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Obesity is associated with various adverse health outcomes. Body fat (BF)
distribution is recognized as an important factor of negative health
consequences of obesity. Although metabolomics studies, mainly focused on
body mass index (BMI) and waist circumference, have explored the biological
mechanisms involved in the development of obesity, these proxy composite
measures are not accurate and cannot reflect BF distribution, and thus may
hinder accurate assessment of metabolic alterations and differential risk of
metabolic disorders among individuals presenting adiposity differently
throughout the body. Thus, the exact relations between metabolites and BF
remain to be elucidated. Here, we aim to examine the associations of
metabolites and metabolic pathways with BF traits which reflect BF
distribution. We performed systematic untargeted serum metabolite profiling
and dual-energy X-ray absorptiometry (DXA) whole body fat scan for
517 Chinese women. We jointly analyzed DXA-derived four BF phenotypes to
detect cross-phenotype metabolite associations and to prioritize important
metabolomic factors. Topology-based pathway analysis was used to identify
important BF-related biological processes. Finally, we explored the
relationships of the identified BF-related candidate metabolites with BF traits in
different sex and ethnicity through two independent cohorts. Acetylglycine, the
top distinguished finding, was validated for its obesity resistance effect through in
vivo studies of various diet-induced obese (DIO) mice. Eighteen metabolites and
fourteen pathways were discovered to be associated with BF phenotypes. Six of
the metabolites were validated in varying sex and ethnicity. The obesity-resistant
effects of acetylglycine were observed to be highly robust and generalizable in
both human and DIO mice. These findings demonstrate the importance of
metabolites associated with BF distribution patterns and several biological
pathways that may contribute to obesity and obesity-related disease etiology,
prevention, and intervention. Acetylglycine is highlighted as a potential
therapeutic candidate for preventing excessive adiposity in future studies.
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1 Introduction

Obesity, defined as an excess of adiposity, is a global epidemic
widely recognized as a leading cause of various metabolic disorders
and cancers (Cirulli et al., 2019; Koenen et al., 2021; He et al., 2023).
Excess central fat accumulation causing metabolic disturbance can
exacerbate the risk of diabetes and cardiovascular diseases (Vasan
et al., 2018; Marsh et al., 2023). Biomarkers reported to influence
abdominal obesity have also been shown to be prognostic of early
cardiometabolic risk independent of general obesity (Supriya et al.,
2018). However, not all abdominal areas in which fat accumulates
are associated with harm. It is known that android fat deposited
around the waist increases the risk of metabolic disease, while
gynoid fat deposited around the hips does not, and some studies
suggest gynoid fat may have a beneficial effect (Vasan et al., 2018;
Marsh et al., 2023). Therefore, uncovering novel biomarkers for fat
distribution can provide more precise insight into fat accumulation
and obesity-related diseases.

Metabolomics provides comprehensive profiling of distinct
exogenous/endogenous small molecules functioning as
intermediates or end products of cellular metabolism. Since
metabolites represent the downstream expression of genomic,
transcriptomic, and proteomic factors, their study can reveal
biomarkers and pathways that link genotypes to phenotypes
(Cirulli et al., 2019). Multiple studies have revealed crucial
metabolites for obesity or regulating BF (Chen et al., 2015; Bogl
et al., 2016; Ahmad et al., 2022; O’Keeffe et al., 2022), some of which
were used as a basis for developing treatments and preventive
interventions for obesity-related disorders (Okosun et al., 2015;
Chen and Gerszten, 2020) and prediction models for visceral
adipose tissue, an important prognostic factor that is difficult to
measure in practice (Boone et al., 2022). Although there have been
numerous efforts to identify metabolic biomarkers of obesity, these
studies were largely limited by small sample sizes, the number of
metabolites considered, and lack of replication/functional
validation. Moreover, they primarily relied on proxy measures of
body composition such as BMI and/or waist-to-hip ratio. These
proxy measures may miss valuable information provided by the
regional BF, and therefore hinder assessment of metabolic
alterations and differential risk of metabolic disorders among
individuals presenting adiposity differently throughout the body
(Rangel-Huerta et al., 2019).

In the present study, we aim to identify shared and specific
metabolites and their associated pathways related to various BF
traits. The study has three main components: discovery, validation,
and in vivo experiments. First, we analyzed untargeted liquid
chromatography-mass spectrometry (LC-MS) metabolomics
profiling on a sample of 517 Chinese women for discovery. Next,
we verified the identified BF-related metabolites in two
independent cohorts with various ethnicities and genders.
Both the validated metabolites and those associated with all
the studied BF traits were selected for more detailed
examination of their biological functions and relevance as
revealed in prior studies. One such metabolite, meeting both
criteria, was chosen for in vivo experiments for further validation

and functional significance in mice. Our study design and
analytical approach are outlined in Supplementary Figure S1.

2 Materials and methods

2.1 Subjects and study design

A total of 517 unrelated peri-/post-menopausal Chinese women
in the discovery cohort were recruited from the Third Affiliated
Hospital of Southern Medical University (Guang Zhou, Guang
Dong Province, China) between June 2014 and January 2018.
The mean age was 52.9 years (standard deviation (SD) = 2.9).
Two independent samples for validation were sampled from the
Louisiana Osteoporosis Study (LOS) (Zhao et al., 2018). The first
validation cohort consisted of 136 Caucasian women (mean aged
31.48 years (SD = 5.08)) sampled by a discordant phenotype design
based on the top/bottom 20% of the hip bone mineral density
Z-score (Zhao et al., 2018). The second validation cohort comprised
700 males (295 African Americans and 405 Caucasians) with mean
age 37.8 (SD = 8.45) years overall. The study designs and sample
characteristics are detailed in Supporting Material S1 and
Supplementary Tables S1-S2, respectively. Signed consent forms
were obtained from all participants. All clinical measurements and
experiment procedures were subject to the Helsinki Declaration II
and regulations of the Institutional Review Boards.

2.2 Clinical measurements

All respondents in the discovery and validation cohorts
completed a questionnaire regarding demographics, lifestyle,
dietary factors, and reproductive and medical history. Trained
research staff collected clinical measurements with participants.
The BF distribution phenotypes considered in this study were
android fat/whole BF mass ratio (A/W ratio), gynoid fat/whole
BF mass ratio (G/W ratio), android fat to gynoid fat ratio (A/G
ratio), and whole BF percentage (W%) (Bogl et al., 2016). Daily
calibrated DXA machines (discovery cohort: Lunar, GE Healthcare,
Madison, WI, United States; validation cohorts: Hologic Inc.,
Bedford, MA, United States) were used to measure BF
(Supplementary Figure S2). The detail of the region of interest is
provided in Supporting Material S1.

2.3 Metabolite analysis

Untargeted LC-MS metabolite profiling was conducted on
serum samples from all cohorts. The details of experimental
protocols, which are in accordance with the suggestions of the
Metabolomics Standards Initiative reporting standards (Sumner
et al., 2007), have been previously described (Gong et al., 2021)
and are provided in Supporting Material S2. A high-resolution
tandem mass spectrometer TripleTOF5600plus (SCIEX,
United Kingdom) at Lian-Chuan Biotechnology Co., Ltd
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(Hangzhou, China) was used to detect metabolites eluted from the
column in the discovery cohort. LC-MS metabolomics platforms
were also used to perform the metabolomic analyses on serum
samples for both validation cohorts. The experimental protocols
for the validation cohorts have been previously described (Zhao
et al., 2018) and are listed in Supporting Material S2. All
metabolites profiling with a unique or high-confidence
annotation were log-transformed and auto-scaled prior to the
subsequent analyses.

2.4 In vivo validation study in mice for
acetylglycine

Acetylglycine consistently demonstrated an anti-obesity
association with observed BF traits across sex and ethnicity.
We performed an in vivo study that extended the work of
Harper et al. (Harper et al., 2010) by exploring the effect of
acetylglycine on high-fat diet-induced obese mice for further
validation. A total of 61 female C57BL/6 J mice were randomized
into five groups: 1) standard chow diet with vehicle (control; n =
12), 2) high fat (60% kcal from fat; n = 12) diet with vehicle (HFD;
n = 12), 3) HFD with low-dosage acetylglycine (HFD + ACE500;
500 mg/kg; n = 12), 4) HFD with medium-dosage acetylglycine
(HFD + ACE1000; 1,000 mg/kg; n = 12), and 5) HFD with high-
dosage acetylglycine (HFD + ACE1500; 1,500 mg/kg; n = 13). We
administered drinking water or acetylglycine (treatment) to
corresponding mice by oral gavage every day starting at
8 weeks of age. Experimental measurements were recorded
weekly during the 16-week intervention. We used micro-
computed tomography (µ-CT) to measure total abdominal fat
(between L1 and L5 vertebrae), visceral BF, and subcutaneous BF
(Luu et al., 2009). The biochemical analysis involved the
measurement of fasting plasma glucose (FPG) after 6-h and
12-h fasting, total cholesterol (TC), triglyceride (TG), high-
density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), alanine transaminase (ALT), and aspartate
aminotransferase (AST). All experimental procedures are
provided in Supporting Material S3.

2.5 Statistical analysis

We investigated the relationship between the metabolites and
BF traits using two complementary approaches, seemingly
unrelated regression (SUR) and sparse partial least squares
(sPLS) regression. The most important BF-related metabolites
were identified as those with variable importance in projection
(VIP) score >1 in sPLS and SUR false discovery rate (FDR)
q-value ≤0.2. The selection of cutoffs for the FDR q-value and
VIP score usually depends on the study objective. In this study,
we aimed to provide a robust list of potential BF-related
metabolites for future replication, and therefore chose not to
apply highly stringent significance criteria since the analysis is
exploratory in nature. A pathway analysis was performed to
identify biological functions with p-score <0.05. The Spearman
and partial Spearman correlation tests were conducted in the
validation cohorts to examine the associations between the

metabolites and traits after adjustment for age, height,
physical activity for both cohorts, and ethnicity in the second
cohort. We also performed the tests stratified by ethnicity.
p-value ≤0.05 was considered statistically significant. All
analyses were detailed in Supporting Material S4. The
metabolites associated with all BF traits in the discovery
cohort or replicated the associations in the validation cohorts
will be further discussed in our study (Supporting Material S5).

The Generalized Estimating Equations (GEE) model was
applied to investigate the associations between acetylglycine and
the measure of weight and weight gain in the animal models. The
covariates included baseline weight, treatment (water, low-,
medium-, or high-dose acetylglycine), and diet (normal/HFD) in
the weight model, and treatment and diet in the weight gain model.
Tukey method was used to examine whether there were significant
pairwise differences (p-value ≤0.05) in weight and weight gain. The
Kruskal–Wallis test was used as a global test for a one-time
measurement to compare biomedical indexes across different
treatment groups. The null hypothesis of this test is that there is
no significant difference in the biomedical measurement across all
treatment groups, while the alternative hypothesis is that at least one
group differs significantly from at least one other group. Following
the Kruskal–Wallis test, Wilcoxon tests were conducted to examine
whether acetylglycine had significant differences (FDR
q-value ≤0.05) in pairwise comparisons for both the µ-CT and
biochemical measurements.

3 Results

3.1 Relationships between BF traits and
serum metabolites in discovery

Among 3,075 annotated metabolites with MS1 and
MS2 confidence levels in our discovery cohort (Supplementary
Table S3 and Supporting Material S3), we identified
18 statistically significant BF-metabolite associations with FDR
q-values <0.2 in the SUR models and VIP scores >1 in sPLS
(Figure 1 and Supplementary Table S4). Figure 1A illustrates how
the metabolites relate to multiple traits: none of the 18 metabolites
exclusively related to a single BF trait. All were significantly
associated with G/W ratio. Overall, two metabolites had
significant relationships with three traits (G/W, A/W, and A/G
ratios) representing central BF and five with all four traits
representing general and central BF.

Directions of coefficient effects on the four traits were consistent
across the 18 metabolites; A/G ratio, A/W ratio, and W% were
always affected in opposite directions as G/W ratio (Figure 1B).
Those having positive relationships with A/G ratio, A/W ratio, and
W% but a negative relation with G/W ratio were defined as obesity-
risk metabolites, the others as protective metabolites. Among the six
metabolites with VIP scores >2, the top three (austalide J,
pyridinoline, and deoxycoformycin) are obesity-risk metabolites,
while acetylglycine, creatinine, and cortisone are protective
metabolites. The top six in the VIP score also had relatively large
effect sizes on central BF compared with general BF (Supplementary
Figure S3). Acetylglycine, for example, had stronger negative effect
sizes on A/G ratio (β = −0.19, p-value = 1.09 × 10−5) and A/W ratio
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(β = −0.17, p-value = 6.23 × 10−5) than on W% (β = −0.09, p-value =
3.24 × 10−3).

3.2 Functional topological pathway analysis
in discovery

Six metabolites out of 18 could be mapped to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and used

in the pathway analysis. We identified 14 significant pathways, three
modules, 28 enzymes, 39 reactions, and 21 compounds (refer to
Table 1 for an overview and Supplementary Table S6 for a
comprehensive list). The topological results showed that thiamine
had the highest connectivity at the compound level (degree = 10)
and thiamine metabolism had the highest connectivity at the
pathway level (degree = 9) in Supplementary Figure S4. The
connectivity degree indicates the importance of thiamine for
essential metabolic processes.

FIGURE 1
Summary results for the joint analysis in the discovery cohort. Panel (A) Venn diagram depicting metabolite sets that were significantly associated
with body fat traits (FDR q-value <0.2 and VIP >1). Traits are represented by ovals of different colors. The number in each area represents the count of
identified BF-associated metabolites associated with the given traits. Panel (B). Important metabolites selected on the basis of VIP, score >1 and FDR
q-value ≤0.2. Each tile represents the effect size of the metabolite on each trait. VIP: the variable importance in projection scores, FDR: false
discovery rate, A/W ratio: Android fat/Whole body fat ratio, G/W ratio: Gynoid fat/Whole body fat ratio, A/G ratio: Android fat to gynoid fat ratio, and W:
Whole body fat %. *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001.
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TABLE 1 Summary of topological attributes of the top 5% significant biological components at each biological level.

Level KEGG
ID

KEGG name p
Score

Betweenness
centrality (B)

Closeness
centrality (C)

Combined
score (B)+(C)

Degree

Pathwaya hsa00330 Arginine and proline metabolism 1.80 ×
10−3

0.35 0.54 0.89 5

hsa02010 ABC transporters 1.59 ×
10−4

0.39 0.26 0.64 8

Modulea hsa04979 Cholesterol metabolism 1.00 ×
10−6

0.31 0.25 0.56 5

M00047 Creatine pathway 1.00 ×
10−6

0.37 0.56 0.93 5

Enzymeb 2.3.2.27 RING-type E3 ubiquitin transferase 1.54 ×
10−3

0.38 0.24 0.62 4

2.7.3.2 Creatine kinase 1.00 ×
10−6

0.04 0.42 0.46 2

2.1.1.2 Guanidinoacetate N-methyltransferase 1.00 ×
10−6

0.05 0.41 0.45 2

3.1.3.2 Acid phosphatase 8.83 ×
10−5

0.15 0.23 0.37 4

2.1.4.1 Glycine amidinotransferase 1.84 ×
10−3

0.00 0.37 0.37 1

3.1.1.3 Triacylglycerol lipase 1.96 ×
10−2

0.08 0.24 0.32 2

Reactionc R07420 Phosphocreatine ≤≥ Creatinine +
Orthophosphate

1.00 ×
10−6

0.13 0.47 0.60 3

R01884 Creatinine amidohydrolase 1.00 ×
10−6

0.10 0.47 0.57 3

R02922 Creatinine iminohydrolase 1.00 ×
10−6

0.09 0.42 0.51 3

R01566 Creatine amidinohydrolase 9.33 ×
10−4

0.04 0.43 0.47 2

R01881 ATP:creatine N-phosphotransferase 2.01 ×
10−6

0.08 0.39 0.47 3

R03720 Choloyl-CoA:glycine
N-choloyltransferase

4.33 ×
10−3

0.18 0.25 0.44 8

R03187 N-Methylimidazolidine-2,4-dione
amidohydrolase

3.68 ×
10−2

0.04 0.38 0.42 2

Compoundd C00300 Creatine 9.93 ×
10−5

0.17 0.44 0.61 4

C00378 Thiamine 1.00 ×
10−6

0.27 0.26 0.53 10

C00791 Creatinine 1.00 ×
10−6

0.08 0.44 0.52 3

C00037 Glycine 1.16 ×
10−5

0.22 0.26 0.48 5

C01921 Glycocholate 1.00 ×
10−6

0.21 0.24 0.46 3

C02305 Phosphocreatine 1.35 ×
10−4

0.02 0.38 0.41 2

C01606 Phthalate (1,2-Benzenedicarboxylic
acid)

1.00 ×
10−6

0.09 0.21 0.30 4

C00762 Cortisone 0.11 0.18 0.29 6

(Continued on following page)
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3.3 Metabolite and BF trait relations
validation in LOS cohorts

We examined the correlations of four metabolites in the female
validation cohort and five in the male validation cohort, which

resulted in 22 significant relations between the metabolites and traits
(Table 2). The correlations between acetylglycine and the traits were
significant in both cohorts, with the strongest negative association
with W% and A/W ratio respectively in Caucasian women
(Spearman correlation ρ) = −0.34, partial Spearman correlation

TABLE 1 (Continued) Summary of topological attributes of the top 5% significant biological components at each biological level.

Level KEGG
ID

KEGG name p
Score

Betweenness
centrality (B)

Closeness
centrality (C)

Combined
score (B)+(C)

Degree

1.00 ×
10−6

C04148 Phenylacetylglutamine (Alpha-N-
phenylacetyl-L-glutamine)

1.00 ×
10−6

0.00 0.18 0.18 1

aReported pathways and modules with combined score (B + C) > 0.5.
bReported enzymes with combined score >0.3.
cReported reactions with combined score >0.4.
dReported compounds with combined score >0.4 or original input compounds; Bold, the original BF-related metabolites. The components were selected by the threshold of combined score

greater than 0.3 or as the input metabolites. A comprehensive list can be found in Supplementary Table S6.

TABLE 2 Summary of body-fat associated metabolites in the validation cohorts.

Metabolite Class Ion m/z RT/RIa Molecular Trait ρ ρ p-value ρ′ ρ’ p-value

Validation 1: Caucasian women (n = 136)

Acetylglycine Amino acids Pos 140.03 1.17 C4H7NO3 AG −0.31 1.96 × 10−4 −0.28 9.10 × 10−4

AW −0.29 6.89 × 10−4 −0.25 3.27 × 10−3

GW 0.29 5.88 × 10−4 0.28 1.17 × 10−3

W% −0.34 5.17 × 10−5 −0.29 6.55 × 10−4

Creatinine Amino acids Neg 112.05 0.98 C4H7N3O AW −0.20 1.96 × 10−2 −0.15 7.61 × 10−2

Thiamine Pyrimidines Pos 265.11 1.13 C12H16N4OS W% −0.19 2.34 × 10−2 −0.16 7.01 × 10−2

Validation 2: African American and Caucasian men (n = 700)

Acetylglycine Amino acids Polar 116.04 1,780 C4H7NO3 AG −0.26 7.22 × 10−12 −0.24 1.47 × 10−10

AW −0.28 6.48 × 10−14 −0.26 1.97 × 10−12

GW 0.09 1.41 × 10−2 0.09 1.32 × 10−2

W% −0.27 6.34 × 10−13 −0.24 5.28 × 10−11

Cortisone Lipid Neg 359.19 4,575 C21H28O5 AG −0.11 2.67 × 10−3 −0.10 1.12 × 10−2

AW −0.11 2.38 × 10−3 −0.10 8.97 × 10−2

W% −0.11 5.02 × 10−3 −0.09 1.22 × 10−2

Creatinine Amino acids Pos Early 114.07 2,055 C4H7N3O AG −0.09 2.20 × 10−2 −0.05 ns

AW −0.09 1.84 × 10−2 −0.03 ns

W% −0.16 1.24 × 10−5 −0.13 6.69 × 10−4

Glycocholic acid Lipid Neg 464.30 5,163 C26H43NO6 AG −0.10 8.16 × 10−3 −0.07 ns

AW −0.13 5.96 × 10−4 −0.10 8.13 × 10−3

W% −0.12 1.96 × 10−3 −0.09 1.38 × 10−2

N-Phenylacetyl-L-Glutamine Peptide Pos Early 265.12 2,145 C13H16N2O4 AG −0.02 ns −0.11 4.17 × 10−3

AW −0.04 ns −0.12 1.34 × 10−3

W% −0.08 2.81 × 10−2 −0.14 2.60 × 10−4

m/z: mass-to-chare ratio; a: RT (Retention time) and RI (Retention index); ρ: Spearman correlation coefficient; ρ’: Partial Spearman correlation coefficient adjusted by age, height, and physical

activity in Validation 1 and additional ethnicity in Validation 2; ns: not statistically significant; The directions of the correlation test in the validation studies are consistent with the findings in the

Chinese women cohort. A/G: android to gynoid ratio; A/W: android fat to whole body total fat; G/W: gynoid fat to whole body total fat; W%: whole body total fat percentage.
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(ρ′) = −0.29, both p-value < 0.001) and African American and
Caucasian men (ρ = −0.28, ρ’ = −0.26, both p-value < 0.001).
Glycocholic acid was negatively associated with A/G ratio, A/W
ratio, andW% in African American and Caucasian men only, which
may be attributed to the relatively small sample size of Caucasian
women (Supplementary Tables S7-S14).

In the ethnicity-stratified analyses, we replicated the
correlations of five metabolites related to at least one BF trait
in African American or Caucasian men (Supplementary Table
S5). Acetylglycine had the highest absolute correlation
coefficients on the BF traits (except for the G/W ratio in the
African American men). Cortisone had the significant negative
correlations with A/G ratio, A/W ratio, and W% exclusively in
the African American men; creatinine was also negatively related
to W% in Caucasian men.

3.4 Relationship of acetylglycine with body
weight, body weight gain, and abdominal fat
mass in mice

The acetylglycine treatments with equivalent baseline weight
and diet were significantly associated with an average decrease in
body weight of 0.51 (p-value = 0.01) and 1.03 (p-value = 2.30 ×
10−7) grams, respectively, in ACE1000 and ACE1500 groups,
compared with groups without the treatment. Similarly, we
found negative marginal effect sizes on weight gain while
adjusting for diet (Table 3). Body weight and weight gain
were lower in all the acetylglycine treatment groups and the
control group than the HFD-only group (Supplementary Figure
S5). Overall food intake presented no differences between the

HFD-only and HFD with treatment groups during the
intervention period.

Among the acetylglycine treatment groups, we observed
significant differences in the µ-CT measures: abdominal fat,
visceral fat, subcutaneous fat, and fat/weight ratio (Figure 2 and
Supplementary Tables S1-S15). The HFD groups had significantly
higher measurements than the control group, indicating the success
of the obesity model. Despite similar HFD consumption, we
observed a decreasing trend in the four µ-CT measures as the
treatment dosage increased, and statistically significant differences
between the HFD-only group and the HFD with the medium and
high-dose groups.

3.5 Association of acetylglycine with
biochemical measurements in mice

The overall tests indicated significant differences in the levels of
glucose, CHO, HDL, and LDL among the groups (Supplementary
Table S16). The HFD-only group in the 6-h FPG test had
significantly higher glucose level (mean = 8.57 mmol/L, SD =
1.49) than the control, HFD + ACE500, and HFD +
ACE1000 groups (Figure 2). In the 12-h FPG test, there were
significant differences between the HFD + ACE1000 and control/
HFD-only groups. ALT and AST, two enzymes for testing liver
toxicity or damage, were not significantly different across groups
(Supplementary Figure S6). Lipid profiles were significantly higher
in the treatment groups with HFD compared to those in the control
group, and there were no differences in the cholesterol levels among
the intervention groups (Supplementary Figure S7). Taken together,
the HFD-only diet successfully induced obesity in the mice, as

TABLE 3 Results of GEE models for the associations of acetylglycine on mouse weight and weight change.

Variable Effect size SE Wald p-value

Trait: Weight

Water REF

TRT ACE 500 −0.29 0.28 1.08 0.30

TRT ACE 1000 −0.51 0.20 6.56 0.01

TRT ACE 1500 −1.03 0.20 26.78 2.30 × 10−7

Normal Diet REF

HFD 1.35 0.19 48.23 3.80 × 10−12

Baseline weight 0.98 0.10 92.78 <2.00 × 10−16

Trait: Weight change

Water REF

TRT ACE 500 −0.38 0.32 1.44 0.2295

TRT ACE 1000 −0.65 0.22 8.61 0.0033

TRT ACE 1500 −1.41 0.23 39.10 3.90 × 10−10

Normal Diet REF

HFD 1.61 0.21 58.00 2.70 × 10−14

REF: Reference group. HFD: High fat diet. TRT ACE: Treatment group with acetylglycine (dose); SE: Standard error for the effect size.
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reflected by the higher weight, weight gain, abdominal fat mass, and
glucose level observed in the study.

4 Discussion

We performed a joint analysis that revealed the relationships
between the metabolites and four DXA-derived BF measures among
Chinese women. In contrast to proxy phenotypes, such as BMI, BF
measures provide a direct assessment of body adiposity distribution,
enabling the identification of novel metabolites related to general or
central BF. We identified 18 metabolites that demonstrated
consistent associations with A/G ratio, A/W ratio, and W%, and
opposing associations with G/W ratio. We further partially validated
the consistent relationships of the metabolites on the BF traits in two
independent samples with different ethnicity and sex characteristics.
Lastly, we validated the protective effect of acetylglycine in the obese
mouse experiments.

Pyridinoline, deoxycoformycin, acetylglycine, creatinine, and
cortisone were robustly associated with general and central BF.
Austalide J and 28-homobrassinolide were only associated with
central BF, and austalide J had the highest VIP score, reflecting a
strong contribution in distinguishing abdominal obesity.

Interestingly, no metabolite was exclusively related to any
single BF trait, implying that the identified metabolites
simultaneously influence total and central region fat deposits
with different effect sizes. As gynoid fat may reduce the risk of
metabolic diseases (Fu et al., 2013; Okosun et al., 2015), our
findings of 12 metabolites positively associated with G/W ratio
suggest further replication and merit for future study in
preventing obesity.

Pyridinoline and deoxycoformycin were observed as positive
associations with general and central BF, except gynoid fat, in our
study. These two metabolites have been recognized from
exogenous sources and have close relationships with complex
diseases. Pyridinoline, a well-known biomarker of bone
resorption and formation (Delmas et al., 1991; Kuo and Chen,
2017), has been reported to be positively associated with weight,
BMI, and bone mineral density at different skeletal sites (New
et al., 2000; Wang et al., 2016). It is a cross-linked compound that
provides chemical stabilization in cartilage, bone, ligaments, and
blood vessels (Kuo and Chen, 2017). Next, deoxycoformycin is an
inhibitor of adenosine deaminase and a common anticancer
chemotherapeutic drug for leukemia and lymphoma treatment
(Tusup et al., 2022). In addition, deoxycoformycin can be
produced by fungi such as C. militaris, which is regarded as a

FIGURE 2
In vivo study with acetylglycine. Panels (A–D) show the pairwise comparisons for the µ-CTmeasures among different groups. The abdominal region
was defined as between L1–L5 lumbar vertebrae. Panels (E, F) are the pairwise comparisons for the fasting plasma glucose test. FDR: false discovery rate;
*: FDR q-value <0.05; **: FDR q-value <0.01; ***: FDR q-value <0.001; ****: FDR q-value <0.0001.
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beneficial food supplement (Chen et al., 2020). However, it
increases the susceptibility to toxic accumulation in kidney,
liver, and central nervous system (Demain and Sanchez, 2009;
Chen et al., 2020). The effect of the impaired tissue/organs by
deoxycoformycin on the development of BF and its dose-
dependent toxicity in humans is still unclear. Further research
on the underlying mechanism of this relationship is warranted.

We demonstrated the potential anti-obesity effect of
acetylglycine on both general and central body fat, which is
consistent with previous findings of its association with lower
BMI levels and fat percentages in population-based studies
(Moore et al., 2014; Cirulli et al., 2019). However, a
longitudinal study of Mexican American women aged
20–72 years reported that increased levels of acetylglycine
elevated the risk of weight gain (Zhao et al., 2016). Further
investigations into the long-term effect are needed to clarify
these contradictory results. In addition to obesity-related
traits, a study on the causal effect of metabolites on
cardiovascular diseases found that acetylglycine is associated
with a lower risk of diastolic blood pressure and is considered
a potential cause (Qiao et al., 2021). The glycine
N-acyltransferase (GLYAT) enzyme, linked with phenylalanine
metabolism (Supplementary Figure S4), forms N-acylglycines
(Westhuizen et al., 2000) and catalyzes glycine conjugation of
acyl-Coa-species, producing intermediate products such as
acetylglycine in amino acid and fatty acid metabolism
(Badenhorst et al., 2013). A mice study showed that lower
mRNA expression levels of GLYAT in adipose tissue were
observed in a fat-susceptible group compared to a fat-resistant
group (Fedry et al., 2016). The perturbation of GLYAT induces
harmful disruption to CoA homeostasis (Badenhorst et al., 2013),
musculoskeletal development (Badenhorst et al., 2013), and
obesity-related metabolic disturbances (Fedry et al., 2016;
Alves et al., 2019), suggesting that acetylglycine plays a role in
the development of obesity-related diseases.

Creatinine, a breakdown product of creatine, reflects muscle
metabolism and kidney function and plays a significant role in
muscle energy production (Patel et al., 2013). Individuals with low
muscle mass and body weight have low creatinine levels (Patel et al.,
2013) and high glomerular hyperfiltration rates, which may increase
the risk of metabolic diseases and diabetes (Hjelmesæth et al., 2010).
The association between cortisone and general/central BF was
consistent with a recent study reporting a negative association on
BMI in European women (Cirulli et al., 2019). Interestingly, when
assessing the relationship of cortisone in childhood obesity, cortisol
and cortisone levels were significantly positively correlated with BMI
and A/G ratio (Noppe et al., 2016).

The age-dependent differences in activities of 11β-
hydroxysteroid dehydrogenases, an enzyme catalyzing the
interconversion between cortisol and cortisone, may reverse the
associations on BF deposition (Vierhapper et al., 2007; Chapman
and Seckl, 2008). Cortisone participating in cortisol metabolism for
generating steroid hormone is a known signature for obesity, type
2 diabetes (Gawlik et al., 2020), and other diseases (Supplementary
Figure S4).

In our validation analyses, we observed the negative
relationships for glycocholic acid, a key a bile acid regulator of
fat absorption, cholesterol level, and energy homeostasis (Marco-

Ramell et al., 2018). Glycocholic acid was only replicated in African
American or Caucasian men but not in Caucasian women. This
discrepancy could be attributed to aging-related decline in
physiological functions, such as a decrease in female estrogen
and hormone levels. A study reported a large difference in
glycocholic acid levels between obese and lean women aged
between 50 and 70 years old, and a relatively small difference in
women aged 30–40 years old (Xie et al., 2015). This is consistent
with the findings from our study samples. Further work is needed to
understand the complex relationship between glycocholic acid and
BF which may be mediated by age-related factors, estrogen, and
hormone level.

The negative associations for N-Phenylacetyl-L-Glutamine and
thiamine were validated in the men’s and women’s replication
samples, respectively. A recent study reported that there are no
sex differences in excretion of the amino acid N-Phenylacetyl-L-
Glutamine (Zheng et al., 2014). The abnormal activity of
N-Phenylacetyl-L-Glutamine could be attributed to the difference
in phenylalanine metabolism and further reflect the development of
obesity (Bogl et al., 2016). However, some studies also observed that
the concentration was lower in obese men compared with normal-
weight men (Yu et al., 2018). The mechanism through which
N-Phenylacetyl-L-Glutamine may influence BF requires further
investigation. Moreover, many studies support thiamine as an
essential micronutrient in glucose metabolism that is negatively
associated with obesity (Maguire et al., 2018). To the best of our
knowledge, our study provided the first evidence of the relationship
between thiamine and BF.

The arginine and proline metabolism pathway had a high
closeness and betweenness centralities, which implies that the
pathway has considerable influence on neighboring molecules/
pathways. The pathway is known to be associated with obesity
(Cirulli et al., 2019). Elevated arginine levels can reduce BF accretion
in humans and animals (Wu et al., 2009). Further investigation of
the identified biological components involved in the arginine and
proline metabolism may reveal an important influence on obesity.

The ATP-binding cassette (ABC) transporter pathway, a pivotal
connector pathway, regulates the import/export of membrane
proteins, such as thiamine, phthalate, L-glutamine, and glycine
via different enzymes or reactions for the overall BF-related
network (Rees et al., 2009). The pathway may delineate
associations between genes and physiologic changes before,
during, and after the onset of obesity in mice (Donepudi et al.,
2016) and beneficial influences on obese women (Teixeira et al.,
2020). However, we observed that phthalate in ABC transporters
was negatively associated with A/G, A/W, and W%, in accordance
with the findings from Hatch et al.’s study of BMI and waist
circumference (Hatch et al., 2008). Other studies found
contradictory results, demonstrating that phthalate was an
endocrine-disrupting chemical (Apau et al., 2020) and linked to
adverse health outcomes such as obesity and diabetes (Hatch et al.,
2008; Apau et al., 2020). The various characteristic of phthalates on
obesity may depend upon endogenous hormone levels and vary
across sex and age groups (Hatch et al., 2008). The influence on BF
and other pathways via the ABC transporter pathway may warrant
further investigation.

Additionally, our study suggested that impaired cholesterol
metabolism may cause adverse health outcomes. The cholesterol

Frontiers in Molecular Biosciences frontiersin.org09

Su et al. 10.3389/fmolb.2023.1166333

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1166333


metabolism pathway was connected to pathways for aldosterone-
regulated sodium reabsorption and prostate cancer. Cortisone and
cortisol were closely connected to the disease pathway and may be
diagnostic biomarkers for obesity. The impaired conversion of
cortisone and cortisol has been reported as an important factor
for insulin sensitivity and central obesity (Weaver et al., 1998).

Harper et al. observed no statistical differences in body
weights and feed consumption between the acetylglycine
treatment groups and the control group (Harper et al., 2010).
Our animal model extended the prior research by exploring the
effect of acetylglycine on HFD-induced obese mice. For the first
time, we demonstrated a protective effect of mid and high doses
of acetylglycine on body weight and fat in mice. The evidence has
also been seen in a case of smoking-cessation-induced weight
gain mice study that showed acetylglycine ameliorated weight
gain rate compared with HFD control mice (Fluhr et al., 2021).
The single-cell transcriptomics analysis of epididymal-adipose
immune cells exemplified that acetylglycine is a potent signaling
molecule that modulates modulated multiple adipose-tissue gene
expressions in obesity-associated pathways such as immune
response, lysosome function, and tissue remodeling (Fluhr
et al., 2021).

Biochemical tests showed significant increases in the fasting
glucose, total cholesterol, HDL, and LDL of the HFD groups, and
unaltered triglycerides. This is consistent with what was reported
in a previous HFD-induced obesity study in mice (Eisinger et al.,
2014; Fluhr et al., 2021). The results of the FPG tests for the mid-
dose group provided evidence for a reduction in the glucose levels,
and the total and abdominal fat mass. Acetylglycine may
ameliorate fat mass accumulation and further improve glucose
metabolism since the decreased capacity for adipocyte
differentiation and angiogenesis is reported to alleviate
lipogenesis and lipolysis activities as well as insulin resistance
(Patel and Abate, 2013). Elevated acetylglycine levels have been
associated with decreased risk of impaired fasting glucose and
onset of diabetes (Menni et al., 2013) and improved glucose
tolerance (Fluhr et al., 2021). However, this evidence may not
be applicable to all situations, such as high variations in glucose
reduction in our high-dose group. Further investigations are
needed to estimate the dose-response effects of acetylglycine on
glucose.

Our study has several strengths. We had precise measures of BF
mass from DXA scans to distinguish the association of metabolites
with obesity. Our study systematically examined the BF-metabolites
associations and partially validated them in two independent
samples with different sex and ethnicities. We confirmed our
novel finding with in vivo experiments showing that acetylglycine
can significantly affect adiposity. One inherent limitation is the
difficulty harmonizing metabolites from different metabolomics
platforms. Although we partially replicated our findings in other
sex and ethnicity groups, more research on obesity is still needed
since metabolic responses affect or are affected by diverse lifestyles
and diets. Second, we cannot draw causality in our findings due to
the cross-sectional design. However, our validations from the
independent replication cohort and in vivo mice studies may
support the robustness of our findings to some extent.

Our investigation of adiposity phenotypes systematically
identified BF metabolomic signatures and several relevant

pathways. Our study provides evidence that acetylglycine,
creatinine, and cortisone may have a protective role against body
fat accumulation. External validation replicated six metabolites
associated with BF in either Caucasian women or African
American and Caucasian men. The protective effects of
acetylglycine were consistent across different samples and were
further validated in vivo in mice. The findings open new
possibilities for utilizing acetylglycine as a potential diagnostic
biomarker and therapeutic target of obesity or obesity-related
diseases.
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