounding box was chosen.

Finally, just like in simulation, MS-DIAL was used to perform
peak picking and spectral deconvolution on the DIA mzML files.
Peak picking was performed using the same parameters as the
fullscan data, and an additional deconvolution step was done
using MS-DIAL (detailed parameters in Supplementary Section
S3). From MS-DIAL output we extracted a list of fragmentation
features detected in the DIA mzML files and their corresponding
MS-DIAL deconvoluted spectra. Fullscan features (without
fragmentation information) were matched to the DIA
fragmentation features (with deconvolved spectral information)
using an m/z tolerance of 5 ppm and RT tolerance of 10 s. If
there were several possible candidates during matching, the one
closest in m/z value was chosen. The results of this procedure from
both the DDA and DIA data is the assignment of a fullscan feature to
fragmentation spectra. Such spectra can be used for matching
fullscan features to the reference libraries during benchmarking
experiments.

2.5 Matching experimental spectra to
reference libraries

To assess mass spectral quality, we match the fragmentation
spectra from DDA and DIA methods to two reference spectra
libraries. These reference libraries can be used to match against
the observed and deconvoluted spectra from DDA and DIA
methods. For matching, a bin width of 0.05 Da is used and a
minimum of at least three matching peaks is required.
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The first reference library is the “GNPS Matches to NIST14”
dataset obtained from the GNPS library (Wang et al., 2016). This
dataset contains 5,763 high confidence matches to NIST14 M/MS
library spectra. Filtering by polarity is performed to select spectra
in positive mode only that can be used as reference to assess
spectral annotation quality. For experiments, we call this the
GNPS/NIST14 library. Its purpose is to assess how many
potentially unknown metabolites could be annotated in an
untargeted metabolomics experiment using the different
acquisition methods.

Additionally, we also introduced our own multiple-injection
reference library for spectral matching, which we call the Multi-
Injection Library. Each beer sample was injected ten times and
data acquisition is performed by taking advantage of replicate
information using the Intensity Non-overlap method available in
ViMMS (detailed in Supplementary Section S4). Intensity Non-
overlap is an iterative DDA-based method that detects regions-
of-interests (ROIs) in real-time and avoids re-fragmenting the
same ROI multiple times across successive injections. An ROI is
scored for fragmentation based on its overlapping area weighted
by intensity, with higher scoring ROIs selected more often (for
more details, refer to Supplementary Section S4 and McBride
et al. (2023)). In the presence of multiple injections, Intensity
Non-overlap has been shown to outperform Top-N by a large

margin as it is able to target more unique features across
injections, while fragmenting each feature closer to its apex.

To convert the acquiredMulti-Injection mzML files into spectral
library, for each beer sample, we perform peak picking using MS-
DIAL on its corresponding fullscan mzML file, generating a list of
fullscan feature for that beer sample. Fragmentation spectra,
acquired via exhaustive fragmentation of each sample using
Intensity Non-overlap, were extracted from mzML files and
matched to the detected fullscan features following the DDA
procedure outlined in Section 2.4.2. The purpose of introducing
this Multi-Injection reference library is to assess the coverage of the
benchmarked DDA (Top-N) and DIA (AIF, SWATH) methods
when only a single replicate is available (a common occurrence) and
increasing the number of replicates is not possible due to cost or
other constraints.

3 Results

3.1 Simulated results

Acquired fragmentation spectra could help deduce the chemical
identities of measured compounds. From the proposed simulated
experiment in Section 2.3, for each acquisition method the number

FIGURE 2
The mean proportion of unique chemical annotations at varying numbers of chemicals and similarity thresholds across five replicates. The error bar
shows the 95% confidence interval.
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of chemicals that could be annotated based on spectral matching is
obtained. The number of unique chemical annotations in the dataset
is counted at varying thresholds for cosine similarity score of at least
20%, 40%, 60% and 80% (Figure 2). The results across five replicates
show that for small numbers of chemicals, all benchmarked
methods, whether DDA or DIA, have similar annotation
performance. At similarity threshold 60% and with only
100 chemicals, AIF annotated a mean of 72.6% of chemicals,
SWATH 86.0% and Top-N 84.4%. As the number of chemicals
increases, the gap between the benchmarked methods widen leading
to lower annotation rates from DIA. When the number of chemicals
increased to 200, at 60% similarity threshold, AIF managed to
annotate 54.4% chemicals, SWATH 80.7% and Top-N 82.4%. For
500 chemicals, AIF annotates 28.8% of chemicals, SWATH 59.0%
and Top-N 79.3%.

With a greater number of chemicals, Top-N outperforms the two
DIAmethods across all thresholds. At the highest number of chemicals
(5,000), the annotations obtained from SWATHandAIF are nearly 0%
while Top-N managed a mean of 31.5% across replicates. It can be
observed that increasing the cosine similarity threshold from 20% to
80% lowers the results of all methods, but the overall trend remains.
The supplementary section also includes additional results obtained
from varying the matching threshold. Supplementary Figure S2
displays the results of matching with a bin width of 0.005 Da,
while Supplementary Figure S3 illustrates the results of matching
with a bin width of 0.50 Da. The results in Supplementary Figure
S2 demonstrate that the tolerance level was too narrow, leading to a
decrease in performance for all acquisitionmethods. Despite this, Top-
N still demonstrates superior performance compared to the DIA
methods when a high number of chemicals are present. The results
in Supplementary Figure S3, obtained using a larger bin width of
0.50Da, are consistent with those presented in Figure 2 which utilised a
bin width of 0.05 Da. This consistency in results highlights that the
trend of Top-N outperforming DIA methods holds true for a large
number of chemicals (> 200). Supplementary Figure S4 also shows the
results from using different window sizes of 100 m/z, 50 m/z and 25 m/
z in the SWATH simulation. It can be observed from Supplementary
Figure S4 that making the window size smaller produces a slight

annotation improvement in SWATH when the number of chemicals
are large (2000 and 5,000). However this improvement is small, and the
overall trend of Top-N outperforming both SWATH and AIF in this
regime holds.

To further explain the annotation results in Figure 2, here we
consider for one replicate the distribution of spectral similarity
scores when matching DDA and DIA spectra to the known
ground truth of true chemical fragmentation spectra. The results
are shown in Figure 3 for the entire range of chemicals tested. From
Figure 3, it can be seen that Top-N generally performs best in
returning high similarity scores, followed by SWATH then AIF. For
Top-N, the cosine similarities of matches generally remain high even
with an increasing number of chemicals. For the two DIA methods,
their cosine similarities gradually decrease with more co-eluting
chemicals. This could be explained by the fact that as the elution
profile gets more crowded, more precursor ions are isolated and
fragmented in the same window, making deconvolution harder.
SWATH performs marginally better than AIF with increasing
chemicals. This makes sense as the window used for isolating
multiple peaks in SWATH is smaller than AIF where all ions in
the entire scan range are used, making the deconvolution problem
slightly easier for SWATH.

Inspecting the hardest case of 5,000 chemicals in Figure 4, it can
be observed that AIF returns most of its matches at low cosine
similarity achieving a median score of 10.7%, Top-N returns most
matches at high cosine similarity with a median of 94.1%. SWATH
outperforms AIF (median similarity 31.3%) but not as well as Top-
N. To explain the decrease in similarity scores, we inspect the
pairwise cosine similarity of all observed/deconvolved spectra for
each acquisition method (Figure 5). The results show that the
pairwise similarity of the ground truth and Top-N spectra is
nearly 0 for nearly the entire range of chemicals. However, most
likely due to the increased difficulty in deconvolution, pairwise
spectral similarities in the SWATH and AIF results are higher
with increasing chemicals–resulting in a decrease in identification
hits, and fewer matches at high cosine similarity as the experimental
mass spectra become more similar to each other and less similar to
the true mass spectra of the chemicals.

FIGURE 3
The distribution of cosine similarity scores when matching observed spectra to the true reference spectra for varying numbers of chemicals.
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3.2 Real experimental results

3.2.1 Mapping features to fragmentation spectra
Simulated results were further validated on real instruments by

running the benchmarked DDA and DIA methods on actual beer
samples. Following the procedure in Section 2.4.2 to map fullscan
features to fragmentation spectra, 6090 fullscan features initially
were detected from the fullscan data after peak picking and
alignment. After matching the fullscan features to fragmentation
data, DIA methods produce the largest number of matched features,
with SWATH at 3889 and AIF at 4381. In contrast, Top-N only has

2,895 matched features. Figure 6 summarises the proportion of
fullscan features that can be matched to the fragmentation spectra.
Our results here agree with Guo and Huan (2020a) in how DIA
(AIF) is able to fragment more features than DDA (Top-N).We note
some slight differences in our methodology to (Guo and Huan,
2020a). In this work, we perform peak picking to extract features on
the fullscan data, which has more reliable MS1 signals.
Fragmentation mzML files are used only to map fragmentation
scans to the detected fullscan features. Whereas in (Guo and Huan,
2020a) the peak picking is performed directly on the fragmentation
mzML files, potentially leading to poorer extracted chromatographic

FIGURE 4
The distribution of cosine similarity scores as a boxplot (left) and a histogram (right) when matching observed spectra to the true reference spectra
for 5,000 chemicals.

FIGURE 5
The distribution of pairwise cosine similarity scores of the ground truth (true chemical spectra), and fragmentation spectra from Top-N, SWATH and
AIF. The plot y-axes are truncated at 25% similarity.
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peak shapes due to sparser MS1 data points in the mzML files.
Despite these differences in the experimental set up, the conclusions
from both our study and (Guo and Huan, 2020a) agree that AIF
outperforms Top-N in the number of fragmented features.
Additionally SWATH was not included in (Guo and Huan,
2020a) but it was hypothesised to perform in the middle of Top-
N and AIF, as the windowing approach used in SWATH lies
between the two extremes of fragmenting everything (AIF) and
fragmenting only a few selected precursor ions (Top-N). Our results
here confirmed that SWATH achieves a higher coverage than Top-N
but lower than AIF.

3.2.2 Pairwise spectral similarity
By following the methodology of Section 2.5, two reference mass

spectral libraries were constructed, one based on the GNPS spectra
matched to NIST-14 at high reliability (the GNPS/NIST14 library),
and another based on an exhaustive multiple-injection approach we
constructed ourselves (the Multi-Injection library). The purpose of
the GNPS/NIST14 library is to assess how many unknown

molecules can be identified from spectral matching for each
acquisition method, whereas the purpose of the Multi-Injection
library is to determine the extent of coverage with respect to an
exhaustive and expensive multiple-injection method. After filtering
by polarity, we obtain 5,274 positive-mode spectra from the GNPS/
NIST14 library, whereas for the Multi-Injection library, in total
4987 features were available for matching in this library.

To assess spectral quality, we first compute the pairwise
similarity of spectra in the same dataset, and also within each of
the two reference libraries. For each feature, we find the matches to
fragmentation spectra in the same dataset by computing the cosine
similarity (ms2_tol = 0.05 Da, min match peaks = 3), with the results
shown in Figure 7. The Multi-Injection reference library has a
median of nearly 0% for pairwise similarities, demonstrating that
the acquired reference spectra using the Intensity Non-overlap
method are sufficiently different from each other. The GNPS
reference library has a higher pairwise similarity of 9.5%,
suggesting that some of the curated molecules share similar
structures and therefore similar mass fragmentation spectra. This
is a reasonable assumption as shared structures is the core
underlying assumption for models to discover chemical
substructures, such as MS2LDA (van Der Hooft et al., 2016) that
has been applied to reference libraries like MassBank and GNPS.

The Top-N dataset also has the same low median pairwise
similarity (2.7%) in its member spectra. This is expected given
the nature of DDA. Assuming that deconvolution works well for
DIA data and the resulting spectra are dissimilar to each other in a
manner similar to the Top-N results, we expect to observe lower
pairwise similarities from the DIA datasets too. However the higher
median pairwise similarity scores for SWATH (16%) and AIF (22%)
suggest that deconvolved spectra from SWATH and AIF tend to be
more similar to each other. This could be due to the difficulty in
deconvolving spectra. The results here generally agree with
simulated results in Section 3.1, where DIA methods are also
shown to exhibit higher pairwise similarity in simulation.

3.2.3 Spectral matching results
We compute the cosine similarity of features to the GNPS/

NIST14 reference spectra. Similar to before, features were matched
to reference spectra based on their cosine similarity (ms2_tol =
0.05 Da, minmatch peaks = 3). If there are multiple matches for each
feature, the one with the best score (highest) is kept. Figure 8A shows
the score distributions for the three methods. From Figure 8A (left
panel), it can be observed that Top-N obtains the highest median
cosine similarity (26.5%) followed by SWATH (19.5%) and finally
AIF (15.2%). Consequently this results in Top-N (DDA) obtaining
the most high-scoring matches at ≥ 60% similarity, followed by
SWATH and AIF last (Figure 8A). The results here are consistent
with the simulated results in Section 3.1 and also with Guo and
Huan (2020a) but in that work, only Top-N and AIF were compared.
Our results further confirmed the hypothesis in Guo and Huan
(2020a) that SWATH should perform in the middle of Top-N and
AIF when it comes to spectral quality. This is because deconvolution
using SWATH data is easier than AIF due to the smaller window
sizes.

Next we perform spectral matching to the Multi-Injection
reference library. When matched against Top-N and DIA
methods, Top-N performs best (90.5% median) followed by

FIGURE 6
Proportion of matched features to the total number of detected
features from the fullscan data.

FIGURE 7
Pairwise similarities of spectra in each dataset. DIA methods (AIF,
SWATH) produce deconvoluted spectra that are more similar to each
other.
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SWATH (28.1%) and AIF (13.3%) (Figure 8B). The results here are
consistent with the GNPS results above. However we see that the
median similarity of Top-N is much higher compared to the two
DIA methods here. That is because the reference spectra contains
more query spectra since it is based on the same sample, only
fragmented exhaustively, and unlike GNPS/NIST14 there are fewer
missing matches.

Comparing the overlap of annotated features at matching
threshold ≥60% (Figure 9) for both reference libraries, it can be
observed that Top-N (DDA) obtains the most hits, being able to
annotate the most unique features (295 for GNPS/NIST14, and
2,231 for Multi-Injection). In both cases, there is a large overlap
between Top-N and DIA annotations, and most DIA annotations
are also recovered by Top-N. Between AIF and SWATH, there is
also a lot of overlap with SWATH being able to recover most of the

annotations of AIF. The results here for AIF and Top-N generally
agree with Guo and Huan (2020a), with SWATH a new addition in
our results that perform in between those two.

4 Discussion and conclusion

In this study, we performed a comprehensive comparison of DDA
vs. DIA methods, first in the simulator, followed by validation using
real experimental mass spectrometry data. We simulated experiments
at various complexity levels to challenge DDA acquisionmethods and
DIA deconvolution methods. Here, we observed that the quality of
deconvolution using MS-DIAL is limited by the number of co-eluting
chemicals. Identification performance is limited in DIA compared to
DDA with a large number (more than 1,000) of simulated chemicals
or observed molecular features. We further benchmarked this
scenario using a real untargeted metabolomics dataset acquired on
the mass spectrometer generated from beer samples. Mass spectral
matching of experimental mass fragmentation spectra from this real
dataset on two sets of reference mass spectral libraries confirmed our
simulated results. This validates our motivation that a simulator
framework such as ViMMS can be used to benchmark the
performance of both types of methods. Simulation helps to
provide an environment that can be used to prototype and
validate advanced deconvolution methods–without the need of
costly instruments (i.e., a “digital twin”). This encourages the
development of better deconvolution methods, since known
ground truths were generated in silico, thus making benchmarking
easier. The ViMMS framework could also be used to simulate various
scenarios that we have not covered in this study, for instance
simulating different column properties and elution profile of
chemicals, and assessing how that affects deconvolution.

FIGURE 8
Distribution of cosine similarity of annotated features for Top-N and DIA methods for the (A) GNPS/NIST14 library and (B) Multi-Injection library.

FIGURE 9
Venn diagram showing the overlap of annotated features
between Top-N, SWATH and AIF at matching threshold ≥60% for the
(A) GNPS/NIST14 library, and (B) Multi-Injection library.
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In the context of LC-MS/MS analysis, a complex sample would
contain a large number of different metabolites, while a simple
sample would contain only a few metabolites. Determining the
complexity of a sample is important for choosing the appropriate
acquisition strategy for LC-MS/MS analysis. ViMMS can generate
simulated samples of varying complexity, which can be used to
assess whether DDA or DIA methods should be used in specific
scenarios. By varying average number of co-eluting ions, we found
that DIA being more effective at lower numbers and DDA having an
advantage at higher numbers where DIA struggles to handle the
large amount of overlapping ion chromatograms. From both
simulated and real results, DDA was also found to generally
perform better than DIA when it comes to matching unidentified
features to spectra in both reference libraries (GNPS and Multi-
Injection). DIA fragments more features than DDA but their quality
for spectral matching is typically lower. Our results on this are not
unique as a similar work in (Guo and Huan, 2020a) confirms our
findings. Crucially, our study improves upon that prior work in
several key aspects. The first is that SWATH was not included in the
comparison of Guo and Huan (2020a), whereas our study did
include both AIF and SWATH. Secondly, while spectral
matching to a library of known fragmentation spectra (e.g.,
GNPS, or MassBank) can be done, many compounds present in
such databases have no matches thus reducing the identification rate
observed from both DDA and DIA methods. Thus we introduce
another dataset, constructed using an advanced multiple-injection
method, to measure how well DDA and DIA methods perform with
respect to exhaustive fragmentation procedures. Exhaustive
fragmentation procedures have been shown to perform best with
respect to coverage when a large number of replicates are available.
However, real experiments are often constrained by cost or time,
limiting the number of replicates that could be produced. In this
setting, our analysis shows that DDA still performs best compared to
DIA in recovering coverage when multiple replicates are not easily
available.

Our recommendation on which acquisition method to choose is
therefore.

• If the sample complexity is expected to be low tomedium, OR
it is preferred to fragment asmany features as possible, even if
they are not all identified, it is recommended to use DIA for
data acquisition (keeping in mind the necessary deconvolution
step).

• If the sample complexity is expected to be high, OR it is
preferred to obtain as many identified features as possible, it
is recommended to use DDA, which targets a specific ion for
each MS2 scan thus generating fragmentation spectra that are
almost immediately usable for analysis.

It is worth emphasizing that our results do not negate the
usefulness of running DIA methods. Using DIA, we obtain the
largest number of coverage of features, resulting in the most number
of fragmented molecules–many of whom could be used for further
investigation in the future. However acquired DIA scans need to be
deconvoluted in order to translate the results to actual identification.
Improvements in deconvolution methods are therefore needed to
fully maximise the usefulness of DIA data. The work introduced
here shows that a large margin of improvement is still possible in

spectral deconvolution of DIA results–an avenue for further
research that could be explored by the community. The work
here also shows that through a simulation framework such as
ViMMS, researchers could first test their deconvolution method
in silico. The portable nature of ViMMS means controllers
(fragmentation methods) developed in simulators can be easily
ported to run on the real instrument. DIA methods such as AIF
and SWATH were implemented as controllers on top of ViMMS,
tested in the simulator, and easily deployed to run on the actual
instrument. This makes it easy for others to reproduce our results in
simulation. It also opens the path for more advanced DIA methods
to be developed in the future on top of ViMMS. What makes
ViMMS particularly valuable is its ability to simulate a range of
different method parameters for both DDA and DIA, allowing
researchers to easily evaluate the performance of different LC-
MS/MS data acquisition methods. This feature not only provides
valuable insights into the strengths and limitations of each
acquisition method, but it also opens the door for further
advancements in LC-MS/MS data acquisition methods. By using
ViMMS, researchers can optimize their choice of acquisition
method and obtain more accurate and robust results, while
saving significant time and resources as they eliminate the need
for numerous experiments. In other fields such as molecular
machine learning, having a standardized benchmark dataset (Wu
et al., 2018) fosters development and collaborations as now a
common reference exists onto which we can compare the
performance of different methods. It is our hope that the
simulated experiment introduced here could also serve as a
standard and reproducible benchmark to which other
deconvoluted methods can be compared to.

Our study has several limitations, including the fact that our
comparison of DDA and DIA acquisition methods is based solely on
the analysis of processed and, in the case of DIA, deconvoluted data.
While data processing, particularly the deconvolution step, is a
crucial aspect of DIA data analysis, other important factors such
as the increased computational demands for deconvolution in DIA
are not considered in detail. Additionally, the impact of instrument
configuration and sample preparation on the data is not evaluated in
our study, which can also influence the performance of both
acquisition methods. Further research is necessary to gain a
comprehensive understanding of the strengths and limitations of
both DDA and DIA in untargeted metabolomics and to determine
the optimal approach for various scenarios. Our findings primarily
emphasise the MS/MS spectral annotation performance and do not
extensively address other factors such as quantitative performance.
We only used MS-DIAL for the pre-processing of DIA data. MS-
DIAL is de-facto the most popular tool used for spectra
deconvolution and analysis of DIA data. However, other
deconvolution tools exist, such as those of Yin et al. (2019) and
Graca et al. (2022), that we do not include in our comparison.
Parameters from MS-DIAL in our study were picked by hand to
obtain reasonable results–similar to the limitation in Guo and Huan
(2020a). Furthermore, DDA and DIA methods exist that can exploit
information across multiple samples (Koelmel et al., 2017; Tada
et al., 2020) but these were not included in our evaluation. Using
ViMMS, we could generate samples in multiple replicates and assess
the performance of DDA and DIA methods when replicates are
available. This validation to some extent has been done to compare
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standard DDA vs. multiple samples/injections DDA in McBride
et al. (2023) but not in the context of comparing to DIA methods.

Another aspect to take into account is the choice of cosine
similarity as the metric for spectral matching. While cosine
similarity is a commonly used metric in MS-DIAL, there are
more advanced techniques available, such as Spec2Vec (Huber
et al., 2021) and Tanimoto similarity, which have been shown to
better preserve chemical similarity in spectral matching. However,
for the purposes of this study, cosine similarity was selected as the
metric because it can be applied to both real and synthetic data. The
goal of this study was to demonstrate that simulated results can be
translated to experimental results, and cosine similarity was chosen
as the metric for spectral matching because of its broad applicability
to both types of data.

For future work, the developed in silico benchmarking pipeline
introduced in this work can also serve as the foundation to develop
and validate a hybrid method that combines the benefit of both
approaches. DDA and DIA methods exist in a spectrum: DDA
isolates a certain precursor m/z for fragmentation, and DIA isolates
multiple ions in a range of windows. This behaviour is the same
across the entire run. It would be interesting to explore the potential
of a hybrid method that combines the benefits of both DDA andDIA
approaches. Such a method could potentially take advantage of the
strengths of both approaches, allowing for more accurate and
comprehensive analysis of complex samples. Such work has
already been attempted (Guo et al., 2021) but that integration
happens in data processing, not during the data acquisition itself.
A hybrid acquisition method could use DDA to isolate certain
prioritised precursor ions for fragmentation, and use DIA to
isolate the remaining ions within a range of windows. This
hybrid approach would allow for a more flexible and
comprehensive analysis of samples, and could potentially
improve the accuracy and reliability of results. This would lead
to a more effective use of untargeted metabolomics, as more
molecular features will be fragmented with higher-quality mass
spectra associated to them. Ultimately, that will improve the
biochemical interpretation of metabolomics profiles across the
life sciences and other research areas.
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