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Virtual screening is a widely used tool for drug discovery, but its predictive power
can vary dramatically depending on how much structural data is available. In the
best case, crystal structures of a ligand-bound protein can help find more potent
ligands. However, virtual screens tend to be less predictive when only ligand-free
crystal structures are available, and even less predictive if a homology model or
other predicted structure must be used. Here, we explore the possibility that this
situation can be improved by better accounting for protein dynamics, as
simulations started from a single structure have a reasonable chance of
sampling nearby structures that are more compatible with ligand binding. As a
specific example, we consider the cancer drug target PPM1D/Wip1 phosphatase, a
protein that lacks crystal structures. High-throughput screens have led to the
discovery of several allosteric inhibitors of PPM1D, but their bindingmode remains
unknown. To enable further drug discovery efforts, we assessed the predictive
power of an AlphaFold-predicted structure of PPM1D and a Markov state model
(MSM) built frommolecular dynamics simulations initiated from that structure. Our
simulations reveal a cryptic pocket at the interface between two important
structural elements, the flap and hinge regions. Using deep learning to predict
the pose quality of each docked compound for the active site and cryptic pocket
suggests that the inhibitors strongly prefer binding to the cryptic pocket,
consistent with their allosteric effect. The predicted affinities for the
dynamically uncovered cryptic pocket also recapitulate the relative potencies
of the compounds (τb = 0.70) better than the predicted affinities for the static
AlphaFold-predicted structure (τb = 0.42). Taken together, these results suggest
that targeting the cryptic pocket is a good strategy for drugging PPM1D and, more
generally, that conformations selected from simulation can improve virtual
screening when limited structural data is available.
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Introduction

Virtual screening is a common tool for identifying novel
inhibitors of proteins with known structures (Wallach et al.,
2015; Lyu et al., 2019; Bender et al., 2021). Conventional,
structure-based virtual high throughput screening approaches
use an empirical- or force-field-based scoring function to dock
ligands to mostly rigid receptors and rank compounds (Trott and
Olson, 2010). Docking to structures that deviate from the ligand-
bound state can result in inaccurate predictions of the bound
complex and poor compound ranking. For example, it is often
difficult to recover active compounds when docking against
ligand-free experimental structures (e.g., an apo state), or when
the cognate ligand is small (Abagyan et al., 2010). Even worse,
experimentally derived structures are unavailable for many targets
with disordered or flexible domains. AlphaFold (AF) has the
potential to accelerate drug discovery thanks to accurate
structure prediction for such proteins (Jumper et al., 2021).
However, these are still just rigid structures, and their utility
will be limited if they do not represent bound-like structures
(Vijayan et al., 2015; Wankowicz et al., 2022).

Phosphatases are a protein family with many potential
therapeutic targets, but few are currently drugged (Mullard, 2018;
Köhn, 2020) owing to a highly conserved and charged active site.
Phosphatases are distinguished by different functional domains that
can be exploited for the design of selective therapeutics (e.g.,
SH2 domain in SHP2(Chen et al., 2016)). Often, these domains
are highly flexible (Miller et al., 2022). Human protein phosphatase,
Mg2+/Mn2+ dependent 1D PPM1D, also known as Wip1, is an
important therapeutic target in oncology (Pecháčková et al., 2017).
PPM1D negatively regulates p53 and other components of the DNA
damage response pathway (Lu et al., 2008). Overactivation of

PPM1D, either through duplication or loss of its degradation
domain, is present in several human cancers, including breast
cancer (Li et al., 2002), ovarian clear cell carcinoma (Tan et al.,
2009), and brain cancers (Castellino et al., 2008).

Several allosteric inhibitors of PPM1D have been discovered
through experimental screens (Gilmartin et al., 2014), but they
remain difficult to improve upon because PPM1D has defied
structure determination. A dual biophysical and biochemical
screen targeting PPM1D revealed a novel class of inhibitors
called the capped amino acids (CAA) (Gilmartin et al., 2014).
These compounds selectively and non-competitively inhibit the
phosphatase activity of PPM1D towards FDP and natural
substrates. Efforts to crystallize PPM1D alone or PPM1D in
complex with these inhibitors were repeatedly unsuccessful, likely
due to a highly disordered loop or a flexible flap domain.

In the absence of this structural information, two distinct
binding modes have been proposed based on indirect evidence.
Photoaffinity labeling experiments suggested that the allosteric
compounds bind at the PPM1D flap domain, in the vicinity of
P219 andM236 (Figure 1). (Gilmartin et al., 2014) In support of this
model, the authors demonstrated that swapping the flap domain of
PPM1D into another phosphatase rendered that protein sensitive to
the PPM1D inhibitors. However, this finding was later disputed by
several experiments that implicated the hinge domain in the binding
of the allosteric compounds (Miller et al., 2022). Deletion of the flap
domain did not have an impact on the thermal shift, binding affinity,
or the deuterium exchange profile caused by one of the allosteric
compounds. Conversely, deletion of the hinge contributed to a
substantial decrease in binding affinity and inhibition (i.e., an
increase in IC50). Thus, the lack of experimental structures as
well as competing binding modes makes PPM1D a uniquely
challenging target for computational drug design.

FIGURE 1
PPM1D phosphatase is allosterically inhibited by the capped amino acid (CAA) compounds, but the precise binding site is unknown. (A) The capped
amino acid compounds have a common amino acid-like substructure, and small differences in their chemical structure (i.e., the absence of a carbonyl)
can contribute to very large differences in their potency. (B) The AlphaFold-predicted structure of PPM1D highlights key regions that have been
implicated in the binding of the capped amino acid compounds. The active site is shown in salmon sticks while two residues identified as proximal to
the binding site based on photolabeling experiments are shown in blue sticks. The flap domain, a region hypothesized to be the primary CAA compound
binding site, is shown in cyan. Another region hypothesized to be the primary CAA compound binding site, the hinge, is shown in orange.
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Here, we use AlphaFold, molecular dynamics simulations
(Karplus and McCammon, 2002; Hollingsworth and Dror, 2018),
and machine learning to generate distinct conformations of PPM1D
to investigate the molecular mechanisms of allosteric inhibition.

Results

PPM1D’s AlphaFold structure lacks high
scoring pockets at the flap and the hinge

Given the lack of available PPM1D experimental structures, we
first tested if a structure predicted by AlphaFold (AF) could help
determine the preferred binding site for its allosteric inhibitors. The
high accuracy of AF predictions (Jumper et al., 2021) suggests that
structures predicted by AF can be used for determining binding sites
and conducting virtual high throughput screening campaigns.
Therefore, we analyzed the PPM1D AF structure to determine if
there were binding sites with a high probability of ligand binding.

The PPM1D AlphaFold structure lacks clear pockets at the flap
and the hinge, which are the two binding sites proposed in the
literature. In contrast to previous homology models constructed for
PPM1D, the AF structure of PPM1D includes a structured flap
domain. The predicted local distance difference test (pLDDT) score,
a useful proxy for how ordered a region is (Wilson et al., 2022), is
high in the flap domain (Supplementary Figure S1). Despite the
structured nature of the flap domain, there are few obvious pockets
for an allosteric inhibitor to bind. Using the P2rank algorithm
(Krivák and Hoksza, 2018), we evaluated pockets on the protein
surface and found two pockets with high scores (Supplementary
Figure S2). One is at the active site, which cannot be the preferred
binding mode for the capped amino acid compounds given the non-
competitive nature of PPM1D inhibition. The second high scoring
pocket is found opposite the flap domain where helix 323–326 and
helix 347–360 interface with one of the β-strands in the PPM1D β-
sandwich (Supplementary Figure S1). This pocket has no overlap
with either of the proposed binding sites found in the literature for
the PPM1D allosteric compounds. Both the flap and the hinge lack
high scoring pockets in their vicinity. Similarly, when we searched
for pockets using the LIGSITE algorithm (Hendlich et al., 1997), we
do not find pockets at either of the proposed binding sites
(Supplementary Figure S3). These findings suggest that the
binding site of the allosteric inhibitors is possibly cryptic or
transient, or simply not captured by the AlphaFold
structure—thus posing a challenge for a successful docking
campaign. Hence, we decided to investigate whether molecular
dynamics simulations might reveal cryptic pockets at the flap or
the hinge.

PPM1D apo simulations reveal a cryptic
pocket at the flap-hinge interface

Next, inspired by recent success in capturing cryptic pocket
formation in molecular dynamics simulations, (Hollingsworth et al.,
2019; Sztain et al., 2021; Zimmerman et al., 2021; Cruz et al., 2022;
Meller et al., 2023b; Meller et al., 2023c), we tested whether
simulations launched from the AF structure could reveal cryptic

pockets that encompass the flap or the hinge. We used an adaptive
sampling algorithm FAST (Zimmerman and Bowman, 2015) to
search for cryptic pockets. FAST balances exploration with
exploitation to efficiently search conformational space for
conformations with desired traits. FAST does this by launching
swarms of simulations and then selecting the most promising states
as evaluated by an objective function for further simulations. In our
case, we defined an objective function that included LIGSITE pocket
volume to favor states with large pockets and another term to reward
conformations which had been rarely observed (see Methods).
Following each round of simulations, we created Markov State
Models (MSMs) (Pande et al., 2010; Bowman et al., 2015) of the
protein’s conformational ensemble after clustering conformations
using C-α RMSD as a distance metric.

In our simulations, the flap domain is extremely dynamic,
sampling closed and highly open conformations (Figure 2A). An
MSM-weighted distribution of flap domain to active site distances
reveals two modes, one centered roughly on the distance found in
the AF starting structure (~23 Å) and another around 27 Å
(Figure 2A). In the closed conformations with a small active site-
flap distance, the flap domain approaches a helix (residues 346–361)
whose minimum distance to the flap domain in the AF structure is
11 Å (structure I in Figure 2B; Supplementary Figure S4). This
behavior is consistent with experiments which showed that flap
deletion leads to an increase in deuterium incorporation, implying
an increase in backbone solvent exposure, at peptides spanning
residues 328–362. (Miller et al., 2022). Not only can the flap close in
on the active site, it can also dissociate dramatically as seen in the
long tail on the right of the active site-flap distance distribution
(structure iii in Figure 2B). In this extended conformation, K218 and
other residues involved in substrate recognition are far from the
active site (i.e., the distance between K218s sidechain to D105s
sidechain grows from 9 Å in the AF structure to as much as 29 Å in
simulations). The two peaks seen in the flap domain to active site
distance distribution are consistent with both hydrogen deuterium
exchange mass spectrometry and sedimentation velocity
ultracentrifugation experiments (Miller et al., 2022), which
showed that PPM1D exists in an equilibrium between two
different flap domain conformations.

The highly dynamic nature of the flap domain is not captured in
the AlphaFold predictions. As predicted by the high pLDDT
estimates for the flap domain, the β-strands in the flap remain
structured as β-strands throughout the simulations (Supplementary
Figure S5). However, neither AF’s pLDDT nor the predicted aligned
error for the flap domain suggest that flap domain dissociation is
possible or likely. We speculate that AF underestimates flap domain
flexibility because it is trained with static structures from the Protein
Databank (PDB), and thus simulations are a useful means to identify
functionally important excited states.

Our simulations revealed a cryptic pocket at the flap-hinge
interface between the two proposed binding sites. We calculated
pockets for each structure in the MSM using P2Rank (see Methods).
We then found the difference in each residue’s maximum ligand-
binding probability in the ensemble and its ligand-binding
probability in the AlphaFold structure. This analysis revealed that
the flap domain, especially a flap domain loop (residues 276–290), is
enriched for residues with large increases in ligand-binding
probability (Supplementary Figure S6, S7). To visualize this flap
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domain cryptic pocket, we found the simulation structure with the
largest increase in predicted ligand-binding probability relative to
the AlphaFold structure. This structure shows conformational
changes in the orientation of the central β-strand in the flap as
well as the loop spanning residues 269–295 (Figure 3A). Collectively,
these lead to the formation of a deep pocket (Figures 3B,D) with a
P2Rank-predicted ligand-binding probability of 0.87. There are
other regions of the protein with increases in predicted ligand-
binding probability, including the hinge (Supplementary Figure S8)
and the photoaffinity labeling sites, (Supplementary Figure S8), but
these increases are not as substantial as those in the flap domain
loop. Taken together, these results suggested that relevant binding
modes for the PPM1D allosteric compounds may be hidden in the
ground state AlphaFold structure.

The AtomNet PoseRanker neural network
predicts a single preferred cryptic binding
site between the flap and hinge

To help determine which cryptic site was the most likely binding
site, we docked the PPM1D allosteric compounds across the
ensemble of structures in our MSMs. Traditional rigid body
docking can often produce high quality poses (root mean square
deviation from a crystal pose less than 2 Å), but these methods
struggle to rank the poses correctly (Su et al., 2019); the highest
quality poses rarely correspond to the highest scoring poses. To
circumvent this limitation, deep learning methods often re-rank

conventional docking poses and achieve improved performance. We
used one of these methods, AtomNet PoseRanker (ANPR), to re-
rank the poses frommolecular docking (Stafford et al., 2022). ANPR
was trained on existing data on the PDB and demonstrated to have
an implicit understanding of physical interactions and protein
dynamics. ANPR is trained as a binary classifier, and outputs a
probability score between 0 and 1 (scores greater than 0.5 are usually
indicative that ANPR has confidence that the pose in question is of
high quality). We hypothesized that correctly assigned binding sites
for ligands would admit better poses than incorrect sites. We
therefore used ANPR scores to evaluate and identify the most
likely binding site of the PPM1D allosteric inhibitors. We
expected the most likely binding site to have higher ANPR scores
across the simulated conformations with a relevant cryptic pocket.

We docked compounds to all states from the PPM1D MSMs
using CUina (Gniewek et al., 2021; Stafford et al., 2022), a GPU-
efficient implementation of smina (Koes et al., 2013), and evaluated
the quality of the resulting docked poses with ANPR. For every state
from the MSM, we used P2Rank to identify possible binding sites in
that state’s representative structure. A significant number of
conformations presented a cryptic pocket between the hinge and
the flap. A smaller number of conformations presented a
pocket almost exclusively at the hinge. We used the pockets
identified by P2Rank to design a box centered around these
pockets. We padded the box by 5 Å on each dimension, and we
used that box to define the search space of our molecular docking
runs. As a control, two additional bounding boxes were created for
the active site and photolabeling site described in the Gilmartin

FIGURE 2
The distribution of flap domain to active site distances from MD simulations highlights that the flap is a highly flexible domain that can adopt more
open conformations than seen in the AlphaFold-predicted structure. (A) The MSM-weighted distribution of average distances between the flap domain
(defined as residue 219–295) and the active site (residues 105, 192, 314, and 366) backbones shows two peaks as well as long tails that highlight low
probability highly closed and highly open conformations. The dashed red line indicates the same distance measured for the AlphaFold-predicted
structure. (B) These structures depict a highly closed, an intermediate, and a highly open MSM cluster center. The flap domain is colored in cyan. Circles
with Roman numerals indicate where these structures fall in the distribution.
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publication by defining the boundaries based on the catalytic
residues or the photo labeling residues respectively. These boxes
were also padded by 5 Å in each dimension (see Methods). In total,

we docked nine capped amino acid compounds against four possible
sites (two proposed sites around the hinge, the photolabeling site,
and the active site as a negative control). These compounds were

FIGURE 3
PPM1D apo simulations reveal a cryptic pocket at the flap-hinge interface. (A) The AlphaFold-predicted PPM1D structure and a simulation structure
where each residue is colored by its P2Rank-predicted ligand-binding probabilities show an increase in ligand-binding probability at the flap domain near
the hinge. This simulation structure was selected because it had the largest increases in ligand-binding probability relative to the starting structure across
the ensemble of states. Active site residues are shown in sticks. Arrow indicates the backbonemotion that is required to form the cryptic pocket. (B)
Mesh representation of the cryptic pocket shows that it forms between a flap domain loop (residues 276–279), two of the β-strands in the flap (residues
243–247 and 268–271), and a flap domain helix (residues 227–234). (C) Surface representation looking onto the AlphaFold structure and the open
simulation structure highlights that a deep trench forms between the flap domain and hinge. The surface is colored by P2Rank-predicted ligand-binding
probability. (D) A zoom-in of the surface representation of the open state reveals that the cryptic pocket lies in a deep groove. The orange spheres are the
pocket grid points identified by P2Rank.

FIGURE 4
The AtomNet PoseRanker neural network predicts that poses found at the flap-hinge interface are more crystal-like. (A) A PPM1D AlphaFold
structure colored by the frequency with which residues participate in high-quality poses indicates that residues needed for high-quality poses are found
at the flap-hinge interface. Residues in dark red most frequently contact the GSK2830371 compound in its high-quality poses. High-quality poses were
those poses that received a PoseRanker score of 0.5 or higher. A contact was defined when a ligand heavy atom was within 4 Å of a protein heavy
atom. (B) The MSM-weighted AtomNet PoseRanker (ANPR) predictions across different binding sites show that the flap-hinge interface receives higher
ANPR scores. Each point represents a different CAA compound. When there were multiple poses in one of the binding site categories, we selected the
pose with the highest ANPR score. We defined the hinge as residues 150–166 and the flap as residues 219–295.
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docked against all MSM states where the relevant cryptic pocket was
detected by P2Rank. For each compound + binding site pair, we re-
ranked the top 64 poses (as ranked by the vina scoring function)
using ANPR. The pose for each compound and binding site with the
highest ANPR ranking was selected for subsequent analyses.
Interestingly, none of the poses where PPM1D allosteric
compounds were docked to the AF structure scored above 0.5,
indicating that these were unfavorable poses (Supplementary Table
S1). This corroborates our pocket assessment results, suggesting that
the static AF structure is not amenable to docking of the PPM1D
allosteric inhibitors.

Across the PPM1D MSM ensemble, we found that ANPR
assigns the highest scores to poses where the compounds bind
between the flap and hinge. For each compound, we assessed
which poses were given a ANPR probability score greater than
0.5. We defined those as predicted high-quality poses. We found that
residues found at the interface of the hinge and flap domain are most
likely to make contacts with high-quality poses (Figure 4A).
Specifically, residues in the flap domain loop from D277 to
V289 are most likely to form contacts with these poses. When
we overlayed all high-quality poses of the compounds onto the AF
starting structure, we found that they cluster in a single region
between the flap and hinge (Supplementary Figure S10). Next, we
classified poses by the protein contacts that they form into the
following categories: flap domain only, hinge only, flap-domain
interface, and active site (see “Pose classification” in Methods).
There are no high-quality poses that form contacts only with the
hinge and rarely did any high-quality poses form contacts with the
active site. This is true across all compounds. Considering that the
PPM1D allosteric inhibitors are non-competitive, our negative
control results (docking against the active site) bolster our
confidence that the ANPR probability scores can distinguish
between correct and incorrect sites. We used the equilibrium
probabilities from the MSM to calculate a weighted average of
the ANPR score across the PPM1D ensemble (Supplementary
Figure S12). We find that the ensemble-weighted ANPR
probability is highest at the flap domain and flap-hinge interface
(Figure 4B; Supplementary Figure S12). Thus, these ANPR
predictions strongly suggest that PPM1D allosteric compounds
bind between the flap and hinge.

Combining MSM-docking with pKi
predictions from a neural network
accurately ranks compounds

While an estimate of pose quality might be helpful in virtual
screening, the decision to select compounds for synthesis and testing
with in vitro assays relies on an estimate of a compound’s bioactivity
or affinity. The deep learning-based pKi predictor AtomNet has been
shown to be physics-aware and to be sensitive to pose perturbations.
(Wallach et al., 2015; Gniewek et al., 2021). Considering that the CAA
compounds have known affinities, we can assess whether MSM-
docking (Meller et al., 2023b) can have an impact on the
retrospective performance of the AtomNet pKi predictor.

We applied the AtomNet pKi predictor to each of the docked
poses in our MSM ensemble. The AtomNet pKi predictor was
trained using a combination of public and proprietary structural

data. It outputs a value for the predicted pKi of a compound for a
particular target given a particular pose provided as input. We
docked each compound to several sites for each structure in the
ensemble.We used the ANPR score to select the highest scoring pose
per compound-structure pair in the ensemble (Figure 5A). We then
passed that compound-state pair as input to the AtomNet pKi
predictor, resulting in one prediction of the compound’s potency
per MSM state.

We find that taking an ensemble perspective that accounts for
cryptic pockets outperforms results for the static AF structure. We
first established a baseline by evaluating how well docking scores rank
PPM1D allosteric compounds by potency. Docking scores for the AF
structure alone and MSM-weighted docking scores for the ensemble
(seeMethods) generated very poor predictions of compound potency,
demonstrating that ranking these compounds is a non-trivial task. In
fact, compounds with better docking scores were less potent in general
(Kendall τb = −0.59, Figure 5B); we noticed negative correlation
between docking scores and their measured potency. On the other
hand, the AtomNet pKi predictor ranks more potent compounds
higher using docked poses against the AF structure alone (τb = 0.42,
Figure 5B). The ability to rank compounds based on their predicted
affinity further improves when we dock to all MSM states and weight
the pKi predictions based on the equilibrium probability of each state
(seeMethods). Indeed, we achieve an impressive τb of 0.70 when using
MSM-weighted pKi predictions (Figure 5B). Thus, combining MSMs
with the AtomNet pKi predictor may improve the performance of
virtual screening.

Discussion

Protein phosphatases are a challenging class of drug targets that
broadly illustrate the advantages of using allosteric compounds (Köhn,
2020). There are nearly 200 phosphatases in the human genome, and
many are implicated in human diseases, including diabetes (Krishnan
et al., 2018), neurodegeneration (Vieira et al., 2017), and multiple
cancers (Pecháčková et al., 2017). Phosphatases are downstream
targets of several signaling pathways that integrate various cellular
signals (Lu et al., 2008). This suggests that targeting of phosphatases
may be useful across numerous cancer subtypes caused by mutations of
upstream proteins or in cases where tumors develop resistance to
upstream therapies. However, to the best of our knowledge, there
are no approved therapies that target phosphatases. Previous drug
discovery efforts have focused on active site inhibitors. Targeting the
active site has proved challenging because high sequence conservation
limits the selectivity of compounds. Furthermore, compounds targeting
the active site need to be highly charged, limiting their bioavailability.
Hence, allosteric compounds, like the CAA compounds that target
PPM1D and novel allosteric inhibitors of SHP2 (Chen et al., 2016), may
be needed to successfully inhibit phosphatases in clinical settings.

Definitively establishing the binding site of the PPM1D allosteric
compounds remains challenging, but our results predict a plausible
binding site that agrees with most previous experiments.
Photoaffinity labeling experiments and flap swap experiments,
which showed that introducing the PPM1D flap domain can
sensitize other phosphatases to the PPM1D allosteric inhibitors,
strongly implicate the flap domain as the primary compound
binding site. Our proposed binding site at the flap-hinge
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interface is consistent with these results. Though our proposed
binding mode does not directly involve the points of covalent
attachment (i.e., P219 and M236), we speculate that the large
photoactivatable benzophenone groups that were added to the
compound scaffold enable compounds with these groups to bind
at our proposed site but still reach these residues. Furthermore,
Gilmartin et al. showed that residues 247–268 in the flap are not
essential for PPM1D allosteric compound binding (Gilmartin et al.,
2014). Consistent with these results, our proposed binding site does
not involve these residues with the minor exception of K247. On the
other hand, Miller et al. demonstrated that deletion of the hinge
causes a ~1000-fold decrease in binding affinity and a 100-fold
increase in IC50 for one of the allosteric compounds. Our proposed
binding site has substantial involvement from hinge residue
L157 and an adjacent residue W154. As a result, our proposed
binding site is consistent with the hinge deletion experiments.
However, given that residues in the flap, especially residues
D277 to V289, are commonly involved in high-quality poses, we
cannot explain why Miller et al. report that flap deletion (specifically
residues 219–287) has no effect on binding affinity or binding
kinetics. We speculate that it may be possible for the allosteric
inhibitors to bind even when most of the flap is deleted, but our
analysis suggests further experiments are needed to disentangle the
relative contributions of the flap and hinge to compound binding.

Furthermore, our results highlight the advantages of explicitly
accounting for protein conformational heterogeneity when using

deep learning methods for predicting compound affinity. The
AtomNet pKi predictor is designed and trained to be pose-
sensitive (Wallach et al., 2015; Gniewek et al., 2021; Stafford
et al., 2022). Its performance at ranking compounds varies widely
between target structures in the MSM (Supplementary Figure S14).
We noticed that even when the poses are likely of poor quality (e.g.,
the AF structure where the cryptic pocket is not present), we still
often see relatively good predictive performance for the pKis. While
some of the predictive power of the AtomNet pKi predictor is driven
by the pose, we hypothesize that the ligand features might also play a
part in and influence the predicted pKis that AtomNet pKi predictor
outputs. For the cases where the pose is poor (e.g., docking against
AF structure), we get a baseline for how well a ligand-based model
would perform. The boost in performance seen with MSM-docking
is likely due to better poses resulting from docking to structures with
open cryptic pockets.

Our results also provide insight into how ligand features
contribute to differences in predicted affinity. We inspected top-
scoring poses for the compounds shown in Figure 1A to assess why
these compounds have significantly different binding affinities despite
differing by just a carbonyl (Supplementary Figure S14). While we
cannot single out a specific interaction formed by this differing
carbonyl across the inspected top poses, this moiety was
consistently in contact with residues Y281 to F284. For certain
states, we observed additional polar interactions between the
carbonyl-containing compound and the protein. We also observed

FIGURE 5
A neural network trained to predict pKi accurately ranks allosteric compounds by potency when applied to structures from a PPM1D ensemble. (A)
Schematic highlighting the procedure that was used for selecting a single pose for each PPM1D cluster center in the MSM. For each MSM cluster center,
we defined multiple docking boxes based on the active site, residues involved in photolabeling experiments, and P2Rank pockets at the flap and hinge.
After performing docking, we selected a best pose per MSM state using the PoseRanker neural network. Finally, we fed this best docked pose to the
AtomNet pKi predictor. (B)MSM-weighting of the pKi predictions from the AtomNet pKi predictor outperforms docking-basedmethods as well as a single
pKi prediction based on the AlphaFold-predicted structure. For each scatter plot, we show the line of best fit in black as well as the 95% confidence
interval based on bootstrapping in translucent grey bands. We report the Kendall rank correlation coefficient, a statistic that measures the ordinal
association between the predited pKi and the measured pKi and whose maximum value is 1.

Frontiers in Molecular Biosciences frontiersin.org07

Meller et al. 10.3389/fmolb.2023.1171143

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1171143


that in states where the pKi prediction strongly favored the carbonyl-
containing compounds, the carbonyl-containing compound buried
substantially more protein solvent accessible surface area in its docked
pose (Supplementary Figure S14). However, we acknowledge that
comparing docked poses does not provide definitive insight into why
the AtomNet pKi predictor makes higher predictions for active
compound poses.

While a traditional docking scoring function does not accurately
rank compounds based on their binding affinity (Figure 5B), it is
well established in the literature that docking can be used to sample
good binding poses. That is the case even though the poses that best
capture the correct binding mode are usually not the best-ranked or
highest-scoring ones. We and others have shown that this issue can
be mitigated by sampling multiple poses and re-ranking them with a
deep learning model (Stafford et al., 2022), often yielding sufficiently
accurate poses for applications such as the one included in this
manuscript. Recent advances in molecular docking (Corso et al.,
2022) have led to docking tools that do away with explicitly defined
docking scoring functions. If these tools could be run at the scale
needed to generate training data for the AtomNet pKi predictor, it is
possible that the model could achieve better predictive performance.

Non-etheless, our results show that MSMs can address some of
the limitations of rigid docking against AlphaFold predicted protein
structures. Rigid docking has lower performance when the protein
structure(s) being used for docking corresponds to an apo or
unbound state (Abagyan et al., 2010). Deep learning-based (DL-
based) protein structure prediction methods like AlphaFold, are
trained using all available data on the PDB, and there is data to
support that output structures are somewhere in between apo and
holo. (Saldanõ et al., 2022). Docking efforts against AlphaFold
structures show lower performance than against holo structures
available on the PDB. (Díaz-Rovira et al., 2022; Wong et al., 2022).
Here, we show that this can be mitigated by considering
conformational heterogeneity using MSMs. Using a highly
flexible system, we can sample conformations and identify cryptic
pockets that can be successfully used in downstream virtual
screening applications. While our work was based off a single AF
structure as a starting point, we are aware of efforts to use these DL
protein structure prediction tools to sample multiple conformations,
thus better capturing protein flexibility (Saldanõ et al., 2022; Meller
et al., 2023a). To our knowledge, these methods have not been
compared against MSM approaches and more research would be
needed before conducting a similar analysis as described herein with
a DL-generated structural ensemble.

Despite these encouraging results, there are notable limitations to
our approach. Firstly, most of our pKi analyses included nine capped
amino acid compounds. This is not a particularly large dataset, and we
acknowledge that this is somewhat restrictive in terms of establishing
robust statistical significance for our results. Ranking based on docking
scores output by CUina does suggest that this is not a trivial ranking
problem, and that achieving good predictive performance at random,
despite the small data set size, is statistically unlikely. While in an ideal
scenario we would hope to have a larger number of data points to
validate our findings, affinity data is often relatively sparse at early
stages of the pharmaceutical pipeline, so estimating the performance of
virtual screening can be difficult. Secondly, our data suggests that the
AtomNet pKi predictor tends to regress to the mean. Even though the
ranking metrics are good, the dynamic range of predicted vs. observed

pKis differ significantly. We hypothesize that this is likely due to a data
imbalance in the training data of the AtomNet pKi predictor, as data
points in the extremes of the pKi distribution (either very high or very
low) are rare, and our sampling strategy during training does not
stratify on that property. Still, given that model accurately ranks
compounds by potency, our approach represents a promising
strategy for novel virtual screening campaigns.

Conclusion

In summary, we have uncovered a cryptic pocket at the PPM1D
flap-hinge interface that improves the ability to predict the potency
of PPM1D inhibitors. AlphaFold predicts a PPM1D structure that
lacks high scoring allosteric pockets at proposed binding sites based
on an analysis conducted using the P2Rank and LIGSITE pocket
detection algorithms. Though the AF-predicted structure lacks
allosteric pockets, molecular dynamics simulations of ligand-free
PPM1D capture a cryptic pocket at the flap-hinge interface. A neural
network trained to evaluate the quality of docked poses predicts that
this site is the most likely binding mode for the PPM1D allosteric
inhibitors. Finally, by docking compounds to this pocket and using a
structure-based pKi predictor, we demonstrate that aggregating pKi
predictions across a MSM is superior at ranking compounds than
using docking scores or using the single predicted AlphaFold
structure. Thus, our methodology provides a promising template
for structure-based drug discovery and in silico binding site
prediction.

Methods

Molecular dynamics simulations

The AlphaFold predicted structure (AF-O15297) was used as an
initial structure for PPM1D simulations since no structures were
available in the PDB. However, because several PPM1D domains
(C-terminus domain and an internal loop stretching from residue
39–92) are predicted to be disordered (pLDDT <70) and because we
were primarily interested in flap domain dynamics, we removed
residues 39–92 and truncated the C-terminus (residue 396-end).

GROMACS (Abraham et al., 2015) was used to prepare and to
simulate PPM1D using the CHARMM36m force fields (Huang et al.,
2016). The protein structure was solvated in a dodecahedral box of
TIP3P water (Jorgensen et al., 1983) that extended 1 nm beyond the
protein in every dimension. Thereafter, sodium and chloride ions were
added to the system to maintain charge neutrality and 0.1 M NaCl
concentration. The system was minimized using steepest descents until
the maximum force on any atom decreased below 1,000 kJ/(mol x nm).
The system was then equilibrated with all atoms restrained in place at
310 K maintained by the Bussi-Parinello thermostat (Bussi et al., 2007)
and the Parrinello-Rahman barostat (Parrinello and Rahman, 1998).

Production simulations were performed in the CHARMM36m
forcefield. Simulationswere run in theNPT ensemble at 310 Kusing the
leapfrog integrator, Bussi-Parinello thermostat, and the Parrinello-
Rahman barostat. A 12 Å cutoff distance was utilized with a force-
based switching function starting at 10 Å. Periodic boundary conditions
and the PME method were utilized to calculate the long-range
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electrostatic interactions with a grid density greater than 1.2 Å-3.
Hydrogen bonds were constrained with the LINCS algorithm (Hess
et al., 1997) to enable the use of a constant integration timestep of 2 fs

Adaptive sampling

We used the Fluctuation Amplification of Specific Traits (FAST)
algorithm (Zimmerman and Bowman, 2015) to explore a diverse
ensemble of states with cryptic pockets. We performed 5 generations
of simulations; each generation consisted of 10 parallel simulations
40 ns in length (total aggregate simulation time: 2 microseconds of
adaptive sampling). After each completed generation, we selected
seeds for the next round based on an objective function. We used an
objective function that rewarded states based on their total pocket
volume as measured by LIGSITE (Hendlich et al., 1997). The
following LIGSITE parameters were used: a minimum rank of 7,
a minimum cluster size of 3, and a probe radius of 0.14 nm. Our
ranking function also included a term that penalizes states
conformationally similar to others already selected (the width
parameter for this term was 1.5 times the cluster radius)
(Zimmerman et al., 2017). We performed k-centers clustering
after each round of FAST with the RMSD of C-alpha positions
of the entire protein as the distance metric. Clustering continued
until the maximal distance from each point to its nearest cluster
center was a maximum of 2 Å C-alpha RMSD. The top 10-scoring
cluster centers based on the LIGSITE objective function were then
selected for the next round of FAST.

To generate Markov state models from the MD simulations, we
applied a 1/n pseudocount to each element of the transition counts
matrix and then performed row normalization to generate a
transition matrix as recommended in (Zimmerman et al., 2018).
Markov state models were generated using the enspara software
package (Porter et al., 2019).

P2Rank pocket detection

We used P2Rank v2.4 (Krivák and Hoksza, 2018) with default
parameters to identify pockets across all of the representative states
(cluster centroids) from our simulations. For subsequent analyses,
we consider only pockets with a permissive pocket probability (as
output by P2Rank) greater than 0.2.

Docking

We docked compounds using a proprietary GPU-enabled
docking engine, CUina. CUina (Stafford et al., 2022) is a
proprietary implementation of smina (Koes et al., 2013), which
has been parallelized and refactored to operate more efficiently on
a GPU. The scoring function (Vina scoring function) and sampling
routines of CUina are analogous to those in smina. CUina requires
a bounding box to restrict its search space. We defined four
bounding boxes representing each of the three proposes binding
sites for CAA compounds, and one negative control (active site).
For the first two boxes, we used the coordinates of the pockets
identified by P2Rank in the vicinity of the flap or the hinge of

PPM1D (where available). The minimum and maximum
coordinates of the voxels output by P2Rank were used to define
the box, and we padded these coordinates by 5 Å along each
dimension. A third box was defined using the coordinates of
the two residues (P219 and M236) that were part of the
photolabeling experiment described by Gilmartin et al. The
fourth and final boxed was defined based on the active site: we
used the coordinates of all the catalytic residues to define the box.
The box boundaries were calculated by taking the minimum and
maximum coordinates of all photolabeling or catalytic residues
and padding by 5 Å along each dimension.

We docked nine CAA compounds to all states (i.e., a
representative structure for each MSM state) resulting from the
MSM effort described above. For each compound, we dock the best
(minimized) ligand conformation against all four proposed binding
sites. In the MSM states where P2Rank failed to identify one of the
pockets, docking against that pocket was omitted.

For each docking operation corresponding to a binding site +
MSM representative structure + compound, we output 64 poses and
imposed a 1 Å RMSD similarity cutoff, thus ensuring that the poses
output are sufficiently different from one another.

Pose classification

Following docking, poses were classified based on the contacts
that they formed. Specifically, we found residues whose heavy
atoms were within 4 Å of a ligand heavy atom. Next, we classified
poses into the following categories based on their list of contact
residues: flap domain only, hinge only, flap-domain interface, and
active site. The active site was defined as residues 18, 22, 23, 105,
106, 192, 218, 314, and 366 based on the annotation in (Gilmartin
et al., 2014); the flap domain was defined as residues 219–288; and
the hinge domain was defined as residues 150–167, which includes
both a loop and half the helix spanning residues 136–158. If the
compound made contacts with both a hinge domain and a flap
domain residue, it was classified as binding in the flap-hinge
interface.

pKi model predictions

We used AtomNet’s pKi predictor to perform pKi
predictions using the poses generated and selected by our
pose generation pipeline (CUina + ANPR). AtomNet’s global
pKi model uses a graph-based convolutional neural network to
regress over pKi.

Data: This model was trained using a combination of public and
proprietary data, spanning more than 4,000 targets for which
activity measurements were available. In total, several million
activity data points were used to train the model. PPM1D was
not part of the training data for the model, but the training set did
include a number of other phosphatases.

Architecture
AtomNet’s global pKi model uses the GRAPHite architecture

(previously described in (Stafford et al., 2022). The GRAPHite
architecture is a directed Graph Convolutional Network (GCN)
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comprised of four graph convolutional layers. The first two
layers include both ligand and receptor features, whereas the
last two layers are ligand-only. Nodes in the graph represent
ligand and receptor atoms. Only receptor atoms within 7 Å of
any ligand atom were used as part of the graph. Edges were
defined by atoms within 4 Å of each other and edge weights were
distance-dependent. The final layer is sum-pooled into an
embedding. This embedding is then passed through two
(independent) multilayer perceptrons to predict two outputs:
the ANPR pose quality score, and the Vina docking score. Those
outputs are then concatenated to the embedding and passed
through a third multilayer perceptron which outputs the
predicted pKi.

More details about the method and parameters can be found in
(Gniewek et al., 2021; Stafford et al., 2022).

MSM-weighting of docking and pKi
predictions

To determine an overall MSM-weighted pKi prediction from
pKi predictions for each MSM state, we first selected a single
highest scoring pose for each state based on the AtomNet
PoseRanker predictions. Next, we converted the predicted pKi
value to an association constant. Then, we found a macro-
association constant from the individual mico-association
constants:

Ka � ∑
i

πiKai

We use association constants because this ensures that large
contributions to the sum come from states with either a high
equilibrium probability, a large association constant (i.e., favor
ligand binding), or both. States that have small association
constants or low equilibrium probabilities will have a minimal
contribution to the overall association constant. Finally, we
convert the overall association constant to a pKi by taking the
-log10 of its inverse.

For docking scores which are in units of kcal/mol, we follow a
similar procedure. Given there were multiple poses for each MSM
state, we selected the pose with the highest ANPR prediction for
that state. Docking scores are then converted to association
constants:

Ka � e
−ΔGdocking

RT

Then we follow the same aggregation procedure:

Ka � ∑
i

πiKai

Finally, we convert this overall association constant into a pKi by
taking the -log10 of its inverse.
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