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Hyperglycemia triggers pathological pathways leading to fibrosis, where
extracellular matrix (ECM) components are accumulated. We investigated the
potential of endotrophin, a pro-fibrotic molecule generated during collagen type
VI formation, as a risk marker for complications to type 1 diabetes. Endotrophin
was measured in serum and urine from 1,468 persons with type 1 diabetes.
Outcomes included a composite kidney endpoint, first major adverse
cardiovascular event (MACE), all-cause mortality, progression of albuminuria,
incident heart failure, and sight-threatening diabetic eye disease. Cox
proportional hazards models adjusted for conventional risk factors were
applied. A doubling of serum endotrophin was independently associated with
the kidney endpoint (n = 30/1,462; hazard ratio 3.39 [95% CI: 1.98–5.82]), all-
cause mortality (n = 93/1,468; 1.44 [1.03–2.0]), and progression of albuminuria
(n = 80/1,359; 1.82 [1.32–2.52]), but not with first MACE, heart failure, or sight-
threatening diabetic eye disease after adjustment. Urinary endotrophin was not
associated with any outcome after adjustment. Serum endotrophin was a risk
marker for mortality and kidney complications in type 1 diabetes. Biomarkers of
ECM remodeling, such as serum endotrophin, may identify persons with active
pro-fibrotic processes at risk for complications in diabetes and where antifibrotic
agents may reduce this risk.
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Introduction

Persons with diabetes are at increased risk of complications related to the micro- and
macrovascular circulation. The primary cause of premature mortality in persons with
diabetes is cardiovascular disease (Baena-Díez et al., 2016), and chronic kidney disease
(CKD) increase the overall risk of cardiovascular complications (Groop et al., 2009). Early
intervention targeting several risk factors has been implemented, but new tools to predict
complications before clinical manifestations are needed to improve risk stratification and
personalize preventive treatment.
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Hyperglycemia drives oxidative stress, inflammation, and tissue
injury, eventually leading to fibrosis, characterized by an abnormal
shift in the turnover of components of the extracellular matrix
(ECM). However, differences in glycemic control do not fully
explain the variation in the incidence and severity of
complications. Despite the underlying etiology, kidney disease
development is assumed to be driven by kidney fibrosis. As
formation and degradation of ECM components are linked with
the development of fibrosis (Bülow and Boor, 2019), assessment of
markers of ECM turnover may identify persons with active pro-
fibrotic processes at higher risk for complications related to diabetes.
During fibrosis progression, peptides reflecting ECM remodeling,
such as collagens, are released (Genovese et al., 2014). Collagens are
an essential part of the fibrotic tissue, acting as both a scaffold for
cells and an interaction partner for several proteins (Gelse et al.,
2003; Liu, 2011; Genovese et al., 2014).

Interestingly, specific proteolysis-derived fragments of
collagens can have vital signaling functions (Karsdal et al.,
2015). The bioactive fragment, endotrophin, released during
collagen type VI synthesis when the C-terminal pro-peptide of
the α3 chain is cleaved off from the mature molecule (Aigner
et al., 2002), is pro-inflammatory and pro-fibrotic (Park and
Scherer, 2012; Karousou et al., 2014; Zhao et al., 2016; Funcke and
Scherer, 2019). Endotrophin is expressed by cells from the
mesenchymal stem cells, including adipocytes and fibroblasts
(Juhl et al., 2020; Møller, 2020; Rønnow et al., 2020), suggesting it
to be a central ECM fragment associated with chronic fibro-
inflammatory diseases.

In this large and unselected study cohort, including persons with
type 1 diabetes, we aimed to validate the previous findings of
endotrophin in type 1 diabetes (Pilemann-Lyberg et al., 2019)
and investigate whether higher levels of serum and urinary
endotrophin were associated with risk of progression of
complications to type 1 diabetes.

Materials and methods

Research design and methods

The study is based on data and biobank material from the
StenoDot cohort recruited from the outpatient clinic at Steno
Diabetes Center Copenhagen, Denmark from 2012 to 2016. The
present study complied with the Declaration of Helsinki and was
approved by The Regional Ethics Committee in The Capital Region
of Denmark (H-19042436). Detailed information about the research
design and International Statistical Classification of Diseases (ICD)-
and procedural codes for baseline and follow-up measures has
previously been published (Tougaard et al., 2022). In short, the
present study cohort included 1,468 individuals with type 1 diabetes,
defined as an E10 diagnosis (ICD-10); or an E13 or E14 diagnosis,
treated solely with insulin. Urinary albumin excretion rate (mg/24 h)
and urine albumin-creatinine ratio (mg/g) were considered
comparable measures and were pooled as a composite variable of
urinary albumin excretion (UAE) (mg/g).

Demographic and clinical data were extracted from patient
records, including retinal photo gradings and routine laboratory
measurements. Information on hospital admissions, emigration,

and deaths was obtained from national registers. Primary
endpoints were 1) a composite kidney endpoint defined as
estimated glomerular filtration rate (eGFR) decline of ≥40%
confirmed after minimum 1 month or unconfirmed if the
measurement was the last before end-of-follow-up, development
of CKD stage 5, chronic dialysis, kidney transplantation, or kidney
failure as cause of death, 2) first major adverse cardiovascular event
(MACE) including cardiovascular death, non-fatal acute myocardial
infarction, coronary intervention, and non-fatal stroke, and 3) all-
cause mortality. Secondary endpoints were 1) progression in
albuminuria stage based on minimum one measurement, 2)
incident heart failure, and 3) incident sight-threatening diabetic
eye disease, including proliferative retinopathy and maculopathy
based on retinal photos or procedural codes. Median follow-up was
6.4 years for the composite kidney endpoint, 6.3 years for MACE,
5.3 years for all-cause mortality, 6.3 years for albuminuria
progression, 6.4 years for incident heart failure, and 3.1 years for
sight-threatening diabetic eye disease. ICD-8, ICD-10, and
procedural codes are provided in Supplementary Table S1.

Levels of endotrophin were measured in serum and urine at
baseline using the PRO-C6 enzyme-linked immunosorbent assay
(ELISA) (Nordic Bioscience, Herlev, Denmark) (Sun et al., 2015).
The ELISA was carried out as previously described (Sun et al., 2015).
Urinary endotrophin levels were normalized to urinary creatinine
levels. Urinary creatinine was measured using the ADVIA
1800 Clinical Chemistry System.

Statistical analyses

Baseline clinical characteristics were stratified by tertiles of serum
and urinary endotrophin levels, respectively. All continuous clinical
variables, except UAE, were normally distributed, and levels were
presented as mean ± standard deviation (SD), whereas UAE levels
were presented as median with median interquartile range (IQR).
Categorical variables were presented as total numbers with
corresponding percentages. Differences among tertiles were assessed
with one-way ANOVA for normally distributed variables, the
Kruskal–Wallis test for non-normally distributed variables, and the
χ2 test for categorical variables. The correlation between serum
endotrophin and urinary endotrophin was tested by Spearman’s
rank correlation coefficient.

In the longitudinal analyses, participants were followed until an
event or censoring due to emigration, death, or end of follow-up.
The association between a doubling of serum endotrophin and
urinary endotrophin and incidence of the specified endpoints
during follow-up was investigated by Cox proportional hazards
regression analysis, both unadjusted and adjusted for the
conventional risk factors sex, baseline age, body mass index
(BMI), low-density lipoprotein (LDL)-cholesterol, current
smoking, hemoglobin A1c (HbA1c), systolic blood pressure,
eGFR, and UAE (except for analyses of albuminuria progression).
For each outcome, participants previously diagnosed with the
outcome were excluded. The distribution of serum endotrophin,
urinary endotrophin, and UAE was skewed, and these variables were
log2-transformed before analyses. All two-tailed p < 0.05 were
considered significant. Statistical analyses were performed using
R (4.1.0).
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Results

The cohort included 1,468 persons with type 1 diabetes.
Serum samples were available for 1,446 persons (99%) of the
total cohort and consisted of 712 (49%) females, mean age was
51 ± SD of 16 years, diabetes duration 26 ± 15 years, HbA1c 62 ±
12 mmol/mol, eGFR 94 ± 23 mL/min/1.73 m, and IQR of the last
UAE was 5.5 (3.5–11.5) mg/g. The cohort with available
serum samples consisted of 1,080 (75%) persons with
normoalbuminuria, 260 (18%) with microalbuminuria, and
106 (7%) with macroalbuminuria. Urine samples were
available for 1,251 persons (85%) of the total cohort.

Baseline characteristics stratified by serum endotrophin are
shown in Table 1. Higher levels of serum endotrophin were
associated with higher age, diabetes duration, BMI, UAE, systolic
blood pressure; lower eGFR; a higher proportion were prescribed
anti-hypertensive, renin-angiotensin-aldosterone system (RAAS)
blockade, and lipid-lowering treatment; and a higher proportion
with a history of MACE and sight-threatening diabetic eye disease
(Table 1). Urinary endotrophin levels stratified into tertiles were not
associated with markers of disease severity (Supplementary
Table S2).

Therewas no correlation between serum and urinary endotrophin
(Spearman r = 0.011, p = 0.70). As urinary endotrophin was corrected
for urinary creatinine, we also analyzed serum endotrophin and
urinary endotrophin not normalized for creatinine. There was no
correlation between serum endotrophin and unadjusted urinary
endotrophin (Spearman r = 0.044, p = 0.12).

The association between serum endotrophin and incidence of
complications estimated by unadjusted and adjusted Cox
proportional-hazards models is shown in Figure 1. Higher levels of
serum endotrophin were significantly associated with the kidney
endpoint and all-cause mortality in both unadjusted and adjusted
analyses (Figure 1A). When adjusting for conventional risk factors,
the hazard ratio (HR) per doubling of serum endotrophin was 3.39 [95%
CI: 1.98–5.82] for the kidney endpoint (n = 30/1,462), 1.28 [0.90–1.80]
for firstMACE (n= 82/1,316), and 1.44 [1.03–2.0] for all-causemortality
(n = 93/1,468) (Figure 1A). For the secondary endpoints, there was an
association between a doubling of serumendotrophin and progression of
albuminuria (n = 80/1,359) with a HR of 1.82 [1.32–2.52] but not with
incident heart failure (n = 23/1,420) or sight-threatening diabetic eye-
disease (n = 52/1,168) after adjustment (Figure 1B). No significant
association between urinary endotrophin and the specified endpoints
was observed after adjustment (data not shown).

TABLE 1 Clinical characteristics stratified by serum endotrophin tertiles.

Characteristic T1 (n = 482) T2 (n = 482) T3 (n = 482) P

Serum endotrophin (ng/mL) 6 (5–6) 8 (8–9) 13 (11–17)

Age (years) 48 ± 15 50 ± 17 53 ± 16 < 0.001

Female sex (%) 215 (45) 240 (50) 249 (52) 0.076

BMI (kg/m2) 25 ± 3.7 26 ± 4.1 26 ± 4.4 0.004

Systolic blood pressure (mmHg) 128 ± 14.7 129 ± 15.6 131 ± 17.3 0.029

Diastolic blood pressure (mmHg) 78 ± 7.9 76 ± 9.1 76 ± 9.4 < 0.001

Diabetes duration (years) 22 ± 14 25 ± 14 30 ± 17 < 0.001

HbA1c (mmol/mol) 62.0 ± 12.9 61.8 ± 11.7 61.7 ± 12.0 0.928

UAE (mg/g) 5.5 (3.5–9.5) 4.5 (2.5–9.5) 6.5 (3.5–25.5) < 0.001

eGFR (ml/min/1.73 m2) 101 ± 17 96 ± 19 84 ± 28 < 0.001

LDL-cholesterol (mmol/L) 2.5 ± 0.8 2.4 ± 0.7 2.4 ± 0.8 0.979

Current smoker (%) 122 (26) 77 (16) 64 (13) < 0.001

Treatment

Insulin (%) 476 (99) 474 (98) 473 (98) 0.734

Anti-hypertensives (%) 187 (39) 217 (45) 273 (57) < 0.001

RAAS blockade (%) 162 (34) 200 (42) 238 (49) < 0.001

Lipid-lowering medication (%) 199 (41) 224 (47) 262 (54) < 0.001

Disease history

MACE (%) 27 (6) 43 (9) 81 (17) < 0.001

Sight-threatening diabetic eye disease (%) 66 (14) 78 (16) 150 (31) < 0.001

Data are median (IQR), n (%), or mean ± SD., serum endotrophin levels are rounded to whole numbers due to sensitive personal data.

Significant differences are indicated in bold.
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Discussion

In a cohort of 1,468 persons with type 1 diabetes, we
demonstrate that higher serum levels of a fragment reflecting
collagen type VI formation and endotrophin are associated with
a higher hazard of death and kidney complications. Even when
adjusted for the conventional risk factors, sex, age, BMI, LDL-
cholesterol, current smoking, HbA1c, systolic blood pressure,
eGFR, and UAE (except for analyses on albuminuria
progression), serum endotrophin remained significantly
associated with all-cause mortality, the kidney endpoint, and
progression of albuminuria. These findings align with previous
results for circulating endotrophin (Rasmussen et al., 2018;
Frimodt-Møller et al., 2019; Pilemann-Lyberg et al., 2019;
Rasmussen et al., 2022; Tougaard et al., 2022), highlighting the
evidence for endotrophin as a relevant risk marker for progression of
CKD and the development or progression of complications in
diabetes.

We validated the previous findings of serum endotrophin in type
1 diabetes, where higher levels of serum endotrophin were
independently associated with a higher risk of mortality and
development of end-stage kidney disease (Pilemann-Lyberg et al.,
2019). Of note, the participants in the present study cohort had a

lower baseline age, diabetes duration, UAE, and higher eGFR
compared to the participants included in the previous study
(Pilemann-Lyberg et al., 2019).

We have previously shown that serum endotrophin was
associated with all-cause mortality and kidney and
cardiovascular complications in persons with type 2 diabetes
(Tougaard et al., 2022) and persons with type 2 diabetes and
microalbuminuria (Rasmussen et al., 2018). Moreover, in the
CANVAS trial, plasma endotrophin was an independent risk
marker for incident heart failure, cardiovascular disease, the
composite kidney endpoints, and all-cause mortality
(Rasmussen et al., 2022). Taken together, the robust results of
circulating endotrophin across diabetes cohorts are promising
for its application as a risk marker for complications.

In the RIISC study, a prospective, observational cohort of
persons with high-risk CKD, serum endotrophin was
independently associated with mortality in CKD (Fenton et al.,
2017), suggesting that collagen type VI formation and endotrophin
is mechanistically involved in the increased mortality risk associated
with CKD. Moreover, in the PERF study, a prospective,
observational cohort of elderly women without diabetes, serum
endotrophin was associated with chronic multimorbidity and
mortality independent of age and BMI (Staunstrup et al., 2021).

FIGURE 1
Associations between serum endotrophin and incidence of complications estimated by Cox proportional-hazards models. Hazard ratios (HRs) with
95% confidence intervals (CIs) are listed per doubling of serum endotrophin for the primary (A) and secondary (B) endpoints. HRs are reported as
unadjusted and adjusted for the conventional risk factors sex, baseline age, BMI, LDL-cholesterol, current smoking, HbA1c, systolic blood pressure, eGFR,
and UAE (except for analyses on albuminuria progression). For each outcome, participants previously diagnosed with the outcome were excluded.
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Importantly, previous studies have shown that collagen type VI
is accumulated in the kidneys of persons with kidney disease
(Nerlich et al., 1994; Vleming et al., 1995; Mason and Wahab,
2003), and colocalization of endotrophin with collagen type VI in
the fibrotic kidney has been confirmed (Rasmussen et al., 2017).

To our knowledge, human intervention studies targeting
endotrophin have yet to be conducted. Still, neutralizing the pro-
fibrotic endotrophin with antibodies has been suggested to slow the
imbalanced ECM remodeling in fibrogenesis (Williams et al., 2021).
Interestingly, recent data from a podocyte ablation model showed
that endotrophin neutralization through targeted antibody
treatment protects from kidney fibrosis (An et al., 2023),
suggesting that neutralizing endotrophin is a promising therapy
for intervening with kidney fibrosis in CKD.

Results from the NEFIGAN and AWARD-7 trials showed
that budesonide and dulaglutide treatment, respectively,
reduced levels of circulating endotrophin (Maixnerova et al.,
2021; Tuttle et al., 2023), indicating that budesonide and
dulaglutide may reduce fibrosis by diminishing collagen type
VI formation and levels of endotrophin. The nonsteroidal
mineralocorticoid receptor antagonist, finerenone, reducing
kidney and cardiovascular fibrosis in experimental studies
(Kolkhof et al., 2014; Grune et al., 2018), has recently been
shown to reduce progression of kidney and cardiovascular
complications in type 2 diabetes (Agarwal et al., 2022).
Finerenone has not yet been investigated in type 1 diabetes;
however, short-term studies with spironolactone in persons with
type 1 diabetes and kidney disease demonstrated a reduction in
albuminuria (Schjoedt et al., 2005). Thus, serum endotrophin
may be used to select persons who could benefit from preventive
treatment with finerenone.

The strength of this study is that endotrophin was measured in a
large, unselected, and well-characterized cohort. The limitation was
that data on medication changes were unavailable.

Further investigation proving the utility of circulating
endotrophin as a risk marker and potentially as an actor in
disease progression will be important for designing and
monitoring intervention strategies to reduce fibrosis and
consequent organ function loss. Furthermore, it will be
interesting to determine whether changes in endotrophin can
predict a clinically meaningful response to therapies with kidney
and cardiovascular outcomes benefit.

In conclusion, we validated the previous findings of endotrophin
in type 1 diabetes in a large and unselected cohort. Higher levels of
serum endotrophin, released during collagen type VI formation,
were independently associated with a higher risk of mortality and
development or progression of CKD in persons with type 1 diabetes.
Urinary endotrophin was not associated with development of the
specified complications.
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