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The tRNA adaptation index (tAI) is a translation efficiency metric that considers
weighted values (Sij values) for codon–tRNA wobble interaction efficiencies. The
initial implementation of the tAI had significant flaws. For instance, generated Sij
weights were optimized based on gene expression in Saccharomyces cerevisiae,
which is expected to vary among different species. Consequently, a species-specific
approach (stAI) was developed to overcome those limitations. However, the stAI
method employed a hill climbing algorithm to optimize the Sij weights, which is not
ideal for obtaining the best set of Sijweights because it could struggle to find the global
maximumgiven acomplex search space, even after usingdifferent startingpositions. In
addition, it did not performwell in computing the tAI of fungal genomes in comparison
with the original implementation. We developed a novel approach named genetic tAI
(gtAI) implemented as a Python package (https://github.com/AliYoussef96/gtAI),
which employs a genetic algorithm to obtain the best set of Sij weights and follows
a new codon usage-based workflow that better computes the tAI of genomes from
the three domains of life. The gtAI has significantly improved the correlation with the
codon adaptation index (CAI) and the prediction of protein abundance (empirical data)
compared to the stAI.
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1 Introduction

Grantham et al. (1980) highlighted the unequal usage of synonymous codons among
different genes and genomes in a phenomenon currently known as codon usage bias (CUB).
Thenceforward, scientists were investigating the effect of synonymous mutations on the
efficiency/accuracy of protein translation and several biological processes ranging from RNA
processing to protein folding and their potential consequences on the overall performance and
evolution of living organisms (Chamary et al., 2006; Plotkin and Kudla, 2011). Codon usage is
positively associated with the analogous tRNA in a species—the tRNA pool determines the
available amino acid used during the protein extension process. Therefore, protein expression
and translation efficiency are highly associated with CUB (Karlin et al., 2001; Gustafsson et al.,
2004). Accordingly, codons with high occurrence in a gene (putative optimal codons) improve
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the protein translation rate, and rare codons will cause a reduction in
the translation and might cause translation errors (Ikemura, 1981).

In biotechnology studies, heterologous expression was applied to
assemble vaccines and pharmaceuticals (Han et al., 2010; Liu et al., 2018).
Codon optimization was proposed to increase heterologous gene
expression (Quax et al., 2015; Brandis and Hughes, 2016; Fu et al.,
2020). Many studies reported the success of the codon optimization
approach to upregulate gene expression up to 1,000-fold (Quax et al.,
2015). Several software tools are used for codon optimization and are
patented to serve commercial purposes such as GenSmart Design
(https://www.genscript.com/gene-and-plasmid-construct-design.html)
and GENEWIZ (https://www.genewiz.com/en-GB/Public/Services/
Gene-Synthesis/codon-optimization). A number of codon
optimization algorithms are not open-source (Satya et al., 2003;
Huang et al., 2021) or should be requested from the authors
(Fuglsang, 2003). Regardless of their availability, many of those
protein expression optimization software tools are based on the
tRNA adaptation index (tAI) (Gould et al., 2014; Watts et al., 2021;
Raguin et al., 2023) and codon adaptation index (CAI) (Fu et al., 2020).
Many indices were developed tomeasure the degree of preference for the
unbalanced use of codons. Some are codon-specific such as relative
synonymous codon usage (RSCU), and others are gene-specific such as
the effective number of codons (ENc) (Wright, 1990; Sun et al., 2013)
and CAI (Sharp and Li, 1987). A relatively new index named tAI was
introduced by dos Reis et al. (2004) to become a formalmeasure for CUB
associated with translational selection. The tRNA presents a
complementary anticodon for an amino acid to be incorporated into
the growing polypeptide chain during the translation process. The
codon–anticodon interactions at the first two codon positions are
governed solely by canonical (Watson–Crick) base pairing rules,
unlike the third codon position at which non-canonical (wobble)
base pairing also occurs (Crick, 1966). The tAI considers weights for
canonical and wobble interaction efficiencies between codons and tRNA
molecules. To compute the tAI, first, the absolute adaptiveness value
(Wi) for codon i is calculated by the following equation:

Wi � ∑nj
j�1

1 − Sij( )tGNCij, (1)

where nj is the number of tRNA isoacceptors that can recognize
the ith codon, Sij is the codon–anticodon coupling efficiency having
values ranging from 0 (perfect interaction) to 1 (weak interaction)
(dos Reis et al., 2004), and tGNCij is the gene copy number of the jth
anticodon that can recognize the ith codon.

Then, eachWi is normalized to themaximumWi value to obtain the
relative adaptiveness value (wi). Finally, the tAI of a gene can be defined as
the geometric mean of the wi values of its codons (dos Reis et al., 2004):

tAIg � exp
1

Otot
∑
i∈I

logwi
⎛⎝ ⎞⎠, (2)

where Otot is the frequency of the total codons.
The Sijweights inferred by the original tAI (otAI) implementation

were based on optimizing the correlation between tAI (Eq. 1) and gene
expression levels in Saccharomyces cerevisiae using the Nelder–Mead
method under the assumption that highly expressed genes contain
codons with higher adaptation to the tRNA pool (driven by the force
of translational selection). In a study by Dana and Tuller (2014), two
problems are associated with the original tAI implementation. First, it

depends on gene expression information, often unavailable for many
organisms (especially novel ones). Second, generated weights were
specific for Saccharomyces cerevisiae. They suggested the possibility
that wobble interaction efficiencies shall differ significantly among
genomes from different domains. So, it would not be plausible to use
the weights specifically for Saccharomyces cerevisiae to compute the
tAI of other organisms. Consequently, they developed the species-
specific tAI (stAI) (Sabi and Tuller, 2014) to solve these problems.

The inferred stAI weights are based on optimizing the
correlation between the tAI (Eq. 1) and a CUB index, namely,
directional codon bias score (a modified version of relative CUB
(Oymondal et al., 2009)) using the hill climbing algorithm under the
assumption that highly expressed genes have higher adaptation to
the tRNA pool and higher CUB (Sabi and Tuller, 2014). This
eliminates the need for additional gene expression data and
generates weights specific to the tested organism, indicating the
value of stAI in tAI computation, especially for non-fungal species.
However, two limitations in the stAI are as follows: 1) using the hill
climbing optimization method by which only local maxima can be
reached and often gets stuck in ridges and plateau scenarios
(Thengade and Dondal, 2012); hence, the best set of Sij weights
may not be obtained even after using different starting positions
(random restart) (Russell and Norvig, 2010; Yang, 2014); 2) the
outperformance of the original tAI over the stAI in predicting the
protein abundance (PA) of fungal organisms (Sabi and Tuller, 2014).

Here, we introduce a novel approach for tAI computation, namely,
genetic tAI (gtAI), to solve the problems associated with the stAI,
which affect its performance. The gtAI uses a genetic algorithm to
reach the global maximum (best set of Sij weights), solving the issue of
obtaining a meaningful set of Sij weights for each organism. It also
utilizes robust CUB indices (ENc and RSCU) different from the
directional codon bias score (DCBS) employed by the stAI.

2 Materials and methods

2.1 Establishing a reference set of genes
using the effective number of codons

A reference set of genes is defined as a set of genes with the
highest expression levels in a genome, such as ribosomal genes and
translation elongation factors (Duret, 2000; Ghaemmaghami et al.,
2003; Goetz and Fuglsang, 2005). The ENc is a widely used measure
of CUB at the gene level, and in theory, it negatively correlates with
gene expression (Sun et al., 2013). Given the assumption that highly
expressed genes are highly biased (Sabi and Tuller, 2014), a reference
set is obtained by selecting genes with the lowest ENc values (highest
expression) in the tested genome. The ENc is calculated using the
equations of the improved ENc implementation by Sun et al. (2013):

ENc � Ns +
K2∑k2

j nj∑k2
j�1 njFCF.j( ) +

K3∑k3
j nj∑k3

j�1 njFCF.j( ) +
K4∑k4

j nj∑k4
j�1 njFCF.j( ), (3)

whereNS is the number of codon families with a single codon. Ki

is the number of i-fold codon families. In addition, FCF. j is FCF for
family j obtained from the following equation:

FCF � ∑m
i�1

ni + 1
n +m

( )2

, (4)

Frontiers in Molecular Biosciences frontiersin.org02

Anwar et al. 10.3389/fmolb.2023.1218518

https://www.genscript.com/gene-and-plasmid-construct-design.html
https://www.genewiz.com/en-GB/Public/Services/Gene-Synthesis/codon-optimization
https://www.genewiz.com/en-GB/Public/Services/Gene-Synthesis/codon-optimization
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1218518


where ni is the count of codon i in the codon family of m
synonymous codons.

2.2 Calculating the relative synonymous
codon usage for the reference set

The RSCU is a codon-specific CUB measurement defined as the
ratio of the observed to the expected frequency of codons, under the
null hypothesis that all synonymous codons for a particular amino
acid are used equally (Sharp and Li, 1986). It gives an accurate value
for each amino acid codon ranging from 0 to the number of
synonymous codons for that amino acid. The RSCU values for
the reference set are calculated using the following equation:

RSCU � Oac
1
ka

∑
c∈Ca

Oac
, (5)

where Oac is the count of codon c for the amino acid a and ka is
the number of synonymous codons in the amino acid a family.

2.3 Sij weight inference by the genetic
algorithm

Since highly expressed genes are influenced by translational
selection to include more codons with higher adaptation to the
intracellular tRNA pool (i.e., optimal codons) (Sabi and Tuller,
2014), we expect to find a correlation between RSCU (Eq. 5) and
absolute adaptiveness (Wi) values (Eq. 1). Therefore, we inferred
unique Sij weights for each organism by optimizing the non-
parametric (Spearman’s rank) correlation between RSCU (of the
reference set) andWi values using a genetic algorithm (https://pypi.
org/project/gaft/). It should be noted that the correlation between
RSCU and Wi is at the level of codons.

The genetic algorithm is a metaheuristic search approach
inspired by the Darwinian principle of survival of the fittest. It
will search for the best Sij weights that maximize the correlation
between RSCU and Wi while operating in Algorithm 1

Input: Genome coding sequences

Initialize S, vector of the initial population as

chromosomes (Sij sets) with random Sij values (genes)

Generation time = n;

For s in S do

Evaluate fitness function(s);

n + = 1

IntialLabel;

Test:

Selection(s) where Sij sets that exhibit higher

correlation between RSCU and Wi;

Do:

Crossover(s);

Mutation(s);

Evaluate fitness function(s);

If n = Generation time, then

Output = Best fitness(s);

Else

Go to IntialLabel

Output: the best set of Sij weights + tAI values

Algorithm 1. The genetic algorithm operates to optimize the Sij weights

used to calculate the tAI values.

Then, the best set of Sij weights will be used to compute the tAI
values using Eqs. 1, 2 (Sabi and Tuller, 2014).

2.4 Genomic data collection

The coding sequences of 12 organisms (Ferroglobus placidus,
Halomicrobium mukohataei, Methanocaldococcus jannaschii,
Escherichia coli, Neisseria meningitides, Vibrio cholera, Caenorhabditis
elegans, Drosophila melanogaster, Aspergillus fumigatus, Aspergillus
nidulans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe)
used in this study as representatives of different domains were retrieved
from NCBI (https://www.ncbi.nlm.nih.gov/genome/) in the FASTA
format. Their tRNA gene copy numbers were obtained from
GtRNAdb (Chan and Lowe, 2009). All information about the used
organisms can be found in Supplementary Table S1.

2.5 CAI and the original tAI indices’
calculation

The CAI was calculated using a Python package (Lee, 2018). In
addition, the original tAI was calculated using a Python code
developed by the authors (the same used to calculate the tAI in
the gtAI package) using the Sij weights found in the original study
(Sabi and Tuller, 2014).

2.6 Protein abundance data collection

To test to what extent gtAI correlates with empirical data such as
PA compared to the otAI and stAI, the PA data of E. coli, C. elegans,
D. melanogaster, S. cerevisiae, and S. pombe were retrieved from
PaxDB. The integrated PaxDB version (highest coverage) was used
for all the organisms (version 4.1) (Wang et al., 2015). These
organisms were chosen due to the availability of their PA data.

2.7 The impact of generation time and
population size parameter choice on gtAI
result reproducibility

First, we investigated the effect of the population size parameter
on the gtAI result. Three random organisms were selected from the
12 used in this study (S. cerevisiae, E. coli, and H. mukohataei). For
each organism, the non-parametric (Spearman) correlation between
RSCU (of the reference set) and Wi values were optimized by the
genetic algorithm used in gtAI calculation. We chose a constant
generation time equal to 100 and different population sizes (10, 20,
30, n + 10 . . . , 100). Hence, each organism was optimized 10 times,
each with a different population size to compare the best solution
between each population size (inter-variability). This experiment
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was performed for each organism five times to reach the best
solution within the same population size and for the same
organism between different experiments (intra-variability). Then,
we tested the best solution for selecting the suitable generation time
by applying 1,000 generations on the same three organisms, with a
constant population size equal to 60. Finally, we plotted the solutions
from generation 1 to 1,000.

3 Results

3.1 CAI correlations with gtAI, stAI, and otAI

TheWilliams’ test was used to compare the rho values at an alpha
score of 0.01 (two-sided test). The gtAI values for H. mukohataei,M.
jannaschii, E. coli, N. meningitidis, D. melanogaster, A. nidulans, S.
pombe, A. fumigatus, and S. cerevisiae (9 out of 12) revealed a
statistically significant (Williams’ test p value <0.01) higher
correlation with CAI than stAI (Table 1). Moreover, the gtAI in all
the fungal organisms showed a higher considerable correlation
(A. nidulans, S. pombe, A. fumigatus, and S. cerevisiae) with the
CAI than the original tAI (Supplementary Tables S1–S4).

3.2 Repeated random sampling and
correlations with the CAI

First, we calculated the gtAI, stAI, and CAI values for the genes of all
tested organisms. Then, for each replicate (1,000 replicates with

replacement), we sampled a 25% random sample size from the
values of these measures for the Spearman’s rank correlation
analyses. This is to make sure that the reference set of genes present
among other genes is not causing inflated gtAI-CAI correlations. The
rep_sample_nR function from the infer packagewas used in the random
sampling (https://www.rdocumentation.org/packages/infer/versions/1.0.
4/topics/rep_sample_n). It does not specify a particular distribution type
to be used but rather allows for repeated sampling of data from a
specified data frame. The script of this random sampling method could
be found here (https://github.com/AliYoussef96/gtAI/blob/master/
random%20sampling.r).

The result showed that the gtAI exhibited stronger correlations
for the same nine organisms compared to the stAI. Furthermore, a
stronger correlation with the CAI in the four fungal organisms
compared to the otAI is shown (Figure 1).

3.3 SCUO correlations with gtAI, stAI, and
otAI

The SCUO is a codon usage index that does not involve the use
of a reference set in its calculation (Wan et al., 2004). The gtAI, stAI,
otAI, and SCUO values were calculated for all 12 organisms. The
gtAI has outperformed both stAI and otAI by exhibiting a stronger
statistically significant correlation with SCUO in eight organisms
consistent with CAI association results except in E. coli, and the
gtAI-SCUO and stAI-SCUO correlations are 0.26 and 0.27,
respectively (Table 2). A two-sided Williams’ test was used to
compare the rho values at an alpha score of 0.01.

TABLE 1 Spearman’s rank correlation analysis between CAI and the three tAI measurements (original tAI, stAI, and gtAI) for the 12 model organisms and their
average GC content and ENc values.

gtAI-CAI (rho) stAI-CAI (rho) tAI-CAI (rho) GC content (%) ENc

Archaea

Ferroglobus placidus 0.46* 0.48* - 44.1 44.81

Halomicrobium mukohataei 0.61* 0.41* - 65.5 34.26

Methanocaldococcus jannaschii 0.23* 0.14* - 31.4 37.92

Bacteria

Escherichia coli 0.83* 0.82* - 50.8 39.09

Neisseria meningitidis 0.9* 0.67* - 51.8 36.89

Vibrio cholera 0.78* 0.8* - 48.1 41.76

Eukarya (non-fungal)

Caenorhabditis elegans 0.8* 0.82* - 35.4 42.02

Drosophila melanogaster 0.89* 0.74* - 42.0 38.69

Eukarya (fungal)

Aspergillus fumigatus 0.91* 0.78* 0.82* 49.5 40.64

Aspergillus nidulans 0.94* 0.29* 0.91* 50.1 41.57

Saccharomyces cerevisiae 0.94* 0.56* 0.87* 38.2 36.42

Schizosaccharomyces pombe 0.88* 0.56* 0.84* 36 40.32

* represents p value <0.001.
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3.4 The gtAI correlates better with PA data
than stAI and CAI in both fungal and non-
fungal organisms

The Williams’ test was used to compare the rho values at an
alpha score of 0.01 (two-sided test). For C. elegans, D. melanogaster,
S. pombe, S. cerevisiae, and E. coli, the gtAI showed a higher
statistically significant correlation with PA than the stAI and CAI
(Williams’ test p value <0.01). Furthermore, the gtAI exhibits a
higher statistically significant correlation with PA in E. coli than the
original tAI (Williams’ test p value <0.01). On the other hand, the
original tAI predicted the PA of fungal organisms better than the
gtAI and stAI, which is expected as it used experimental microarray
data from yeast to obtain an optimal set of Sij values that maximizes
the correlation between expression levels and tAI values

(dos Reis et al., 2004). Consequently, the gtAI is a valuable tool
as it improves the prediction of PA in many organisms (Table 3).

3.5 The absolute adaptiveness values
generated by the gtAI reflect the
evolutionary proximity

The absolute adaptiveness (Wi) values of a codon depend on
both the efficacy of codon–anticodon interaction (Sij values) and the
abundance of tRNA available for that codon. The number of tRNA
genes and their abundance are diverse among the three domains of
life (Fujishima and Kanai, 2014). Therefore, in theory, Wi should
explain the divergence of organisms from different domains. To
examine whether theWi calculated using Sij values generated by the

FIGURE 1
Repeated Spearman’s rank correlation analysis between gtAI-CAI, stAI-CAI, and otAI-CAI for randomly sampled values. The gtAI, stAI, and CAI values
for each organism (the 12 used in the study) were randomly sampled with size 25%, and 1,000 replicates with replacement have been taken. Spearman’s
rank correlation analysis between gtAI-CAI, stAI-CAI, and otAI-CAI for each replicate was applied. The line plot shows the rho values for each replicate,
and the box plots show the distributions. (A) Three archaea organisms being tested in this study, (B) the three bacterial organisms, (C) two eukaryotic
(non-fungal) organisms, and (D) four eukarya (fungal) organisms. The color code is red for gtAI-CAI correlation results, gray for stAI-CAI correlation
results, and green for the original tAI (otAI)-CAI correlation results.
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gtAI are biologically meaningful, a hierarchical clustering on
principal component (HCPC) analysis of Wi values was
performed. The clustering classified all 12 model organisms used
in the study into three distinct groups (Figure 2).

3.6 The effect of population size on gtAI
result reproducibility

The inter-variability resulting from changing the population
size in the three organisms was extremely low. For S. cerevisiae,
E. coli, and H. mukohataei, the average best solution in the five
experiments (the optimization of the non-parametric Spearman
correlation between RSCU and Wi values) ranged from 0.8109 to
0.8134 (SD = from 0.0016 to 0.0031), from 0.6017 to 0.6022

(SD = from 0.001 to 0.0023), and from 0.4287 to 0.4308 (SD =
from 0 to 0.0067), respectively. Then, the coefficient of variation
(CV) for the same population size (10, 20, 30, n + 10, . . . , 100) was
computed from the results of the five performed experiments for
each organism. S. cerevisiae showed CV ranging from 0.00057 to
0.0042, E. coli ranging from 0.0012 to 0.0036, and H. mukohataei
ranging from 0 to 0.0223. The coefficient of variation (CV) shows
the extent of variability to the population’s mean. Therefore, as the
variability decreases, the CV approaches zero. The CV values for
the tested genomes showed an extremely low intra-variability,
approximately equal to zero CV. Therefore, the inter-variability
and intra-variability resulting from choosing different population
sizes in the gtAI algorithm will not influence the reproducibility of
the results. However, we recommend choosing a constant
population size for the whole analysis.

TABLE 2 Spearman’s rank correlation analysis between SCUO and the three tAI measurements (original tAI, stAI, and gtAI) for the 12 model organisms.

gtAI-SCUO (rho) stAI-SCUO (rho) tAI-SCUO (rho)

Archaea

Ferroglobus placidus 0.22* 0.24* -

Halomicrobium mukohataei 0.45* 0.27* -

Methanocaldococcus jannaschii 0.2* −0.03 -

Bacteria

Escherichia coli 0.26* 0.27* -

Neisseria meningitidis 0.4* 0.22* -

Vibrio cholera 0.27* 0.28* -

Eukarya (non-fungal)

Caenorhabditis elegans 0.26* 0.23* -

Drosophila melanogaster 0.6* 0.5* -

Eukarya (fungal)

Aspergillus fumigatus 0.59* 0.49* 0.52*

Aspergillus nidulans 0.48* 0.25* 0.45*

Saccharomyces cerevisiae 0.41* 0.27* 0.36*

Schizosaccharomyces pombe 0.22* 0.22* 0.20*

* represents p value <0.001.

TABLE 3 Spearman’s rank correlation analysis between PA and the three tAI measurements.

gtAI-PA (rho) stAI-PA (rho) tAI-PA (rho) CAI-PA (rho)

Caenorhabditis elegans 0.38* 0.36* - 0.28*

Drosophila melanogaster 0.48* 0.44* - 0.33*

Escherichia coli 0.54* 0.53* 0.5* 0.52*

Saccharomyces cerevisiae 0.50* 0.49* 0.56* 0.49*

Schizosaccharomyces pombe 0.61* 0.54* 0.62* 0.53*

* represents p value <0.001.
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3.7 The effect of generation time on gtAI
result reproducibility

At generation time 100 and higher, the solution was constant or
had shallow changes (Figure 3). Therefore, we recommend using a
generation time of 100 or higher, but a constant generation time
must be selected for the whole analysis.

4 Discussion

The tAI is a formal measure of the force of translational
selection. It has been widely employed to investigate fundamental
questions related to gene expression, molecular evolution, and
virus–host adaptation (Sharp et al., 2005; Man and Pilpel, 2007;
Goodman et al., 2013; Pechmann and Frydman, 2013; Sabi and

FIGURE 2
Hierarchical clustering on principal component (HCPC) analysis based on the absolute adaptiveness values (Wi) of the 12 model organisms. The
x-axis and y-axis represent the first and second principal components (Dim1 andDim2), respectively (the clusteringwas performed usingWard’smethod).

FIGURE 3
Impact of selecting different generation times for the genetic algorithm on gtAI results. The figure shows the best solutions after applying
1,000 generations in Saccharomyces cerevisiae (green line), Escherichia coli (blue line), and Halomicrobiummukohataei (red line). The y-axis represents
the best solutions for optimizing the non-parametric (Spearman) correlation between RSCU (of the reference set) andWi values at each generation. The
x-axis represents the generation number—the vertical black line represents the generation time number 100 (the default generation time in the gtAI
package).
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Tuller, 2014). Due to its importance, we were motivated to improve
its performance by solving the issues of previous methods used for
its calculation. We evaluated our proposed method mainly by
examining whether it correlates better with other well-established
codon usage indices. In addition, it shows a better association with
empirical PA data.

The CAI is a gene-specific CUB index (Sharp and Li, 1987).
Many studies suggested that the CAI is a good predictor of gene
expression at mRNA and protein levels and has been used in many
studies as a reference index to compare new indices and methods
(Carbone et al., 2003; Sun et al., 2013; Fu et al., 2020). Accordingly,
we conducted a comparative analysis on 12 model organisms
(Supplementary Table S1) to evaluate the performance of the
gtAI method compared to the original tAI and stAI
(Supplementary Tables S2–S5) by examining whether it
correlates better with the CAI using Spearman’s rank
correlation analysis. The gtAI managed to outperform both
methods by exhibiting a stronger significant correlation in 9 out
of 12 model organisms with the CAI.

Attempting to explain the reason behind the better association
of the stAI with the CAI than the gtAI in F. placidus, V. cholera, and
C. elegans revealed a notable conclusion. These three organisms
showed the highest ENc (low CUB) average value within their
domains. For example, the average ENc value of the reference set
for F. placidus was 44.8, while in H. mukohataei and M. jannaschii,
the ENc values were 34.25 and 37.91, respectively. The same trend
was observed in the bacterial group, as the average ENc value for V.
cholerawas 41.83, 39.08 for E. coli, and 37.08 forN. meningitidis. For
non-fungal eukaryotes, C. elegans exhibited a 42.02 average ENc
value, while 38.69 for D. melanogaster. This shows one limitation in
our approach which can be attributed to organisms with overall
weak CUB. It slightly influenced the result of the gtAI leading to the
better correlation of stAI in these organisms. Furthermore, insights
into the relation between GC content and gtAI performance have
revealed that the change in GC content could not explain the slight
outperformance of the stAI over the gtAI in terms of correlation
with the CAI except in archaeal genomes. To embark on, in non-
fungal eukaryotes, though C. elegans has an average GC content of
35.4%, indicating a possible strong bias against GC-rich codons, it
showed an overall relatively weak bias (ENc = 42.02) which resulted
in the slight underperformance of gtAI compared to stAI.
Additionally, though D. melanogaster has a relatively higher GC
content of 42.0% (closer to 50%), indicating relatively weaker bias, it
showed an overall relatively stronger bias (ENc = 38.69) than C.
elegans. Meanwhile, in Archaea, it is notable that the change in their
overall bias is consistent with their deviation from the 50% GC
content. In other words, the archaeal genome that showed an
underperformance of gtAI (F. placidus) has an average GC
content of 44.1% which is the closest to 50% compared to the
other two archaeal genomes of 31.4% and 65.5%, as well as the
highest ENc value of 44.8 compared to the other two of 34.25 and
37.91. Without regard to this limitation, the results (Table 1) suggest
that the gtAI method performance was better for Sij value
optimization, giving a more reliable tAI value that better
demonstrates the effect of translational selection.

One can argue that the correlation between the gtAI and CAI
might be inflated due to using the same reference set of genes.
Hence, we conducted two more analyses to test it. In the first one,

we obtained multiple random samples of CAI and the three tAI
indices’ values and performed Spearman’s rank correlation
analysis between each of them with the CAI. The results
remained the same and agreed with our conclusion as the gtAI
showed a stronger correlation with the CAI than the stAI in the
same nine organisms. In addition, a higher correlation with the
CAI than the original tAI in the four fungal organisms was shown.
In the second analysis, we investigated whether gtAI correlates
better with another CUB index that is independent of using a
reference set of genes in its calculation, namely, SCUO (to exclude
the reference set parameter). The results also revealed a stronger
gtAI association with SCUO, further confirming that the
correlation between the gtAI and CAI is not inflated nor
affected by the reference set of genes.

In conclusion, our gtAI method can solve the query of Sij value
optimization and effectively estimate the tAI values while
overcoming the limitations observed in other implementations.
Performance evaluation showed that the gtAI method performed
better than the original tAI and stAI by exhibiting a stronger
correlation with the CAI and SCUO. It has also improved the
prediction of PA compared to the stAI and CAI. The
reproducibility of the genetic algorithm employed by the gtAI
was tested and revealed its reliability in reaching the best
solution in complex optimization problems. The Wi values
generated by the gtAI correctly reflect the evolutionary proximity
between organisms from different domains of life. Indeed, one
significant advantage of CUB-dependent tAI computation
methods (i.e., gtAI and stAI) over the original tAI is the lack of
neediness for external information such as gene expression data or
mRNA levels (which are often unavailable for most genomes). We
believe that the gtAI will allow for obtaining higher quality tAI
results used to draw conclusions about the force of translational
selection acting on genes in related studies.
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