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Background: Kawasaki disease (KD) is an acute vasculitis, that is, the leading cause
of acquired heart disease in children, with approximately 10%–20% of patients
with KD suffering intravenous immunoglobulin (IVIG) resistance. Although the
underlying mechanism of this phenomenon remains unclear, recent studies have
revealed that immune cell infiltration may associate with its occurrence.

Methods: In this study, we downloaded the expression profiles from the
GSE48498 and GSE16797 datasets in the Gene Expression Omnibus database,
analyzed differentially expressed genes (DEGs), and intersected the DEGs with the
immune-related genes downloaded from the ImmPort database to obtain
differentially expressed immune-related genes (DEIGs). Then CIBERSORT
algorithm was used to calculate the immune cell compositions, followed by
the WGCNA analysis to identify the module genes associated with immune cell
infiltration. Next, we took the intersection of the selected module genes and
DEIGs, then performed GO and KEGG enrichment analysis. Moreover, ROC curve
validation, Spearman analysis with immune cells, TF, and miRNA regulation
network, and potential drug prediction were implemented for the finally
obtained hub genes.

Results: The CIBERSORT algorithm showed that neutrophil expression was
significantly higher in IVIG-resistant patients compared to IVIG-responsive
patients. Next, we got differentially expressed neutrophil-related genes by
intersecting DEIGs with neutrophil-related module genes obtained by WGCNA,
for further analysis. Enrichment analysis revealed that these genes were associated
with immune pathways, such as cytokine-cytokine receptor interaction and
neutrophil extracellular trap formation. Then we combined the PPI network in
the STRING database with the MCODE plugin in Cytoscape and identified 6 hub
genes (TLR8, AQP9, CXCR1, FPR2, HCK, and IL1R2), which had good diagnostic
performance in IVIG resistance according to ROC analysis. Furthermore,
Spearman’s correlation analysis confirmed that these genes were closely
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related to neutrophils. Finally, TFs, miRNAs, and potential drugs targeting the hub
genes were predicted, and TF-, miRNA-, and drug-gene networks were
constructed.

Conclusion: This study found that the 6 hub genes (TLR8, AQP9, CXCR1, FPR2,
HCK, and IL1R2) were significantly associated with neutrophil cell infiltration, which
played an important role in IVIG resistance. In a word, this work rendered potential
diagnostic biomarkers and prospective therapeutic targets for IVIG-resistant
patients.

KEYWORDS

IVIG-resistance, intravenous immunoglobulin, Kawasaki disease, weighted gene
coexpression network analysis, immune infiltration, neutrophil

1 Introduction

Kawasaki disease (KD), also known as mucocutaneous lymph
node syndrome, is an acute febrile systemic vasculitis that mainly
occurs in children under five (Agarwal and Agrawal, 2017). The
pathogenesis of KD remains unknown, but an immune-mediated
inflammatory cascade triggered by an unknown stimulus in
genetically susceptible children is believed to be one of the major
mechanisms (Rife and Gedalia, 2020). The most severe complication
of KD is the occurrence of coronary artery lesions, such as coronary
artery aneurysms, which is the most common cause of acquired heart
disease among children in developed countries (Hedrich et al., 2018).
Early use of high-dose intravenous immunoglobulin (IVIG) is well-
accepted as the standard treatment for KD (Fukui et al., 2021). The
risk of coronary artery aneurysms will be reduced five-fold if IVIG is
used within 10 days of fever onset (Newburger et al., 2016). However,
up to 20% of KD patients are IVIG-resistant and have a persistent or
recrudescent fever at least 36 h after the end of the initial IVIG
infusion (Kaya Akca et al., 2022). These patients have a higher risk of
developing coronary artery lesions, compared to IVIG responders
(Song, 2019). Therefore, it is crucial to explore new biomarkers to
predict KD patients’ treatment response, which can improve the
prediction of prognosis and guide clinical decision-making.

In recent years, to better understand the mechanisms underlying
IVIG resistance in KD and identify new treatment options, numerous
studies have focused on the relationship between immunity and IVIG
resistance. For instance, one study involving T cells has suggested that
excessive CD8+ T cell activation and the imbalance between CD8+

T cell activation and inhibition contribute to the pathogenesis of KD.
While IVIG can inhibit CD8+ T cell activation, excessive activation of
these cells may lead to IVIG resistance (Ye et al., 2016). Additionally,
research involving neutrophils has found that IVIG-resistant patients
have a higher percentage of neutrophils and higher neutrophil-to-
lymphocyte ratios than IVIG-responsive patients at IVIG
administration (Sato et al., 2013; Lee and Song, 2016; Han et al.,
2022). These studies provide new insights into the importance of
immune regulation in IVIG resistance.

Weighted gene co-expression network analysis (WGCNA) is a
systems biology approach that studies patterns of gene co-expression
and constructs co-expression network models based on gene
expression profiles. This method has been widely used to
investigate the pathogenesis of many diseases, including KD
(Wang T et al., 2022). In this study, we used WGCNA to identify
module genes highly associated with immune cell infiltration, to better

understand the development of IVIG resistance, and make it possible
to design early diagnosis and therapeutic procedures for IVIG
resistance. The workflow diagram of this study was displayed in
Figure 1.

2 Materials and methods

2.1 Data acquisition

This study utilized two datasets, namely GSE48498 and
GSE16797, obtained from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo) (Ogihara et al., 2009;
Ogihara et al., 2014). Both datasets were derived from the same
platform GPL570, which was important for merging the data and
performing subsequent integrated analysis. Then a total of 26 KD
patients were included in this study, of which 14 patients were
resistant to IVIG treatment and 12 patients were responsive to
IVIG treatment (Table 1). Additionally, 2483 immune-related
genes (IGs) data were retrieved from the ImmPort database
(https://immport.niaid.nih.gov), which would be used in our study
(Bhattacharya et al., 2018).

2.2 Data preprocessing and screening of
differentially expressed genes

After the raw data of the GSE48498 and GSE16797 were read by
the “Affy” package of Bioconductor (http://www.bioconductor.org/
packages/release/bioc/html/affy.html) in R software, they were
performed with background correction, normalization, and probe
summarization using robust multi-array average (RMA) algorithm
(Gautier et al., 2004; Harbron et al., 2007). In addition, the batch effect
was eliminated by utilizing the combat function of the R software
package “SVA” (Leek et al., 2012). The effect of data correction was
demonstrated using two-dimensional PCA cluster plots before and
after data correction respectively (Metsalu and Vilo, 2015).

Next, the differentially expressed genes (DEGs) between the
IVIG-resistant group and the IVIG-responsive group were
identified using the “Limma” package in R software (Diboun et al.,
2006). The filter criteria for DEGs were set as |log2 fold change (FC)| >
1 and adjusted p-value < 0.05. The volcano plot and heatmap were
drawn using the “ggplot2” package in R software to visualize the
DEGs. Differentially expressed immune-related genes (DEIGs) were
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obtained by taking the intersection of DEGs and IGs using the
“Venndiagram” R package (Chen and Boutros, 2011).

2.3 GO and KEGG enrichment analysis

Gene Ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis were performed
using the “clusterProfiler” R package to reveal the potential biological

functions and pathway mechanisms of genes (Yu et al., 2012).
Adjusted p < 0.05 was considered statistically significant in this study.

2.4 Immune infiltration analysis

A bioinformatics algorithm called CIBERSORT (https://cibersortx.
stanford.edu/) was used to measure the infiltration status of immune
cells to quantify the relative proportions of infiltrating immune cells

FIGURE 1
The flowchart of this study.
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from the gene expression profiles of our samples (Newman et al., 2015).
A standard set of 22 kinds of immune cell subsets (IM22) having
1,000 permutations were utilized to assess the predicted abundance level
of immune cells. To visualize the results of the CIBERSORT algorithm,
we used the “pheatmap” package to generate a heatmap about the
proportion of 22 infiltrating immune cells in each sample, and the
“ggboxplot” package to obtain a boxplot to show the differences in each
infiltrating immune cell between the IVIG-resistant group and IVIG-
responsive group, respectively.

2.5 Construction of weighted gene Co-
expression network

A gene co-expression network was constructed using the
WGCNA method, which was implemented with the R-based

package “WGCNA” (Langfelder and Horvath, 2008). First, we
selected the top 5000 genes based on variance from the gene
expression data for analysis, then performed hierarchical
clustering analysis to detect and remove outlier samples. In
order to construct a scale-free network, the optimal soft-
thresholding power was identified and the adjacency matrix
was transformed into a topological overlap matrix (TOM)
(Shuai, et al., 2021). Subsequently, the hierarchical cluster tree
was cut into gene modules using the dynamic tree cut algorithm,
with a minimum module size of 30 genes. Then, the heatmap was
plotted to reflect the relationships between each module and
18 subtypes of immune infiltrating cells, and the module with a
high correlation coefficient was selected. Finally, the R package
“Venndiagram” was used to take the intersection of these genes in
the selected module and DEIGs, and the obtained genes were
used for subsequent analysis.

TABLE 1 IVIG-resistant and IVIG-responsive KD patients.

Platform Datasets Total samples Intravenous immunoglobulin G (IVIG)

Groups Samples

GPL570 GSE48498 28 IVIG-resistant GSM1179961

GSM1179962

GSM1179963

GSM1179964

GSM1179965

GSM1179966

GSM1179967

GSM1179968

IVIG-responsive GSM1179983

GSM1179984

GSM1179985

GSM1179986

GSM1179987

GSM1179988

GSE16797 34 IVIG-responsive GSM421900

GSM421902

GSM421904

GSM421906

GSM421908

GSM421910

IVIG-resistant GSM421912

GSM421914

GSM421916

GSM421918

GSM421920

GSM421922
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2.6 Construction of protein-protein
interaction network and identification of
hub genes

The above-obtained genes were subjected to protein-
protein interaction (PPI) network analysis using the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING,
https://string-db.org/) database (Szklarczyk et al., 2017).
Moreover, Cytoscape is an open-source software project for
integrating biomolecular interaction networks, which is one of
the most powerful network biology analyses and visualization
tools when applied in conjunction with large databases of
protein-protein, protein-DNA, and genetic interactions
(Shannon et al., 2003). Thus, we visualized the PPI network
through Cytoscape software. Additionally, the Cytoscape
plugin Molecular Complex Detection (MCODE), an app for
clustering a given network based on its topology to find densely
connected regions (Bandettini et al., 2012), was utilized to
identify clusters of genes that were highly connected across
the entire PPI network, which ultimately led to the
determination of hub genes.

2.7 ROC curve analysis

Receiver operating characteristic (ROC) curves are standard
statistical tools for the analysis of disease markers and the area
under a ROC curve (AUC) is a popular measure of diagnostic
accuracy that is independent of the proportion of diseased
subjects in the analyzed sample (Parodi et al., 2022). We
separately performed ROC curve analysis on each screened
hub gene to verify its accuracy in GSE48498 and
GSE16797 two datasets. ROC curve analysis was executed with
the R package “pROC” (Robin et al., 2011). The AUC value was
calculated to evaluate the predictive utility of these hub genes.
When the AUC>0.7, the hub gene was considered to have good
sensitivity for IVIG resistance diagnosis.

2.8 Correlation analysis between diagnostic
genes and infiltrating immune cells

Immune infiltration analysis was performed using the
CIBERSORT algorithm. Subsequently, Spearman correlation

FIGURE 2
The effects of data processing and the recognition of differences express genes. (A) PCA diagram before data processing. (B) PCA diagram after data
processing. (C) The volcano plot of DEGs. The upregulated genes were marked in red dots, while the downregulated genes weremarked in blue dots. (D)
The heatmap of DEGs. The upregulated genes were represented by red, and the downregulated genes were represented by green.
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analysis was employed to examine the relationship between
diagnostic gene expression and immune cell infiltration (Pripp,
2018). To illustrate these relationships more intuitively, lollipop
plots were created using the “ggplot2” package for visualization.

2.9 Construction of potential TF-, MiRNA-,
and drug-diagnostic gene regulatory
network

NetworkAnalyst (http://www.networkanalyst.ca/) is a
comprehensive web-based tool that integrates all three steps of
biological network analysis - identification of genes or proteins of
interest, network construction, and network analysis and visualization -
and is designed to allow researchers to perform a variety of common
and complexmeta-analyses of gene expression data through an intuitive
web interface (Zhou et al., 2019). To identify possible transcription
factors (TFs) and miRNA regulating diagnostic genes, we used
NetworkAnalyst online database integrating TF database ENCODE
(https://www.encodeproject.org/) and miRNA database miRTarBase
(https://mirtarbase.cuhk.edu.cn/) (ENCODE Project Consortium,
2011; Huang et al., 2022). What’s more, the Drug-Gene Interaction

Database (DGIdb; https://www.dgidb.org/) integrates, organizes, and
presents information on drug-gene interactions and genetic drug-
forming properties from papers, databases, and web resources
(Cotto et al., 2018). And the DGIdb online database was used to
predict the potential targeted drugs that interacted with the diagnostic
genes, then the drug-gene interaction network was visualized in the
Cytoscape software.

2.10 Statistical analysis

All statistical analyses in our study were performed with the R
software (version 4.2.2, https://www.r-project.org/). Unless otherwise
specified, the p-value for statistical significance was set at 0.05.

3 Results

3.1 Identification of DEGs

The selected samples from the GSE48498 and
GSE16797 datasets were subjected to background correction,

FIGURE 3
Acquisition and functional enrichment analysis of DEIGs. (A) Venn diagram of DEGs and IGs. (B) GO enrichment bubble chart of DEIGs. (C) GO
pathway-gene network diagram of DEIGs. (D) KEGG enrichment bubble chart of DEIGs. (E) KEGG pathway-gene network diagram of DEIGs.
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normalization, and batch removal. The sample distributions
before and after the removal of batch effects were visualized in
two-dimensional PCA cluster diagrams (Figures 2A, B). All
samples in Figure 2A were divided into two distinct clusters,
however, Figure 2B showed that after processing, the samples in
the two datasets were more evenly mixed, indicating a significant
effect of batch removal and more reliable integrated data.
Differential gene expression analysis was performed using the
processed data, and a total of 246 DEGs were obtained (| log2 FC |
> 1 and adjusted p < 0.05), of which 189 DEGs were upregulated
and 57 were downregulated (Supplementary Table S1). The
volcano plot and heatmap of DEGs were shown respectively in
Figures 2C, D.

3.2 Functional enrichment analysis of DEIGs

We downloaded 2483 IGs from the ImmPort database and
obtained 40 differentially expressed immune-related genes
(DEIGs) through an intersection with 246 DEGs
(Supplementary Table S2). A Venn diagram was used to show
the intersection between the IGs and DEGs (Figure 3A). GO
analysis of DEIGs indicated that, for the biological process (BP),
these genes were mainly involved in cytokine-mediated signaling

pathways, response to bacterial-origin molecules, and response to
lipopolysaccharides. In terms of cellular component (CC), DEIGs
may play critical roles in secretory granule membranes, plasma
membrane outer and inner vesicle membranes. Regarding
molecular function (MF), DEIGs were found to have crucial
roles in immune receptor activity, cytokine receptor activity,
and cytokine binding (Figures 3B, C). In addition, KEGG
pathway enrichment analysis revealed that DEIGs were mainly
enriched in cytokine-cytokine receptor interactions, neutrophil
extracellular trap (NET) formation, and coronavirus disease -
COVID-19 (Figures 3D, E).

3.3 Immune infiltration analysis

To explore the immune microenvironment of IVIG-resistant
patients, we estimated the relative abundance of 22 types of
immune cells using the CIBERSORT algorithm. Figure 4A
showed the composition of the 22 types of immune infiltration
cells in each sample. Figure 4B compared the infiltration
differences of 22 types of immune cells between the IVIG-
resistant group and the IVIG-responsive group. The results
indicated that naïve CD4 T cells and neutrophils were
significantly different between the two groups, with the most
significant difference observed in neutrophil infiltration.

3.4 Construction of weighted gene Co-
expression network

In Figure 5A, the sample clustering tree showed that one
outlier was removed, and 25 samples were retained, of which
13 belonged to the IVIG-resistant group and 12 belonged to the
IVIG-responsive group. We then selected the optimal soft-
thresholding power of 16 to ensure that our gene distribution
conformed to a scale-free network (Figure 5B). Next, WGCNA
analysis yielded the gene dendrogram and module colors and
identified 17 modules in this study (Figure 5C). After analyzing
the correlation of each module with the 22 infiltrating immune
cells, the blue module was found to possess the highest positive
correlation with neutrophils and presented the highest score of
total scores in the plot of the module-trait relationship
(Figure 5D). Figure 5E illustrated the significant correlation
(cor = 0.84, P < 1e-200) between gene significance (GS) and
module membership (MM) in the blue module, indicating that
the genes highly associated with neutrophils were also important
elements in this blue module, thus they were suitable for further
analysis.

3.5 Functional enrichment analysis of
DENGs

A total of 743 genes were contained in the blue module
(Supplementary Table S3). Through the intersection between
genes in the blue module and DEIGs, we identified
34 differentially expressed neutrophil-related genes (DENGs)
(Figure 6A). GO and KEGG analyses were performed to

FIGURE 4
Immune infiltration analysis based on the CIBERSORT algorithm.
(A) The heatmap of the enrichment fraction of 22 types of infiltrating
immune cells in each sample. (B) The box plot of 22 types of immune
infiltrating cells in the IVIG-resistant group and the IVIG-
responsive group.

Frontiers in Molecular Biosciences frontiersin.org07

Wang et al. 10.3389/fmolb.2023.1182512

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1182512


explore relevant molecular biological functions and pathways of
these 34 DENGs. GO analysis showed that the BPs of these genes
were mainly involved in cytokine-mediated signaling pathways,
response to bacterial-origin molecules, and positive regulation of
cytosolic calcium ion concentration (Figures 6B, C). The CCs of
these genes were mostly in the area of secretory granule
membrane, lactotransferrin-1-containing granule, and
endocytic vesicle membrane (Figures 6D, E). The MFs of these
genes were significantly enriched in immune receptor activity,
cytokine receptor activity, and cytokine binding (Figures 6F, G).
KEGG analysis indicated that the 34 DENGs were significantly
related to immune pathways, such as cytokine-cytokine receptor

interaction, neutrophil extracellular trap formation, and
coronavirus disease - COVID-19 (Figure 6H).

3.6 Construction of protein-protein
interaction network and identification of
hub genes

A protein-protein interaction (PPI) network of the obtained
DENGs was constructed by the STRING database (Figure 7A). We
visualized the PPI network through Cytoscape software and
identified hub genes in the PPI network using the MCODE

FIGURE 5
Identification of the gene modules related to infiltrating immune cells by WGCNA. (A) Sample clustering of WGCNA to detect abnormal samples. (B)
Selection of soft-thresholding power. The left panel displayed the change of the fitting index of different soft-thresholding powers; the right panel
displayed themean connectivity corresponding to different soft-thresholding powers. (C)Hierarchical clustering dendrogram of identified co-expressed
genes. Different colors reflected the corresponding modules, and the gray module indicated that the genes were not assigned to any module. (D)
The heatmap of the relationship between each gene module and each immune cell. The red represented a positive correlation, while the green
represented a negative correlation. (E) Scatterplot of gene significance (GS) for neutrophil vs. module membership (MM) in the blue modules.
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plugin (Figures 7B, C). Finally, six hub genes were identified, namely
TLR8, CXCR1, HCK, AQP9, FPR2, and IL1R2.

3.7 ROC curve analysis

The diagnostic performance of the identified hub genes for IVIG
resistance was evaluated by ROC curve analysis in GSE48498 and
GSE16797 two datasets separately (Figures 8A, B).We considered an
AUC > 0.7 as the screening criterion for hub genes. As a result, in the
GSE48498 dataset, six hub genes had AUC > 0.7, with TLR8, AQP9,
CXCR1, and FPR2 having AUC > 0.9. In the GSE16797 dataset, six
hub genes also had AUC > 0.7, with only TLR8 and HCK having
AUC > 0.9. Altogether these results suggested that six hub genes
were able to distinguish IVIG-resistant from IVIG-responsive
patients after KD patients were treated with IVIG in both

datasets, so we believed that they could have good diagnostic
value and were considered as potential biomarkers for the
diagnosis of IVIG resistance.

3.8 Correlation analysis between diagnostic
genes and immune cells

For the purpose of better understanding the role of six diagnostic
genes in immune infiltration, we performed Spearman’s correlation
analysis to determine the correlation of hub genes with infiltrating
immune cells. The results showed that six diagnostic genes,
including TLR8, AQP9, CXCR1, FPR2, HCK, and IL1R2, were
significantly positively correlated with neutrophil infiltration,
which could confirm that they were screened from the blue
module related to neutrophils. In addition, these diagnostic genes

FIGURE 6
Acquisition and enrichment analysis of DENGs. (A) Venn diagram of the blue module genes and DEIGs. (B, C) GO chord diagram and GO cluster
diagram of BP of DENGs. (D, E) GO chord diagram and GO cluster diagram of CC of DENGs. (F, G) GO chord diagram and GO cluster diagram of MF of
DENGs. (H) The KEGG enrichment bubble chart of DENGs.
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were negatively correlated with the immune infiltration of naïve
CD4 T cells, resting NK cells, and regulatory T cell (Figure 9).

3.9 Prediction of key TF-, MiRNA-, and drug-
diagnostic gene regulatory network

We used the NetworkAnalyst database to predict the TFs that
may regulate diagnostic genes and generated a TF-diagnostic gene
network (Figure 10A). The network consisted of 4 diagnostic genes
and 34 TFs. Then the NetworkAnalyst database was used to predict
related miRNAs and formed a regulatory network diagram
(Figure 10B). This regulatory network diagram contained
5 diagnostic genes and 24 miRNAs, the most abundant of which
were regulating IL1R2.

Finally, the DGIdb database was utilized and made it possible to
search for potential drugs that might treat IVIG resistance. We
found 36 potential therapeutic drugs and 11 of them were approved
(Figure 10C; Supplementary Table S4). These results helped to
deepen our understanding of the regulatory and intervention

mechanisms of these diagnostic genes and provided clues for
further research.

4 Discussion

Kawasaki disease is an acute self-limiting febrile illness of
unknown etiology that primarily affects children under 5 years of
age (McCrindle et al., 2017). Prompt treatment of KD patients with
IVIG has been shown to reduce the incidence of coronary artery
aneurysms from 25% to less than 5% (Altammar and Lang, 2018).
However, approximately 10%–20% of KD patients experience
persistent or recurrent fever after standard treatment with IVIG
and aspirin (Tremoulet et al., 2008; Tremoulet et al., 2014). Patients
with IVIG resistance are at higher risk of developing coronary artery
aneurysms (Hamada et al., 2019). Risk factors associated with IVIG
resistance include male sex, young age, high C-reactive protein
levels, high neutrophil count, and early presentation, among
others (Lo and Newburger, 2018). Although there are currently
some risk scoring systems that can predict the responsiveness of

FIGURE 7
The construction of the PPI network and the identification of the hub genes. (A) PPI network based on the STRING database. (B) The PPI network was
visualized by Cytoscape software. (C) Screening of clusters of genes that were highly connected using the MCODE algorithm.
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IVIG, they are not so accurate enough that no scoring systems are
universally accepted (Wang et al., 2019). Recent studies have shown
that immune cell infiltration is one of the important factors in the
development of IVIG resistance in KD, but only a few studies have
linked IVIG responsiveness to biomarkers related to the level of
immune cell infiltration (Wu et al., 2020). Therefore, we aimed to
explore the immunogenetic mechanisms of IVIG resistance in KD to
screen for potential diagnostic indicators and signaling pathways in
those patients. This study will help to better understand the
pathogenesis and treatment of IVIG resistance and ultimately
provide patients with more optimal treatment options.

This study explored the differences in immune cell infiltration
between IVIG-resistant and IVIG-responsive patients by the
CIBERSORT algorithm and found that neutrophil infiltration had

significant differences in the degree of infiltration. Similar results
were reported in previous studies, indicating the important role of
neutrophils in the pathogenesis of IVIG resistance. Studies showed
that compared to IVIG-responsive patients, IVIG-resistant patients
had a higher proportion of neutrophils, a higher neutrophil-to-
lymphocyte ratio (NLR), and NLR was also considered to be a
reliable predictor for IVIG resistance (Ha et al., 2020; Y. Chen et al.,
2019; Liu and Wu, 2022). It could be seen that infiltrating immune
cells were closely related to IVIG resistance, and the role of
neutrophils was indispensable in the mechanism.

Next, the gene module with the highest score in the module-trait
relationship diagram was screened through WGCNA analysis, which
was themost correlated with neutrophil expression. By intersecting the
module genes with the DEIGs, 34 DENGs were obtained. KEGG

FIGURE 8
ROC curve of the hub genes. (A) ROC curve of hub genes in the GSE48498. (B) ROC curve of hub genes in the GSE16797.
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enrichment analysis showed that they were mainly concentrated in
pathways such as cytokine-cytokine receptor interaction, neutrophil
extracellular trap formation, and coronavirus disease - COVID-19,
indicating their important biological functions in immune response
and regulation. It is noteworthy that neutrophils contribute to
pathogen clearance by forming neutrophil extracellular traps
(NETs) in a process known as NETosis, but the excessive release of
NETs has been reported to be involved in the pathogenesis of various
diseases, including vasculitis, by inducing tissue injury (Grayson and
Kaplan, 2016). In KD patients, neutrophils increase from the acute
phase and decrease in the recovery phase; studies have shown that NET
formation is enhanced in acute KD patients compared to recovery-
phase KD patients and healthy controls (Yoshida et al., 2020). In
addition, it has been found that neutrophils are significantly increased
in the acute phase of KD patients, and are prone to forming NETs,
which can significantly promote the activation of PI3K/Akt andNF-κB
signaling pathways in peripheral blood mononuclear cells (PBMCs) of
KD patients, leading to upregulation of HIF-1α and VEGF expression
and triggering more severe inflammatory responses (Jing et al., 2020).
This indicates that NETs are one of the mechanisms of Kawasaki
disease, however, whether NETs can distinguish between IVIG-
resistant and IVIG-responsive patients has not been proven by

previous research. Our data analysis results showed that the
expression of neutrophils in the two groups of patients is
significantly different, and the enriched pathway of differentially
expressed genes contained NETs. Therefore, we believed that NET
formation was expected to be an important mechanism of IVIG
resistance. In addition, the pathway of coronavirus disease -
COVID-19 is also closely related to neutrophils. It is reported that
the number of neutrophils is considered as a clinical marker related to
acute respiratory distress syndrome in COVID-19 patients (Oishi et al.,
2022). Moreover, one study has also demonstrated that similar
neutrophilic dysregulation occurs in severe COVID-19 and KD two
pronounced hyperinflammatory states, which plays a crucial role in the
overactivation and defective aging program of granulocytes (Chen KD
et al., 2022). In short, based on the results of the KEGG enrichment
analysis, we could conclude that these genes were more likely to be
involved in neutrophil-related biological activities.

Finally, six hub genes, including TLR8, AQP9, CXCR1, FPR2,
HCK, and IL1R2, were identified from the 34 DENGs by the
MCODE algorithm. These hub genes may serve as diagnostic
biomarkers for distinguishing IVIG-resistant patients from IVIG-
responsive patients based on ROC curve analysis. Further
investigation was conducted to explore the functions of each hub

FIGURE 9
The correlation between diagnostic genes and infiltrating immune cells.
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gene. TLR8, a member of the Toll-like receptor (TLR) family, is an
intracellular type I transmembrane protein primarily expressed in
human monocytes, macrophages, and neutrophils (Cai and Hu,
2022). Studies have indicated that TLR8 expression increases as a
marker of M2 macrophages during the acute phase of KD (Guo
et al., 2020). Aquaporins (AQPs) are transmembrane channels
essential for water, energy, and redox homeostasis, with proven
involvement in various pathophysiological conditions. AQP9 has
been reported to be upregulated in patients with systemic
inflammatory response syndrome compared to healthy
individuals, and this is attributed to the functional impact of
AQP9 on F-actin polymerization, leading to changes in the
morphology and function of neutrophils (da Silva et al., 2022).
CXC chemokine receptor-1 (CXCR1) is a representative chemokine
receptor that initiates the neutrophil-mediated immune response
pathway through its association with its homologous chemokine
interleukin-8 (IL-8 or CXCL8) and can control the migration of
neutrophils to infected tissues (Kharche et al., 2021). The formyl
peptide receptors (FPRs) are G protein-coupled receptors, and
formyl peptides act on FPR1 and FPR2, transducing chemotactic
signals in phagocytes, and mediating host-defense as well as
inflammatory responses including cell adhesion, directed
migration, granule release, and superoxide production (He and
Ye, 2017). It has been shown that the expression of FPR2 in the
KD group is significantly higher than that in the healthy control

group, and the increase in FPR2 levels may be involved in the
regulation of the in vivo balance of the immune system (Wang Y
et al., 2022). Hematopoietic cell kinase (HCK) is a member of the Src
family of non-receptor tyrosine kinases, which plays a critical role in
neutrophil phagocytosis (Cheng et al., 2022). Studies have shown
that HCK is a significantly upregulated hub gene in KD, but its
specific mechanism of action is not yet clear (Cai and Hu, 2022).
Interleukin-1 receptor type II (IL1R2) is a member of the
interleukin-1 (IL-1) receptor family and is abnormally expressed
in many inflammatory diseases (Chen Q et al., 2022). Studies have
shown that IL1R2 is upregulated in IVIG-resistant KD, which is
consistent with our research conclusion (Geng et al., 2020). Seen
from the above gene functions, they are all related to the body’s
immune response and are highly correlated with neutrophils.
This was also confirmed by Spearman’s correlation analysis in
our study.

What’s more, we predicted the TFs and miRNAs that regulate
the hub genes through the NetworkAnalyst database, then searched
for potential therapeutic drugs by the DGIdb database, to further
explore the regulatory mechanisms and intervention methods of
these hub genes. Because these results were derived from
continuously updated resources from papers, databases, and web
resources that can provide directions for further research, the
reliability of some of these predicted molecules will require
experimental proof.

FIGURE 10
TF-, miRNA-, and drug-gene network of the diagnostic genes. (A) The TF network of HCK, IL1R2, AQP9, and FPR2. (B) ThemiRNA network of CXCR1,
HCK, IL1R2, AQP9, and FPR2. (C) The drug-gene network of six diagnostic genes.
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Despite yielding interesting results, there are some limitations in
our study. Firstly, this study covered a relatively small sample size,
and a larger sample cohort is needed to confirm the research results.
Secondly, the lack of experimental validation may affect the accuracy
of the study, so further experiments are needed to verify the
biological mechanisms and treatment response. In addition, since
our study only analyzed samples of KD patients who developed
resistance or response to IVIG after use, it cannot be inferred that
these genes can be used as diagnostic genes for IVIG resistance
before treatment. Therefore, adopting KD patient samples that have
already been diagnosed with IVIG resistance or response and
analyzing their genes before IVIG use may help to identify IVIG
resistance earlier and improve treatment plans as soon as possible.

All in all, the results of this study suggest new clues for the
potential pathogenesis of IVIG resistance and provide valuable
insights into the diagnosis and treatment of IVIG resistance.
Previous studies have shown that the percentage of neutrophils
in leukocytes, percentage of polymorphonuclear neutrophils,
peripheral blood neutrophil-to-lymphocyte ratio, and neutrophil
activation rate are higher in the IVIG-resistant group relative to the
IVIG-responsive group (Sato et al., 2013; Kawamura et al., 2016;
Kim, Song, and Kim, 2018; Ko et al., 2019). Our study found that
immune pathways involved in hub genes, such as the formation of
neutrophil extracellular traps, were more likely to result in IVIG
resistance. And these hub genes, TLR8, AQP9, CXCR1, FPR2, HCK,
and IL1R2, verified to be more or less associated with neutrophils,
were possible to lead to IVIG resistance in KD. Therefore, our results
corroborated previous literature and no longer stopped at clinical
indicators, but explored more deeply at the genetic level. We
believed that they may serve in the future as a more in-depth
complement to the diagnostic model of IVIG resistance clinical
indicators and important therapeutic targets that may help to reduce
the incidence of coronary artery abnormalities and to improve the
quality of life of KD patients.

5 Conclusion

In this study, we investigated potential signaling pathways and
hub genes associated with immune infiltration involved in IVIG
resistance, and the final identified hub genes included TLR8, AQP9,
CXCR1, FPR2, HCK, and IL1R2. Additionally, we found that these
signaling pathways and hub genes were closely related to
neutrophils, which was confirmed by previous studies and
Spearman’s correlation analysis in our study. And six hub genes
were validated that they could serve as reliable diagnostic
biomarkers for IVIG resistance. Finally, their related TFs,
miRNAs, and targeted drugs were predicted, which would
provide new ideas and methods for further understanding the
mechanism of IVIG resistance and help develop treatment
strategies.
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