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Introduction:Galactosemia (GAL) is a genetic disorder that results in disturbances
in galactosemetabolism and can lead to life-threatening complications. However,
the underlying pathophysiology of long-term complications in GAL remains
poorly understood.

Methods: In this study, a metabolomics approach using ultra-performance liquid
chromatography coupled with high-resolution mass spectrometry was used to
investigate metabolomic changes in dried blood spots of 15 patients with GAL and
39 healthy individuals.

Results: The study found that 2,819 metabolites underwent significant changes in
patients with GAL compared to the control group. 480 human endogenous
metabolites were identified, of which 209 and 271 were upregulated and
downregulated, respectively. PA (8:0/LTE4) and ganglioside GT1c (d18:0/20:0)
metabolites showed the most significant difference between GAL and the healthy
group, with an area under the curve of 1 and 0.995, respectively. Additionally, the
study identified potential biomarkers for GAL, such as 17-alpha-estradiol-3-
glucuronide and 16-alpha-hydroxy DHEA 3-sulfatediphosphate.

Conclusion: This metabolomics study deepened the understanding of the
pathophysiology of GAL and presented potential biomarkers that might serve
as prognostic biomarkers to monitor the progression or support the clinical
diagnosis of GAL.
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1 Introduction

Galactosemia is an autosomal recessive disorder caused by a defect in the enzyme
galactose-1-phosphate uridyltransferase (GALT) (Isselbacher et al., 1956; Berry, 2015). This
enzyme is needed to convert galactose (a sugar found in dairy, fruit, and some foods) into the
body’s primary energy source (Leloir, 1951). If this enzyme is deficient, galactose
accumulates to toxic levels in the body, leading to a severe neurological and metabolic

OPEN ACCESS

EDITED BY

Andras Szeitz,
University of British Columbia, Canada

REVIEWED BY

Jasmeen Kaur,
Punjabi University, India
Shane Peter Fitzgerald,
King’s College London, United Kingdom

*CORRESPONDENCE

Anas M. Abdel Rahman,
aabdelrahman46@kfshrc.edu.sa

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted
to Metabolomics,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 30 January 2023
ACCEPTED 03 March 2023
PUBLISHED 04 April 2023

CITATION

Alodaib AN, Nimer RM, Alhumaidy R,
Alhenaky A, Abdel Jabar M, AlMalki RH
and Abdel Rahman AM (2023), Biomarker
discovery in galactosemia: Metabolomics
with UPLC/HRMS in dried blood spots.
Front. Mol. Biosci. 10:1154149.
doi: 10.3389/fmolb.2023.1154149

COPYRIGHT

© 2023 Alodaib, Nimer, Alhumaidy,
Alhenaky, Abdel Jabar, AlMalki and Abdel
Rahman. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 04 April 2023
DOI 10.3389/fmolb.2023.1154149

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1154149/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1154149/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1154149/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1154149&domain=pdf&date_stamp=2023-04-04
mailto:aabdelrahman46@kfshrc.edu.sa
mailto:aabdelrahman46@kfshrc.edu.sa
https://doi.org/10.3389/fmolb.2023.1154149
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1154149


disorder. Symptoms of galactosemia can include vomiting, lethargy,
seizures, enlarged liver, jaundice, kidney failure, and changes in
brain development.

A defective gene causes the classic form of GAL on chromosome 3.
It is characterized by severe deficiency of all three enzymes required for
the metabolism of galactose to glucose: galactose-galactokinase (GALK)
(GAL type II), galactose-1-phosphate uridylyltransferase (also known as
GALT), and UDP-galactose-4-epimerase (GALE) enzymes (GAL type
III) (Pasquali et al., 2018). Without these enzymes, galactose is not
converted to glucose, accumulates in the body, or is excreted in the
urine. The incomplete breakdown of galactose then affects numerous
metabolic pathways, which results in several serious symptoms and
potential long-term complications such as cataracts, liver damage, and
an increased risk of developing neurological disorders. The primary
treatment for galactosemia is a strict low-galactose diet. All sources of
galactose and lactose, such as cow’smilk, need to be eliminated from the
diet. An alternative lactose-free, low-galactose breast milk or formula
can be used for nutrition. Depending on the individual, the diet may
need to be modified periodically. Infants with galactosemia should have
regular check-ups with their doctor to ensure proper nutrition, growth,
and development.

The Leloir pathway is the metabolic pathway used to convert
galactose into glucose. It begins with the conversion of galactose to
glucose-1-phosphate, which is catalyzed by the enzyme galactokinase.
Glucose-1-phosphate is then converted to glucose-6-phosphate by
uridyl transferase and, finally, glucose by the enzyme glucokinase. At
the same time, galactose is rapidly metabolized via the Leloir pathway
once it enters the cell, where initially, GALK catalyzes the
phosphorylation of galactose (Walter and Fridovich-Keil, 2019).
Then GAL transforms UDP-glucose and galactose 1-phosphate into
glucose-1-phosphate and UDP-galactose. Finally, GALE catalyzes the
conversion of UDP-galactose to UDP-glucose (Timson, 2016).
Additionally, type IV galactosemia is a newly found hereditary
metabolic disorder. It is caused by mutations in the galactose
mutarotase gene, which results in the diminished activity of the
enzyme galactose mutarotase. This enzyme catalyzes the
interconversion of the α- and β-anomers of d-galactose and several
other monosaccharides (Banford and Timson, 2021). However, the
mechanisms of GAL disorder are still poorly understood (vanWeeghel
et al., 2018). The clinical complications associated with classical
galactosemia include cataracts, developmental delays, learning
disabilities, speech problems, failure to thrive, intestinal problems,
and liver damage. If left untreated, galactosemia can lead to life-
threatening conditions such as sepsis, multiple organ failure, and
death. It is also associated with an increased risk of ovarian failure
in females (Succoio et al., 2022).

The pathophysiology of the long-term complication in GAL
needs to be better understood, and predictive biomarkers need to be
included (Hermans et al., 2022). Prognostic uncertainty may lead to
unnecessary or harmful treatment for patients with GAL, which
burden patients and parents (Knerr et al., 2015). Even though
neonatal detection and dietary restriction of galactose may
change the clinical picture of a newborn, it does not stop long-
term problems from happening (Succoio et al., 2022).

Most of the world’s newborn screening (NBS) programs include
a screen for GAL; despite the level of its false discovery rate, even at
early diagnosis, there are often long-term complications (Ohlsson
et al., 2011). Fanconi-Bickel disease, liver illness, glycogen storage

disease type XI, and even certain drugs may all cause false-positive
screening findings in infants (Peduto et al., 2004; Kotb et al., 2019).
Most NBS programs depend on measuring GAL activity in DBS to
diagnose GAL.

Total galactose (galactose + galactose-1-phosphate) is measured
in around 30% of NBS programs as a main screening approach or in
conjunction with GAL testing in DBS. However, false negative
screening results for GAL may be seen in babies who are given
lactose-free formula or who are receiving complete parenteral
nutrition if the diagnosis is based only on total galactose
(Pasquali et al., 2018). A second analysis of dried blood from the
same newborn screening card is undertaken to monitor particular
metabolites or metabolic pathways to overcome the issue of non-
specific first-line parameters and the resultant high false positive rate
(Lehotay et al., 2011). Furthermore, positive results in screening
tests, clinical examination, and biochemical and molecular
diagnostics are required to confirm patients with GAL. However,
based on the biochemical, enzymatic, and genetic information, that
is, now available, it is not feasible to provide an accurate prediction
of the clinical prognosis at the time of diagnosis.

Because there are no validated biomarkers for the diagnosis
and prognosis of GAL, and no specific and reliable treatment
regimens, more studies on GAL should be conducted.
Metabolomics describes analyzing all metabolites (compounds
with low molecular weight, generally 1,500 Da) present in a
particular sample acquired from a biological system (Patti et al.,
2012; Dahabiyeh et al., 2020; Gu et al., 2020). Metabolomics has
emerged as a potentially useful diagnostic and prognostic tool that
might explain disease pathogenesis (Masood et al., 2021; Jacob
et al., 2022; Jans et al., 2022). There currently needs to be more
investigations on the pathophysiology of GAL that concentrate on
urine or blood metabolomics profiling (Taylor Fischer et al., 2019;
Hermans et al., 2022). Therefore, investigating the GAL
metabolomics profile may aid in finding potential biomarkers,
shed light on the mechanisms behind the disease’s progression, and
ultimately aid in its early detection.

In this study, metabolomics employing ultra-performance liquid
chromatography coupled with high-resolution mass spectrometry
(UPLC/HRMS) was used to detect and quantify differences in
metabolite levels between GAL and healthy groups that could
potentially serve as biomarkers for the diagnosis or monitoring
of GAL and could also provide insights into the underlying
biological mechanisms of the disorder.

2 Materials and methods

2.1 Characteristics of the study population

Fifty-four DBS samples were collected from genetically and
biochemically confirmed GAL (n = 15) patients at King Faisal
Specialist Hospital and Research center (KFSHRC) and healthy
controls (n = 39). These healthy controls were age-gender
matched with the patient group. 4 out of 19 GAL patients and
7 out of 46 healthy controls were excluded from this study due to 1)
inability or unwillingness to provide informed consent or 2)
diagnosis with conditions other than GAL. The Research Ethics
committee approved this study and Institutional Review Board at
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KFSHRC (RAC# 2160027). It was performed following the ethical
standards of the Declaration of Helsinki.

2.2 Metabolites extraction

The polar metabolites were extracted from DBS samples using
our developed standard protocol (Jacob et al., 2018). Five 3 mm size
DBS disks were used for metabolite extraction using methanol,
acetonitrile, and water (40:40:20%) for protein precipitation. The
mixture was mixed at 25°C and 600 rpm for 2 hours in a
thermomixer (Eppendorf, Germany). Pooled QC samples were
prepared using aliquots from the study samples. Afterward, the
supernatants were transferred to another set of tubes, evaporated in
SpeedVacc (Christ, City, Germany), and stored at −80°C until LC-
MS analysis.

2.3 UPLC/HRMS

The metabolomics profile for the study samples was collected
using our laboratory’s applicable standard protocol (Jaber et al.,
2022). In detail, the dry extracted samples were resuspended with
50% mobile phase A and B (A: 0.1% formic acid in dH2O, and B:
0.1% formic acid in 50% MeOH and ACN). The extracted
metabolites were chromatographed using an Acquity UPLC using
XSelect HSS C18 (100 × 2.1 mm, 2.5 μm) column (Waters Ltd.,
Elstree, United Kingdom). A gradient mobile phase elution was
scheduled in this method as follows: 0–16 min 95%–5% A,
16–19 min 5% A, 19–20 min 5%–95% A, and 20–22 min, 95%–
95% A, all at a flow rate of 300 μl/min. The eluted molecules were
detected using a Waters Acquity UPLC connected to a Waters Xevo
G2-S QTOF high-resolution mass spectrometry system. In separate
runs, the molecules were ionized using positive and negative
electrospray ionization modes (ESI+, ESI-). In ESI+, the capillary
voltage was set to 3.20 kV. The cone voltage was 40 V, the
desolvation temperature was 500°C, the nitrogen desolvation gas
flow to 800 L/h, and the cone gas flow was 50 L/h. In ESI−, a
capillary voltage of −3 kVwas used. The collision energies of low and
high functions were set at 0 V and 10–50 V, respectively, in MSE

mode. The mass spectrometer was calibrated, as recommended by
the vendor, with sodium formate in the range of 100–1,200 Da in
both ionization modes. Accurate mass measurements were
maintained by continuously infusing leucine-enkephaline lock
mass compound (ESI + m/z 556.2771, ESI- m/z 554.2615) and
alternating between the sample and the reference every 45 and 60 s
for ESI+ and ESI-, respectively. The lock spray was 10 μl/min, 0.5 s
scan time, cone voltage 30 V, collision energy 4 eV. The data-
independent acquisition was performed in continuum mode with
Masslynx™ V4.1 workstation (Waters Corporation, MA,
United States).

2.4 Data processing and statistical analysis

Peak picking and alignment of detected ion (m/z, Rt) were
processed using Progenesis QI v.3.0 software from Waters (Waters
Corporation, MA, United States).

The raw data were deposited inMetaboLight (accession Number
MTBLS6996).

Multivariate statistical analysis was performed using
MetaboAnalyst v5.0 (McGill University, Montreal, QC, Canada)
(Worley and Powers, 2013). Firstly, data were subjected to log
transformation, mean centering, and Pareto scaling and then
used to generate principal component analysis (PCA), partial
least squares-discriminant analysis (PLS-DA), and orthogonal
projections to latent structures discriminant analysis (OPLS-DA)
models. OPLS-DAmodels were evaluated using the fitness-of-model
(R2Y) and predictive ability (Q2) values.

Univariate analysis was performed using Mass Profiler
Professional (MPP) Software (Agilent Technologies, Inc., Santa
Clara, CA, United States). The total sample median was used to
normalize the signal and ensure normal distribution. Volcano Plot
analysis was performed to identify significantly alters between GAL
patients and healthy control using Moderated T. Test, false
discovery rate (FDR) corrected p-value ≤0.05 and fold change
(FC) cut-off of 2. Venn diagrams were developed using MPP
Software (Agilent Technologies, Inc., Santa Clara, CA,
United States).

Pathway analysis and biomarkers linked with GAL disorder
were performed using MetaboAnalyst v5.0 (McGill University,
Montreal, QC, Canada)—a pathway view of statistically
significant pathways flagged from the metabolome view based on
matched metabolites. The pathways are arranged based on the
p-value (y-axis), which indicates the pathway enrichment
analysis, and pathway impact values (x-axis) representing
pathway topology analysis. In addition, Receiver Operating
Characteristic (ROC) curves were created using the PLS-DA
approach in the MetaboAnalyst v 5.0 for global analysis to
identify possible biomarkers. Metabolites were putatively
identified based on the exact mass searched against different
databases, including Human Metabolome Database and METLIN.
The exogenous compounds, such as drugs, food additives, and
environmental compounds, were excluded from the final list.

3 Results

3.1 Feature detection and metabolites
identification

Using the UPLC/HRMS data, comprehensive untargeted
metabolomics analyses were performed on the DBS samples
obtained from 15 GAL patients and 39 healthy controls. In total,
25,607 m/z features were detected in positive (n = 12,541) and
negative (n = 13,066) ionization modes. After applying the filter
of 80% of all samples, 20,775 features remained to statistically
evaluate among the patients with GAL and healthy control, as
described in the method section.

3.2 Metabolomics profiling for GAL
compared to control

Multivariate and univariate analyses were used to determine
whether metabolites were significantly different in GAL compared
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to the control group. As a result of unsupervised, PCA revealed good
clustering between GAL patients (red) and the healthy group
(green). The total variance of the first two principal components
contributed 20.5% in the PCA model for the two study groups (PC
1 = 14.1% and PC 2 = 6.4%) (Figure 1A). Once separation had been
assessed, PLS-DA and OPLS-DA were applied to maximize the
separation of the groups observed by PCA. The scores plot from the
PLS-DA (Figure 1B) and the OPLS-DA (Figure 1C) showed clear
group separation, which validated the PCA results. The OPLS-DA
model yielded satisfactory fitness of the model (R2Y = 0.972) and
predictive ability (Q2 = 0.856) values (Figure 1C). The contributing
metabolites in these models’ separation between study groups were
explored using univariate analysis (Student T. Test and fold change
analyses).

Next, a binary comparison between the GAL group and healthy
control using volcano plot analysis revealed that 1,300 metabolites
were upregulated (red) whereas 1,519 metabolites were
downregulated (blue) in GAL patients compared to healthy

control (FDR p ≤ 0.05, FC cut-off of 2), respectively (Figure 2A).
Four hundred eighty metabolites were annotated as endogenous
human metabolites and are listed in Supplementary Table 1. Further
examination using hierarchical clustering analysis (HCA) in
Figure 2B depicts differences in the abundance of the top
25 perturbed metabolites between GAL and control groups.

The metabolic pathway analysis revealed that pyrimidine
metabolism is the most significantly altered pathway in GAL
compared to the control, as displayed in Figure 3.

The ROC analysis was used to identify metabolites that might
act as potential biomarkers and to assess their diagnostic accuracy
(Figure 4). Multivariate exploratory ROC analysis was created using
PLS-DA for classification and feature ranking. Figure 4A shows that
the top-ranked metabolites in ROC curves show the area under the
curves (AUCs) ranging from 0.992 to 1; confidence Interval (CI):
0.946–1 and 1-1. The selected frequency plots represent the
significant features of the expressed metabolites in the patients
with GAL and control groups (Figure 4B). The selected

FIGURE 1
(A) Principal component analysis (PCA) model for 54 samples obtained from 15 GAL patients and 39 control that showed a clear separation between
the two groups (GAL patients and healthy control). (B) PLS-DA Score Plots revealed a clear separation between the groups (GAL patients and healthy
control). (C) Orthogonal partial least squares-discriminant analysis (OPLS-DA) score plot showed evident separation between two groups (GAL patients
and healthy control). The robustness of the created models was evaluated by the fitness of the model (R2Y = 0.972) and predictive ability (Q2 =
0.856) values.
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frequency plot shows metabolites, such as 16-alpha-hydroxy DHEA
3-sulfatediphosphate (UDP) and 17-alpha-estradiol-3-glucuronide
to be downregulated in patients with GAL in comparison to the

control group with AUC 0.997 and 0.961, respectively (Figures 4C,
D). In comparison, metabolites such as phosphatidylcholine and
diacylglycerols (DG) (20:3n6/0:0/20:4n3) were upregulated.

FIGURE 2
(A) Volcano Plot demonstrates the statistically significant alteredmetabolites filtered between the two groups (GAL patients and healthy control) that
2,819 significantly were dysregulated metabolites (FDR p-value ≤0.05, FC 2), of which 1,300 (red) and 1,519 (blue) metabolites were up-and
downregulated in GAL patients compared to healthy control, respectively. Red and blue refer to up-and downregulatedmetabolites, respectively. Orange
and light blue squares refer to metabolites that failed to pass fold change cutoffs and were up- and downregulated, respectively. Gray square
metabolites failed to pass both cutoffs. (B) Heat map representing the top 25 significantly (p < 0.05) altered metabolites between the two study groups;
healthy control (red) and GAL patients (green). (C) Boxplots for a couple of metabolites [Ganglioside GT1c (d18:0/20:0) and PA (8:0/LTE4)] where green
represents GAL patients and red represents Control.
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Moreover, phosphatidic acid (PA (8:0/LTE4)) (Figure 4E) and
ganglioside GT1c (d18:0/20:0) (Figure 4F) were upregulated in
patients with GAL compared to the control group with an AUC
1 and 0.995, respectively shows highest discriminatory power.

4 Discussion

The urgent need for novel biomarkers for early diagnosis and
prognosis prediction of GAL disorder has prompted the
investigation of potential biomarkers using various experimental
approaches. This study conducted metabolomics analyses to identify
biomarkers with UPLC/HRMS by following changes in the
metabolic profiles of patients with GAL. As an autosomal
recessive hereditary genetic disorder, GAL can result in life-
threatening health complications unless lactose is eliminated
from the diet immediately after birth (Berry, 2021). The clinical
outcome of patients with GAL varies widely (Welsink-Karssies et al.,
2020). Additionally, pitfalls in diagnosing GAL are present due to
false negative and positive newborn screening results (Pasquali et al.,
2018). Thus, there is an urgent need to find novel biomarkers for
early diagnosis and prognosis prediction of GAL disorder.

Despite the emerging field of metabolomics as the newest Omics
platform that focuses on metabolites, small molecules (<1,500 Da)
hold promise to shine a light on the molecular mechanisms of
several diseases, which may help for diagnostic and therapeutic
purposes (Jacob et al., 2019), very few studies have focused on GAL
in humans biological fluids (Janeckova et al., 2015; Taylor Fischer
et al., 2019; Hermans et al., 2022).

A volcano plot analysis was utilized to identify potential
biomarkers of GAL. 2,819 metabolites showed significant
differences between the GAL group and the control group. In the
heatmap, the top 25metabolites with the most significant differences

in abundance between the groups were visualized and identified as
potential biomarkers for GAL. Among these metabolites,
phosphatidylethanolamine, which is a category of phospholipids
present in biological membranes, was found to be the most
significantly upregulated metabolite in the GAL group,
confirming the increase of phosphatidylethanolamine in
complications of GAL such as neurological impairments and
cataracts (Jernigan Jr et al., 2005; López de Frutos et al., 2022).

Pyrimidine metabolism was the most significant pathway that
significantly altered between GAL and healthy controls. The
pyrimidines are the building blocks of DNA and RNA. They also
form active intermediates in carbohydrate metabolism, such as
UDP-glucose (Dewulf et al., 2021). Furthermore, UDP-glucose is
an organic pyrimidine nucleotide sugar molecule (Ng et al., 2015). In
the physiological process, the UDP-glucose is transformed into
UDP-galactose in the presence of GAL (Veiga-da-Cunha et al.,
2020). While in patients with GAL, the activity of the GAL
enzyme is absent or barely detectable (Berry, 2021). Thus, a close
link between GAL and alteration in pyrimidine metabolism was
shown previously (Taylor Fischer et al., 2019), which matched our
result.

We found that ganglioside GT1c and PA (8:0/LTE4) showed the
highest discrimination ability between GAL and the control
group. Ganglioside GT1c is a glycosphingolipid (ceramide and
oligosaccharide) with one or more sialic acids widely distributed
throughout the body, especially abundant in the brain and other
parts of the central nervous system (Vukelic et al., 2001).
Galactosylation of complex molecules and the production of
various glycoproteins/glycolipids rely on GALE, which is also
responsible for the interconversion of UDP-N-acetylglucosamine
(UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc)
(Banford et al., 2021). Therefore, neurological complications in
patients with GAL may result from prenatal-neonatal toxicity or

FIGURE 3
Pathway Analysis for the significant metabolites dysregulated between GAL patients and healthy control. Four hundred eighty metabolites were
ultimately identified as human endogenousmetabolites, where 209 and 271were up and downregulated, respectively. Colors (varying from yellow to red)
mean the metabolites are in the data with different significance levels (p-value).
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persistent glycoprotein and glycolipid synthesis abnormalities
(Coman et al., 2010).

Moreover, oxidized phosphatidic acid is known as PA (8:0/
LTE4), which is upregulated in our present study. A phosphate
moiety occupies a glycerol substitution site in oxidized
phosphatidic acids, which are glycerophospholipids in which
at least one of the fatty acyl chains has undergone oxidation
(Wishart et al., 2022)—metabolic perturbations in
glycerophospholipids found in patients with GAL (Taylor
Fischer et al., 2019).

One of the complications of GAL is liver cirrhosis since GAL is a
common metabolic liver disorder of childhood (Sahoo et al., 2015).
In the liver, glucuronidation takes place, where it is used to assist in

the excretion of toxic substances, drugs, or other substances by
attaching glucuronic acid via a glycosidic bond to the substance. The
resulting glucuronide, which has a much higher water solubility than
the original substance, is eventually excreted by the kidneys
(Wishart et al., 2022). Thus, metabolic liver diseases will affect
glucuronidation (Sharma and Nagalli, 2021). Our findings of
downregulated 17-alpha-estradiol-3-glucuronide metabolite
produced in the liver after glucuronidation of 17-alpha-estradiol
by UDP glucosyl transferase are consistent with this hypothesis.
Moreover, to our knowledge, 17-alpha-estradiol-3-glucuronide has
been identified in the blood of patients with GAL for the first time,
which can serve as a potential prognostic biomarker for GAL
concerning liver complications.

FIGURE 4
(A) The Receiver Operating Characteristics (ROC) curve was generated by the OPLS-DA model, with Area Under the Curve (AUC) values calculated
from the combination of 5, 10, 15, 25, 50, and 100 metabolites. (B) The frequency plot shows the significantly dysregulated endogenous metabolites
between the study groups. Representatives downregulated metabolites with their ROC curves are demonstrated for 16-alpha-hydroxy DHEA 3-
sulfatediphosphate (AUC (0.997) (C) and 17-alpha-estradiol-3-glucuronide AUC (0.961) (D) in GAL patients. Furthermore, PA (8:0/LTE4) AUC (1) (E)
and ganglioside GT1c (d18:0/20:0) AUC (0.995) (F) as examples of upregulated metabolites in GAL patients.
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Furthermore, the metabolite 16 alpha-hydroxy DHEA 3-
sulfatediphosphate derived mainly from the fetus and served as a
precursor for placental estriol biosynthesis significantly decreased in
the GAL group (Schweigmann et al., 2014). 16 alpha-hydroxy
DHEA 3-sulfate is a natural human metabolite in pregnant
women’s placenta and breast milk (Wishart et al., 2022).
However, breastfeeding should be avoidable in babies with GAL
since breast milk contains lactose (Berry, 2021). Thus, it may explain
the decreased level of 16 alpha-hydroxy DHEA 3-sulfatediphosphate
in patients with GAL.

This study had some limitations, such as the few patients with
GAL and the need for the patient group to be used for external
validation. Nevertheless, using the metabolomics approach, our
study is one of the few to reveal specific metabolite changes
between GAL and healthy controls. Our findings serve as the
initial step for further investigations in greater detail.

5 Conclusion

There is currently no biomarker available to predict life-
threatening complications in patients with GAL, which are
associated with early death among these patients. This study used
the HRMS-based metabolomics approach for the first time to gain
new insights into the perturbed biochemical pathways in GAL
compared to healthy control and to identify potential predictive
biomarkers.

A total of 480 endogenous metabolites were identified, and they
showed significant dysregulation. These metabolites can provide
important insights into the pathophysiological state of GAL
disorder.

Two metabolites, ganglioside GT1c and PA (8:0/LTE4), had the
highest discrimination between GAL and the healthy
group. Moreover, our results showed novel potential biomarkers
for GAL, such as 17-alpha-estradiol-3-glucuronide and 16 alpha-
hydroxy DHEA 3-sulfatediphosphate.

However, the biomarkers obtained through untargeted
metabolomics require additional validation, which may involve
the targeted UPLC/HRMS-based method to ensure their accuracy
and reliability for clinical use. In addition, further studies are
necessary to evaluate these biomarkers’ reproducibility, stability,
and performance in large separate cohorts to determine their
potential clinical value.
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