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Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or
BM-40, is a matricellular protein which regulates cell adhesion, extracellular
matrix production, growth factor activity, and cell cycle. Although SPARC does
not perform a structural function, it, however, modulates interactions between
cells and the surrounding extracellular matrix due to its anti-proliferative and anti-
adhesion properties. The overexpression of SPARC at sites, including injury,
regeneration, obesity, cancer, and inflammation, reveals its application as a
prospective target and therapeutic indicator in the treatment and assessment
of disease. This article comprehensively summarizes the mechanism of SPARC
overexpression in inflammation and tumors as well as the latest research progress
of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by
manipulating SPARC as a new target. This article provides ideas for using
functional nanomaterials to treat inflammatory diseases through the SPARC
target. The purpose of this article is to provide a reference for ongoing disease
research based on SPARC-targeted therapy.
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Introduction

Targeted therapy of inflammation and tumor is the main focus of the current research.
To date, there is no perfect treatment plan for rheumatoid arthritis, which is a well-known
immunodeficiency inflammatory disease (Watanabe et al., 2022). With the development and
synthesis of functional nanomaterials, serum albumin, such as human serum albumin
(HSA), has become a popular material used in the cure of rheumatoid arthritis. The powerful
affinity between serum albumin and secreted protein acidic and rich in cysteine (SPARC) has
become a huge driving force for drug-targeted therapy (Liu et al., 2019). In tumor treatment,
functional nanomaterials have achieved certain results by manipulating SPARC-targeted
therapy. The specific binding between HSA and nab-paclitaxel realizes the purpose of drug-
dependent release and precise targeted therapy of cancer (Yardley, 2013). The high binding
of HSA to SPARC realizes the targeted aggregation of paclitaxel in tumor lesions. The
discovery of biomimetic drug delivery of functional nanomaterials in vivo by manipulating
SPARC significantly alleviates rejection (Lin et al., 2016). This article will introduce the
regulatory mechanism and research progress of SPARC in rheumatoid arthritis and tumors
in detail. Based on the pathological phenomenon of high-level expression of SPARC in
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rheumatoid arthritis and tumors, it is more feasible for functional
nanomaterials to deliver drugs directly to the lesion.

This article reviews the regulatory mechanism and expression
sites of SPARC in inflammation and tumors. Understanding the
structure of SPARC and the cause of its overexpression will help
determine the pathogenesis of RA and facilitate the research on
targeted therapy of late RA. In particular, the mechanism of SPARC
as a potential target of RA and the latest research progress of
functional nanomaterials to manipulate SPARC to treat
inflammation and tumors were discussed.

Discovery, function, and expression of
SPARC

Discovery and structure of SPARC

Termine JD first discovered that SPARC existed in the non-
collagenous fetal bovine bone, which was the main component of
its protein extract (Bradshaw, 2012). As an important part of the
SPARC protein family, its domain comprises a cysteine-rich
follistatin-like (FS) domain, an acidic N-terminal domain, and
an a-helical extracellular (EC) calcium-binding domain with an
EF-hand motif. Due to its structural properties, SPARC can bind
various extracellular components (Gaudet et al., 2011). SPARC,
equally known as BM-40 or 43K protein, has two calcium-binding
sites on the protein, the N-terminal acidic domain, which binds
5 to 8 Ca2+ with less affinity, and the EF-hand motif located in the
C-terminal domain, which binds Ca2+ ions with high affinity
(Termine et al., 1981). The SPARC structure and SPARC
protein family are shown in Figure 1.

Physiological function of SPARC

SPARC is overexpressed during tissue renewal and repair. As a
repair protein, SPARC plays an important role in manipulating cell
proliferation, migration, and cytokine expression (Ng et al., 2013).
Susceptibility of SKM-1 cells to Ara-C is enhanced with elevated
levels of SPARC expression, accompanied by accelerated cell cycle
restriction and apoptosis (Liang et al., 2022). Knockdown of the
SPARC gene prolongs fibrosis during wound healing (Luo et al.,
2019). Fibrotic changes in vitro and in vivo are effectively eliminated
by specific suppression of SPARC (Wang et al., 2010). SPARC curbs
apoptosis and inhibits the aggression and diversion of ovarian
cancer cells (Chen et al., 2012). SPARC takes the center stage as
ovarian cancer grows. The tumor suppressor gene, SPARC gene, is
underexpressed in gastric cancer cell family (Zhou, 2018). SPARC
inhibits the apoptosis of bone marrow stromal cells by inhibiting
their proliferation (Deng, 2018). The activity of patients with
ankylosing spondylitis can be assessed by detecting peripheral
blood mononuclear cells and serum SPARC levels (Wang and
Yang, 2018). As a matrix cell protein, SPARC is widely
distributed in the eye and has the function of communicating cell
and extracellular matrix signal transmission (Xiang and Tang, 2018).
Silencing the SPARC gene reduces high fluorine-mediated
cytotoxicity and inhibits apoptosis (Zhao et al., 2019). The degree
of the expression level of SPARC protein can improve insulin
resistance of adipocytes, thereby improving the insulin sensitivity
of GK rats (Yao et al., 2020). As a stromal cell glycoprotein, SPARC
is overexpressed in most inflammatory sites. SPARC has an
irreplaceable role to play in prognosis and cure for cancer by
regulating the proliferation, migration, and apoptosis of tumor
cells. Knockdown or elimination of the SPARC gene can affect

FIGURE 1
chematic diagram of the SPARC family structure (aa is the number of amino acids). SPARC is one of the most representative proteins in the SPARC
family.
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the speed of wound healing and reduce the effects due to
cytotoxicity. SPARC protein can stimulate skin tissue fibrosis and
increase fibroblast proliferation and collagen deposition.

Expression and regulation of SPARC

The expression of SPARC was significantly elevated during
embryonic development as compared to normal adult tissues
(Wong and Sukkar, 2017). SPARC expression levels are highly
increased in epithelial cells during tissue injury, inflammation,
and abnormal growth, such as tumors (Chiodoni et al., 2010).
For some highly metastatic tumors, SPARC expression shows a
high expression status, such as glioblastoma (Feng and Tang, 2014).
SPARC, a potential indicator of inflammation and interferon
responses, has the ability to shift anti-inflammatory macrophages
into pro-inflammatory macrophages (Ryu et al., 2022). Huge
expression levels of SPARC are usually detected at the sites of
inflammation (Maltzman, 2022). Compared to normal cartilage,
there are a large number of SPARC in the upper and middle areas of
arthritic cartilage in RA patients, which can promote the
decomposition of the ECM that is located on the surface area of
arthritic cartilage through matrix metalloproteinases (MMPs). The
proliferation of chondrocytes in the middle and deep layers can be
regulated by SPARC. The unusual synthesis and degradation of
SPARC might be ascribed to the destruction of the cartilage and
bone (Li et al., 2023). Suppression of SPARC gene expression could
inhibit the proliferation of human keloid fibroblasts (HKFs), block
the process of the cell cycle, and promote apoptosis, and the
downregulation of the TGF-β signaling pathway may have some

relevance to this mechanism (Li, 2022). As an important factor,
SPARC participates in the regulation of multiple signaling pathways,
such as JAK/STAT and mTOR (Wang et al., 2019). SPARC regulates
osteoblast mineralization through the p38 MAPK pathway (Zhu,
2020). Expression levels of SPARC and SPARCL-1 are
substantially elevated in Glu-induced hippocampal neuronal
injury (Agostina et al., 2021), and SPARC and SPARCL-1
regulated autophagy through the AKT–mTOR pathway to affect
Glu-induced hippocampal neuron injury (Chen, 2020). SPARC is
involved in VEGF-induced fibrosis in HTF cells, and it will be a
new therapeutic opportunity for antifibrotic strategies after the
completion of filtration surgery (Xiang and Tang, 2018). SPARC
promotes the apoptosis of HUASMCs through the mitochondrial
pathway, inhibits the proliferation rate of HUASMCs, thereby
reducing their cell viability, promotes the secretion of gelatinase
(MMP2 and MMP9), and leads to the degeneration of the
extracellular matrix and internal elastic layer in the vessel wall
(Ye, 2017). The expression and regulation mechanism of SPARC
are shown in Figure 2. The following section introduces the latest
application and research progress of SPARC as an underlying and
efficient curative target for inflammatory diseases and tumors as
well as functional nanomaterials to manipulate SPARC to treat
diseases.

Rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease that occurs
along with a phenomenon that influences both joints (Ainsworth
et al., 2022). The typical pathology of RA is characterized by changes

FIGURE 2
Immune cell interactions in inflammation (interaction between SPARC and TGF-β). Deficiency of TGF-β signaling effectively protects against
inflammatory joint erosion in the arthritis model. Interaction between SPARC and TGF-β plays a key role in inflammatory sites including rheumatoid
arthritis.
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in inflammatory cells and deformation of small joints. Patients with
severe RA have significant atherosclerosis (Wang Z. et al., 2022).
Macrophages are key cells in the treatment of RA. Macrophage
activation is the main feature (Xu Y. et al., 2022). SPARC acts as a
multifunctional modulator of parenchymal cells with enhanced
expression in smooth muscle cells and macrophages in the
atherosclerotic lesion stage (Raines et al., 1992). The high
representation level of SPARC in macrophages can be an
effective way to treat RA. Macrophages and FLS became the
main target cells for targeted therapy of RA (Tu et al., 2022).
SPARC may play a role in arthritis by stimulating MMP
synthesis in synovial fibroblasts (Tremble et al., 1993). Multiple
research experiments have found that synovial inflammation in
arthritic mouse models can significantly be inhibited by blocking the
NF-κB pathway. Due to the increased amount of TGF-β expression
in RA-FLS, it clearly promotes the destruction and erosion of
cartilage and bones by FLS (Stanford et al., 2016). SPARC
exhibits anti-inflammatory effects through negative regulatory
mechanisms on TGF-β and NF-κB signaling (Puolakkainen et al.,
2003). SPARC could be a promoter of ECM degradation through the
action of MMPs.

Expression of SPARC in RA

Persistent synovitis and systemic inflammation are key features
of RA (Giachi et al., 2022). A UK study found that the lowest
prevalence of RA was much higher for women than that for men
(Charles et al., 2013). There have been reports that the SPARC
expression level in the ground and middle layer of articular cartilage
in RA patients is significantly increased, and the level of synovial

fluid and synoviocytes is increased (Nakamura et al., 1996). The
discovery of SPARC provides new insights into it as a new target.
IHC verified the high expression of SPARC in RA inflammatory
joints (Liu et al., 2019), but SPARC staining is absent in normal
cartilage. Synoviocytes from both RA and OA joints were found to
have increased SPARC synthesis (Nakamura et al., 1996). At present,
there are few reports on the high expression of SPARC in the RA
joint synovium. Finding effective ways to treat RA is a major medical
challenge. The discovery of SPARC, a potential target and
therapeutic index, is expected to help advance the effective
treatment of RA.

Regulatory mechanism of SPARC in RA

SPARC, as a matrix protein, participates in the remodeling of
normal and abnormal tissues (Puolakkainen et al., 2003).
SPARC exhibits anti-inflammatory effects through an adverse
regulator of TGF-β and NF-κB signaling (Sangaletti et al., 2011).
The negative regulation mechanism of SPARC on NF-κB is
shown in Figure 3. Previous studies have shown that the
concentration of TGF-β that is required for the maximal
stimulation of SPARC synthesis is basically consistent with
the level of TGF-β in RA joints (Fava et al., 1989). SPARC
can regulate the apoptosis of immune cells and limit the
apoptosis of B-cell precursors (Tripodo et al., 2012). By
culturing rabbit articular chondrocytes, it was found that
TGF-β significantly increased SPARC levels, whereas IL-1β
significantly decreased SPARC (Nakamura et al., 1996).
Modulation of inflammatory cells and cytokines is an
important therapeutic target to control inflammation in RA.

FIGURE 3
Negative regulationmechanism of SPARC onNF-κB. SPARC inhibits the proliferation of macrophages and HFLS-RA by negatively regulating the NF-
κB pathway and promotes their apoptosis by playing an anti-inflammatory role.
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As an important factor, TGF-β has become a hotspot in the study
of RA treatment (Cheng et al., 2022). The interplay of SPARC
with TGF-β is shown in Figure 3. The level/activity of TGF-β in
patients with RA was found to be markedly higher than that in
healthy individuals. In a model of inflammatory arthritis, the
deficiency of TGF-β signaling effectively prevents inflammatory
joint erosion (Xia et al., 2022). Inhibiting the NF-κB pathway can
inhibit RA-FLS and RAW 264.7 cell proliferation, induce
apoptosis, and improve RA inflammation (Yang Y. P. et al.,
2022). For example, aspirin promotes apoptosis in HFLS by
downregulating the NF-κB pathway (Zhang X. et al., 2018).
Inflammation is an inescapable pathological feature of RA. A
central regulatory role in the pathological process of RA is
played by the activation of the NF-κB signaling path (Xu Y.
J. et al., 2022). Pathological NF-κB activation assumes a
significant task at the time of emergence and development of
rheumatoid arthritis (Zhou and Zhang, 2012). SPARC is shown
at high levels in RA joints and has regulatory effects on TGF-β
and NF-κB signaling paths. At present, the research on the
mechanism of RA is gradually deepening, and the research on
TGF-β and NF-κB signaling pathways in RA is increasing.
SPARC, as a matrix protein, plays an anti-inflammatory role
through the negative regulatory mechanism of TGF-β and NF-
κB pathways. Massive proliferation of HFLS is the basic
pathological feature of RA. The character of SPARC in the

promotion of HFLS-RA apoptosis is bound to provide an
opportunity for SPARC to become a fresh target for the cure
of RA. The regulation mechanism of SPARC in RA is shown in
Figure 3.

Role of SPARC in RA

SPARC has a dual role in resorbing and regenerating arthritic
cartilage. Numerous studies have demonstrated synovial tissue
heterogeneity in RA joints (Ouboussad et al., 2019). HFLS forms
the synovial intima, which has an important function in the
destruction of RA joints (Firestein, 2004). FLS presents an
aggressive phenotype in joint destruction and inflammation in
patients with RA (Nygaard and Firestein, 2020). FLS-mediated
excessive production of MMPs damages the collagen-rich
structure of the joint tissue at the pannus–cartilage interface of
rheumatoid joints and promotes FLS invasion (Nygaard and
Firestein, 2020). MMPs play a key role in the remodeling of the
ECM (Zhang et al., 2021). SPARC might promote the
decomposition of the ECM through the action of MMPs on the
surface area of arthritic cartilage (Tremble et al., 1993). SPARC
promotes ECM degradation through MMPs, as shown in Figure 4.
Irregular synthesis and degradation of SPARC may be associated
with cartilage and bone deterioration. SPARC exudes a range of

FIGURE 4
SPARC promotes ECM degradation through MMPs. SPARC promotes the apoptosis of HUASMCs through the mitochondrial pathway, inhibits the
proliferation rate of HUASMCs cells, thereby reducing their cell viability, promotes the secretion of gelatinase (MMP2 and MMP9), and leads to the
degeneration of the extracellular matrix and internal elastic layer in the vessel wall
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bioactive peptides containing the (K)GHK array that can affect
angiogenesis and synovial hyperplasia to influence vascular
remodeling (Lane et al., 1994). The pannus phenomenon is
closely related to SPARC. FLS-RA is the main cell in RA joint
destruction, and the excessive production of MMPs mediated by it
will destroy the joint tissue structure.

As a chronic autoimmune disease caused by immune system
dysfunction, RA is very important to find an active therapeutic
marker for the growth of RA. As a hidden target of RA, SPARC can
have excellent benign effects on RA joints based on the negative
regulation of TGF-β and NF-κB pathways. Currently, the focus of
RA curative research is on indicators such as MMPs and receptor
activation of the NF-κB ligand (RANKL) (Meng et al., 2022). As an
overexpressed substance in RA articular cartilage, SPARC
participates not only in the ECM degradation process promoted
by MMPs but also in negatively regulating TGF-β and NF-κB
pathways. Therefore, SPARC becomes a dual possible target for
the therapeutic cure of RA. In the pathogenesis of RA, SPARC can
exhibit its full anti-inflammatory effect. The discovery of SPARC, a
potential target, has significant implications for treating and
prognosticating RA in the years to come.

Tumors

The microenvironment of the tumor is a vital regulator of tumor
initiation, progression, and migration. SPARC is covered in
interactions between the tumor and stroma and influences cancer
growth by influencing tumor invasion (Camacho et al., 2020). High
level of SPARC expression is typically linked to aggressive and highly
metastatic tumors. Based on this feature, SPARC is often used as a
prognostic marker for different cancers. Interestingly, further
clinical exploration found that SPARC could be used as a
candidate aim for the control of cancer (Podhajcer et al., 2008).
SPARC is categorized as a promising target and indicator for
treating various cancers.

Gastric cancer

Risk factors for stomach cancer, which is one of the extremely
common and high-mortality cancers, include dietary habits and
bacterial infections (Smyth et al., 2020). Gastric cancer affects
dietary life for a long time for patients, bringing great changes
and troubles. Discovering new potential therapeutic or prognostic
targets will bring good news to patients with gastric cancer.

Regulatorymechanisms of SPARC in gastric cancer
Through network pharmacology analysis, SPARC expression

has been shown to be strongly correlated with the bad prognosis of
GC. SPARC can be used as a marker of its bad prognosis (Li et al.,
2019). Subsequently, clinical studies have found that SPARC is a
possible marker for diagnosing and prognosticating gastric cancer
and an important factor regulating various signaling pathways
(Wang et al., 2019). The SPARC gene acts to suppress epigenetic
tumorigenesis (Shao, 2018). SPARC brings new targets and
therapies to treat gastric cancer (Zhou, 2018). SPARC may
support the invasion, metastasis, and angiogenesis of gastric

cancer cells (Ma Y. S. et al., 2017). Genome-scale analysis
reveals that SPARC is a marker for the diagnosis and
prognosis of gastric cancer (Xu et al., 2018). A meta-analysis
was performed to elucidate that SPARC was a prospective clinical
predictor of survival in gastric cancer patients (Wang et al., 2014).
The impact of SPARC on the proliferation and migration of
gastric cancer cells was induced by regulating developmental
factor arrival (Phan et al., 2007). SPARC levels are inversely
correlated with GC clinicopathological factors (Zhang et al.,
2014). Clinical data showed that the proficiency of SPARC was
significantly reduced in a group of patients with gastric cancer
after treatment (Gao et al., 2015). Early network pharmacology
provided data support for the discovery of SPARC, a new
prognostic indicator, and later, a clinical research further
confirmed this point of view.

Role of SPARC in gastric cancer
The investigators revealed that the level of SPARC in GC may be

related to the induction of GC cells (Li Z. et al., 2016). SPARC positivity
in gastric cancer tissue was higher than in non-cancerous gastric tissue
(Gao et al., 2017). SPARC and VEGF jointly promote angiogenesis in
tumor sites (Wang et al., 2012). Human gastric cancer cell invasion and
growth may be inhibited by the downregulation of SPARC (Yin et al.,
2010). In tumor tissues lacking SPARC, the tumor growth rate and
volume were significantly reduced (Ma et al., 2021). SPARC was
upregulated in gastric tumor samples and had a strong relationship
with poorer overall survival. The prognostic significance of risk score
models for gastric cancer prediction can be refined by analyzing
differentially expressed genes (DEGs) using SPARC (Shan et al.,
2021). The PCR method reveals the important role of SPARC
epistasis in gastric carcinogenesis (Chen et al., 2018). Downregulating
the expression of VGEF can block the angiogenesis of gastric cancer
(Zhang J. L. et al., 2012). Increased levels of SPARC expression are closely
related to poor outcomes in GC in Kaplan–Meier survival analysis (Liao
et al., 2018). The level of expression of SPARC is strongly correlative to
the level of GC cells (Zhu et al., 2015). SPARCmay participate in gastric
cancer by affecting the tumor microenvironment transfer (Mo et al.,
2017). As a target gene for treating GC, SPARC has the exclusive
function of detecting drug sensitivity (Zhao et al., 2021). The discovery of
SPARC will lead the way for further research on the role of circRNA in
the GC body (Tian et al., 2020). SPARC is a resource for conducting a
survey on the potential biomarkers and targets for the diagnosis,
prognosis, and treatment of GC (Hao et al., 2019). SPARC is a key
growth factor in gastric cancer (Zhang J. L. et al., 2012). SGC7901 cells
expressing high levels of SPARC are more active and resistant to
anticancer drugs than MGC803 cells expressing low levels of SPARC
(Li A. et al., 2015). The period for the greatest disease response in cancer
patients is generally in the sophisticated stage of cancer. The discovery of
a novel predictor is essential for gastric cancer patients. In patients with
stage II/III gastric cancer, high levels of SPARC gene expressionmay be a
valuable prognostic factor (Suzuki et al., 2018). The Gene Expression
Omnibus (GEO) network database found that SPARC overexpression
levels were linked to reduced overall GC survival rates (Yan et al., 2018).
SPARC is located in peritumoral fibroblasts and rarely observed in
cancer cells’ cytoplasm (Nakajima et al., 2018). Moving forward, the
clinical detection of the prognosis of GC patients can bemore targeted at
HFLS around CG cells. SPARC, as a prognostic indicator, will bring
convenience to the detection of GC prognosis.
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Network pharmacology brings data support for SPARC as a GC
prognostic indicator, and clinical pharmacology experiments such as
WB continue to verify that SPARC and GC are inseparable. As an
effective prognostic indicator for GC, the high expression of SPARC
was accompanied by the rapid growth of GC cells.

Hepatocellular carcinoma

One of the most lethal cancers worldwide is hepatocellular
carcinoma (HCC) (Piñero et al., 2020). As the sixth most
common cancer worldwide, the overexpression of SPARC
reduces HCC proliferation during spheroid cell culture. SPARC
improves patient survival by inhibiting the tumorigenic ability of
host macrophages. Additionally, SPARC leads to its reduced
tumorigenicity by inducing mesenchymal–epithelial transition
(MET) (Atorrasagasti et al., 2010). The dual regulatory effect of
SPARC on HCC has become the biggest breakthrough in the
targeted therapy of HCC.

Regulatory mechanism of SPARC in hepatocellular
carcinoma

When HCC patients develop disease, the mRNA of SPARC is
expressed at a high standard in vivo (Gao et al., 2021). The
overexpression of SPARC was shown to strengthen the cytotoxic
effect of sorafenib in Hep3B and HepG2 cells, significantly elicited
LDH release, and induced oxidative stress compared with parental
cells (Hua et al., 2021).

Role of SPARC in hepatocellular carcinoma
A study found that HCC cells in SPARC knockout mice were

significantly affected (A et al., 2021). As the mechanism of SPARC
inactivation inHCC, SPARCmethylation becomes a biological indicator
of HCC prognosis (Zhang Y. et al., 2012). A meta-analysis was
conducted and revealed that an elevated SPARC level was correlative
with the poor survival ofHCC (YangX. et al., 2022). SPARC affectsHCC
cell viability through the regulation of the ERK1/2-MMP2/9 pathway
(Liu et al., 2020). The growth rate and angiogenesis of HCC are tightly
correlated with the high expression level of SPARC (Lau et al., 2006).
MuiR-29a-overexpressingHCC cells inhibited phosphorylation of AKT/
mTOR downturn of SPARC (Zhu et al., 2012). The identification of this
new target of SPARC has made a historic leap forward in the targeted
care of HCC (Hua et al., 2015). SPARC is extremely expressive in severe
HCC tissue sections without abnormalities found in normal tissues (Le
Bail et al., 1999). SPARC has been confirmed to be a bona fide target of
miR-211 (Deng et al., 2016). Sorafenib is the first-line drug to treat
advanced HCC, and SPARC is considered a potential drug target (Goyal
et al., 2019). The fluorescent probe method detected that SPARC was
significantly higher in HCC patients than in healthy individuals (Segat
et al., 2009). Increased tumor volume of HCC in nudemice is supported
by the overexpression of SPARC (Jiang et al., 2019). SPARC was also a
central gene with significant diagnostic value (Ye et al., 2020). The
follistatin-like domain of the SPARC protein decreased the level of
E-cadherin expression (Sun et al., 2018). SPARC has the driving force to
regulate the progression of HCC (Wan et al., 2015). SPARC has been
entangled in the progress of fibrosis in the liver (Nakatani et al., 2002).
Based on the lack of effective therapeutic targets for HCC, SPARC will
play a prominent role as a new target (Ang et al., 2016).

SPARC will be a potent target for the management of HCC.
Looking ahead, strong and effective treatment can be achieved using
functional nanomaterials by manipulating SPARC, reducing the
pain of patients.

Breast cancer

Breast cancer, the most prevalent cancer in females globally, is
characterized by bone metastases. SPARC has the ability to inhibit
osteoclast activation in the microenvironment besides inhibiting
breast cancer cell migration and invasion. SPARC can be a viable
curative target for treating breast cancer metastasized to the bone
(Ma J. et al., 2017). Compared with tumor cells, SPARC appears at
higher levels in the stromal cells of the tumor (Shi et al., 2022). After
stage treatment, the expression of SPARC in the stromal cells will be
used as a predictive pointer for breast cancer.

Regulatory mechanism of SPARC in breast cancer
Triple-negative breast cancer occurs in up to 20% of breast

cancer families. In triple-negative breast cancer, SPARC is widely
expressed (Lindner et al., 2015). The high affinity between nal-
paclitaxel’s functional structural protein, HSA, and SPARC is
responsible for its excellent efficacy in the management of breast
cancer (Yardley, 2013). There is an urgent need for alternative
therapeutic strategies in TNBC on the basis of tumor-specific
molecular targets. Studies have demonstrated a novel crosstalk
between proteases and stromal cellular proteins in the tumor
microenvironment through the limited proteolysis of SPARC and
have found that SPARC may serve as a possible therapeutic target in
TNBC (Alcaraz et al., 2021). SPARC expression in CAF is an
exclusive prognostic factor for poor prognosis in TNBC (Alcaraz
et al., 2022). Breast cancer afflicting women must be addressed well.
The emergence of a good target and prognostic indicator, SPARC, is
going to open the door to a whole new world in the treatment of
breast cancer.

Role of SPARC in breast cancer
Breast cancer tissues and most breast cancer cells have a higher

level of SPARC (Li X. L. et al., 2022). A high SPARC level correlated
with breast cancer cell differentiation becomes a new therapeutic
approach (Bawazeer et al., 2018). SPARC is downregulated during
breast cancer development (Nagai et al., 2011). As a 32 kDa secreted
glycoprotein, the elevated level of SPARC was related to the overall
survival of patients (Watkins et al., 2005). SPARC acts as a
prognostic indicator. After chemotherapy, the overall survival of
patients with senior SPARC expression was markedly shortened
(Zhu et al., 2016). Network pharmacology found that SPARC can be
used as the basis for early breast cancer diagnosis (Azim et al., 2013).
SPARC is an inhibitor of the migration and invasion of breast
cancer, while resisting the platelet deficiency caused by it (Koblinski
et al., 2005). Breast cancer progression to the S phase was slowed
down by SPARC (Dhanesuan et al., 2002). SPARC might be a
helpful marker for aggressive, metastatic-prone tumors (Wong et al.,
2008). SPARC is able to induce the activation of MMP-2 in breast
cancer cell lines (Gilles et al., 1998). Appealing targets for anti-
metastatic therapy in breast cancer are SPARC and its secondary
effectors (Güttlein et al., 2017). SPARC is accompanied by a reduced
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extracellular matrix (Hellinger et al., 2020). SPARC was found to be
69.3% positive in cancerous tissues (Guo et al., 2017). SPARC
upregulation is a system whereby PTEN controls the deposition
of collagen in the mammary stroma (Jones et al., 2021). SPARC-
mediated degradation of the ECM and its potential link to MMPs
could lead to breast cancer development (Kim et al., 2017).
Compared to those with poor SPARC expressions, those with
positive SPARC expressions had a 2.34-fold increased risk of
death (Hsiao et al., 2010). Plasma concentration of SPARC was
less in normal females, suggesting an anti-adhesive effect of
circulating SPARC (Maroni et al., 2015). A high expression of
bone remodeling protein-SPARC in a highly malignant
phenotype can be observed (Lukianova et al., 2022). Screening of
aggressive cancer-associated DEGs and important pathways
revealed that SPARC could be a promising target gene in
metastatic breast cancer (Chen et al., 2015). The upregulation of
SPARC was observed after neoadjuvant chemotherapy is correlated
with chemotherapy resistance in breast cancer patients (Wang et al.,
2016). A high expression of bone remodeling protein-SPARC in a
highly malignant phenotype can be observed (Szynglarewicz et al.,
2016). The inhibition of SPARC secretion by oleic acid ultimately
favors T-cell activation as an underlying mechanism for the
reduction of breast cancer aggressiveness (Bellenghi et al., 2022).
The vast majority of stromal cells showed abundant cytoplasmic
SPARC reactivity (Barth et al., 2005). Patients with a high level of
SPARC have increased survival rate (Beck et al., 2008).

Triple-negative breast cancer has been plagued clinically due to
the absence of a suitable target. SPARC, as a target protein that
inhibits the cell cycle of breast cancer, is bound to increase the target
of chemotherapy medicines. The combination of functional
nanomaterials and SPARC will bring good news to patients in
the future.

Non-small-cell lung cancer

Investigations have shown that SPARC promotes pathological
reactions in non-small-cell lung cancer (NSCLC) and idiopathic
pulmonary fibrosis by encouraging microvascular remodeling and
overproduction of ECM proteins (Wong and Sukkar, 2017). The
primary reason of cancer death worldwide is NSCLC Mirhadi et al.,
2022). SPARC was a latent prognostic biomarker in NSCLC
(Fabrizio et al., 2020).

Regulatory mechanism of SPARC in NSCLC
Lung cancer growth may be inhibited by the elevated level of

SPARC mRNA in lung cancer tissues (Wang B. et al., 2018).
Network pharmacology analysis shows that SPARC is expressed
at a highly increased level in NSCLC tissues (Ma G. Y. et al., 2022).
SPARC is a biologically relevant mechanism that is upregulated in
the development of lung cancer as a specific site that regulates
collagen binding (Kehlet et al., 2018). SPARC overexpression in
A549 and H1299 cells drives migration and EMT, respectively (Sun
et al., 2018). The downregulation of SPARC expression in
H322 and A549 cells leads to the inhibition of cell invasion
(Zhou et al., 2010). SPARC has the advantage of promoting,
invading, and migrating lung cancer cells, making it a novel
therapeutic target.

Role of SPARC in NSCLC
In two NSCLC cell lines, CL1-5 and H1299, SPARC treatment

increased cell growth, migration, and the mesenchymal phenotype
(Hung et al., 2017). SPARC can be a prognostic overall survival
indicator (Huang et al., 2012). The upregulation of SPARC helps
define the pathogenesis of NSCLC (Grant et al., 2014). Plasma of
lung cancer patients contains overexpressed SPARC (Andriani et al.,
2018). SPARC promotes growth and inhibits the apoptosis of lung
cancer cells (Xu et al., 2019). SPARC produced by stromal cells
supports a high degree of vascular maturation (Koukourakis et al.,
2003). The positive representation rate of SPARC in stages I and II
lung cancer was significantly lower than that in stages III and IV
lung cancer (Zhang Z. et al., 2012). SPARC expression was
upregulated in lung cancer cells via promoter demethylation and
is correlative with a decreased DNA methyltransferase (DNMT)
activity (Pan et al., 2008). SPARC increased the permeability of
macromolecules through the integrin/focal adhesion/cell-promoted
persistent activation of the alveolar epithelial junction axis (Conforti
et al., 2020). The SPARC gene is a tumor-promoting gene (Yang
et al., 2019). The SPARC gene is also a prognostic gene (Zhong et al.,
2022). SPARC was significantly downregulated in hypermethylated
tumors (Ito et al., 2005).

Network pharmacology and experimental studies have
continuously confirmed the strong presence of SPARC in lung
cancer. As a novel therapeutic target, the high-level expression of
SPARC is mediated by promoter demethylation. Clinical cancer
samples confirmed that SPARC can be a candidate therapeutic
marker and prognostic indicator for the diagnosis of NSCLC.

Melanoma

Melanoma significantly affects the work and study of patients.
The emergence of novel targets and prognostic indicators is critical
for the entire therapeutic community.

Regulatory mechanism of SPARC in melanoma
Cell migration, adhesion, cytoskeletal features, and cell shape are

influenced by the inhibition of SPARC expression in human
melanoma cells (Salvatierra et al., 2015). Fibroblast-like
morphology in normal human melanocytes overexpressed
SPARC (Haber et al., 2008). SPARC stimulates cathepsin
B-mediated melanoma invasion through this mechanism using
collagen I and α2β1 integrin as mediators (Girotti et al., 2011).
SPARC can enhance the blocking effect of Pf4 on the
phosphorylation of ERK and the metastasis of melanoma cells,
and the synergistic effect of SPARC provides the possibility of
targeting the secretome of cancer cells for therapeutic
development (Zeng et al., 2021). SPARC is bound to become a
novel target for the development of melanoma therapies.

Role of SPARC in melanoma
The growth of melanoma is not regulated by exogenous SPARC

or by stromal tissue, but solely by the amount of SPARC that is yield
by the malignant cells themselves (Prada et al., 2007). SPARC could
become a new target to stop the progression of melanoma (Maloney
et al., 2009). SPARC limits p53 levels by activating Akt and MDM2,
and gaining SPARC expression in the development of melanoma
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confers a survival advantage by the inhibition of p53-dependent
apoptotic signaling pathways (Fenouille et al., 2011). SPARC
maintains a high-level expression in melanoma (Fenouille et al.,
2012). Interactions between melanoma and other cells are facilitated
in a SPARC-dependent form (Defresne et al., 2011). Normal
melanocytes do not express SPARC (Ledda et al., 1997). SPARC
is a possible leader for the treatment of melanoma (An et al., 2013).
SPARC is a stromal cell protein associated with melanoma
invasiveness (Rocco et al., 2011). SPARC overexpression
enhances vascular extravasation (Tichet et al., 2015). Serum levels
of SPARC were significantly higher in individuals with melanoma
than those in healthy donors (Ikuta et al., 2005). SPARC is found to
be strongly expressed in paraffin-embedded samples of melanoma
(Pieniazek et al., 2016). The proliferation of melanoma is associated
with the regulation of the expression of proteins involved in the
epithelial–mesenchymal transition and with the suppression of
MMP-2 and activation of MMP-9 (Cerezo et al., 2013). SPARC
plays an important role in the tumor evasion of immune surveillance
by reducing anti-tumor PMN action (Alvarez et al., 2005). Invasive
melanoma cells may invade intraepidermal regions and produce
epidermal melanoma metastases (EMM) (Meling et al., 2021).
SPARC aids cell expansion and could be a possible target for
melanoma treatment (Horie et al., 2010). Desmoplastic
melanoma (DM) is a unique form of melanoma in which SPARC
expression is extremely high (Garrido et al., 2014). The SPARC gene
is a key gene affecting the migration of melanoma (Kaochar et al.,
2018). SPARC is one of the indicators that helps identify the
progression of melanoma (Chakraborty et al., 2009). SPARC-
enriched tumors had a substantially higher percentage of vascular
occupancy (Ordonez et al., 2005). The utilization of therapeutic
genes that are directed by the SPARC driver could be a useful
approach for the treatment of cancer (Lopez et al., 2006). The high
level of SPARC in acidic media is considered to be an essential
potential for the invasive activity of tumors (Kato et al., 2000).
SPARC promotes metastasis and vascular extravasation in
melanoma.

The high expression of SPARC was found by conducting a study
on melanoma specimens. SPARC was found to be a key target for
treating melanoma. SPARC can enhance the permeability of blood
vessels, its high expression in acidic media provides motivation, and
it is a leader for treating melanoma.

Esophageal cancer

Due to its highly aggressive nature and poor survival rate,
esophageal cancer is one of the most aggressive cancers
worldwide (Domper Arnal et al., 2015). Esophageal cancer
greatly afflicts patients and produces many complications.

Regulatory mechanism of SPARC in esophageal
cancer

In the epithelial cells of esophageal cancer, SPARC is extremely
expressed (Brabender et al., 2005). The expression of the SPARC
gene is found to be increased in esophageal cancer (Luo et al., 2004).
SPARC is highly shown in the specimen (Botelho et al., 2010). The
protein expression pattern of SPARC is useful for developing
reasonable strategies for precocious detection of high-risk

features and for the prevention and management of ESCC (Xue
et al., 2006). SPARC becomes a prominent target for esophageal
cancer imaging (Zhao et al., 2022). SPARC is linked to unfavorable
prognosis in patients with ESCC (Wu et al., 2017). SPARC has a
strong correlation with MMP-2 expression, and this correlation
could play a critical role in the growth of esophageal cancer
(Yamashita et al., 2003). Laminin-5γ2 chain and SPARC might
participate in esophageal SCC progression, and their concurrent
expression is associated with adverse prognosis (Xue et al., 2011).
Compared to control mucosa, SPARC is highly overexpressed in
tumor tissues (Porte et al., 1998). The downregulation of SPARC
may reduce cell movement and invasion involved in EMT via the
p-FAK/p-ERK pathway, which could represent a novel therapeutic
approach for ESCC (Zhang et al., 2020).

Role of SPARC in esophageal cancer
Peritumoral stromal cells (tumor-associated fibroblasts and

macrophages) were the principal source of SPARC in the TME,
and exogenous SPARC increased tumor cell invasion (Ma W. et al.,
2022). SPARC is a cytoplasmic and nuclear protein found in ESCC
cells (Che et al., 2006). A high SPARC expression in ESCC
parenchyma with IHC is combined with lymph node metastasis
and bad prognosis (Chen et al., 2017).

During the procedure of esophageal cancer, SPARC could be
deployed as a potential medicinal target for endoscopic detection
due to its extremely high expression in IHC. In areas with high
incidence, early diagnosis is more important for esophageal cancer,
which has resulted in the emergence of endoscopic techniques. The
high expression of SPARC provides development potential and
convenience for detection. Through literature search and analysis
of clinical cancer samples, it is found that SPARC is located in the
nucleus and cytoplasm of ESCC and SPARC can be considered as a
prognostic indicator.

Ovarian cancer

Ovarian cancer (OvCa) is currently the fifth most frequent cause
of cancer-related mortality among females in the United States, and
approximately 140,000 females globally die from ovarian cancer
each year (Penny, 2020). SPARC has a therapeutic effect by
inhibiting OvCa cell metabolism (Naczki et al., 2018).

Regulatory mechanism of SPARC in ovarian cancer
SPARC inhibits the NF-κB pathway mediating macrophage-

induced ovarian cancer cell invasion (Said et al., 2008). SPARC
suppresses the differentiation of ovarian cancer cells and transition of
adipocytes to cancer (John et al., 2019). SPARC promoter methylation is
an essential element in the occurrence and survival of ovarian cancer,
and SPARC can be used as a therapeutic target and predictivemarker for
ovarian cancer (Socha et al., 2009). SPARC markedly reduced the
proliferative, chemotactic, and invasive effects of LPA on ovarian
cancer cell lines (Said N. A. et al., 2007). Knocking down SPARC
production clearly reduced ovarian cancer cell proliferation, induced the
apoptosis, and prevented the cells from invading and metastasizing.
SPARC becomes a key factor in ovarian cancer development as it is
overexpressed in aggressive subclones and ovarian cancer samples (Chen
et al., 2012).
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Role of SPARC in ovarian cancer
SPARC helps normalize the ovarian cancer malignant ascites

microenvironment by downregulating the VEGF–integrin–MMP
axis, reducing the levels and activation of bioactive lipids, and
ameliorating downstream inflammatory (Said et al., 2007b). The
expression of SPARC in ovarian cancer cells was negatively
associated with the level of malignancy (Yiu et al., 2001). In the
ovarian stroma containing malignant cells, particularly at the
tumor–stroma interface in invasive tumors, elevated levels of
SPARC mRNA and protein expression were found (Brown et al.,
1999). SPARC has limitations on normal ovaries in premenopausal
patients (Paley et al., 2000). SPARCmay work as a tumor suppressor
to reduce angiogenesis and lymphangiogenesis in ovarian cancer by
decreasing the amount of VEGF-C and VEGF-D expression (Peng
et al., 2017). SPARC modulates TGF-β1 fibrillar ECM deposition
through a novel mechanism to influence cancer cell biology
(Tumbarello et al., 2016). SPARC inhibits the αv- and β1-
integrin-mediated attachment of ovarian cancer cells to the ECM
(Said et al., 2007a).

Malignant ascites is the most common cause of death from
ovarian cancer, and SPARC normalizes malignant ascites in the
ovarian cancer microenvironment and improves inflammation
through downregulating the VEGF–integrin–MMP axis. Due to
the negative correlation among SPARC and ovarian cancer and
the regulation of the microenvironment, SPARC could be a possible
drug target for curing ovarian cancer.

Other cancers

Neoadjuvant chemoradiotherapy can improve the tumor
resection rate (Li Y. et al., 2016) and SPARC was found to be its
central gene (Sun et al., 2020). Rectal cancer patients with high
SPARC expression have poor prognosis. SPARC emerges as a
prognostic indicator for patients with colorectal cancer
undergoing chemoradiotherapy (Kurtul et al., 2017).

Bladder cancer (BCa) is the most prevalent malignancy of the
urinary tract and remains one of the most frequent forms of cancer
in the world (Dobruch and Oszczudłowski, 2021). The frequency
and strength of SPARC expression negatively correlated with
disease-specific survival in human bladder tumor tissues (Said
et al., 2013). SPARC shows potential as a prognostic indicator of
tumor recurrence or progression during prostate cancer theranostics
but is affected by hematuria (Critselis et al., 2019). The level of the
SPARC gene has a significant relationship with the histological type,
pathological status, and prognosis of bladder cancer (Yamanaka
et al., 2001). The SPARC level in human bladder cancer cell lines is
negatively associated with the proliferation rate (Larson et al., 2010;
Makridakis et al., 2010; Said, 2016).

Head and neck cancer is one of the most prevalent cancers
globally (Siegel et al., 2017). In cDNA array analysis, the expression
of SPARC in tumor regions was senior compared with adjacent
normal regions. SPARC can enhance the proliferation and
relocation of head and neck cancer cells (Chang et al., 2017).

SPARC can be used as a prospective therapeutic index and
prognostic biomarker for cancers including rectal cancer, bladder
cancer, and head and neck cancer. SPARC was negatively correlated
with tumor development. As a candidate therapeutic approach for

tumors, future research can focus on the highly expressed sites of
SPARC in cancer cells. As a prognostic indicator and potential target
for various tumors, it is shown in Figure 5.

Diabetes

SPARC is considered an important factor in diabetes (Kos and
Wilding, 2010). SPARC-null mice are profoundly diabetic. The
cross-sectional SPARC levels of women with gestational diabetes
mellitus were greater than those of normal controls (Recinella et al.,
2020). SPARC might serve as a promising and intriguing protein
target for potential therapeutic interventions or as a biomarker to
track the progression of diseases (Atorrasagasti et al., 2022). SPARC
is found to be highly expressed in adipocytes, as well as in
parenchymal and non-parenchymal hepatocytes, and pancreatic
cells. SPARC suppresses adipogenesis and promotes insulin
resistance. SPARC dramatically exacerbates diabetes in mice fed a
high-fat diet (Atorrasagasti et al., 2019).

Regulatory mechanism of SPARC in diabetes

SPARC is reduced in the islets from diabetic donors (Harries
et al., 2013). The occurrence of diabetes-related kidney growth was
related to the reduction of mRNA and protein of SPARC. In the
pathogenesis of diabetes-associated renal growth, SPARC is involved
in its pathogenesis (Gilbert et al., 1995). Diabetes-associated
mesenteric vascular hypertrophy is relevant to increased SPARC
expression in vessel walls (Jandeleit-Dahm et al., 2000). SPARC
deficiency inhibits the rise in superoxide production elicited by
diabetes stimulation, avoiding the induced hepatocyte damage
(Aseer et al., 2017). SPARC downregulates RGS4 protein in
pancreatic beta cells to enhance insulin secretion (Hu et al.,
2020). MiR-29 directly targets SPARC and adversely modulates
glucose metabolism by suppressing SPARC expression. SPARC
could be an ideal target for treating diabetes (Song et al., 2018).

Role of SPARC in diabetes

SPARC is significantly associated with inflammation in late
pregnancy (Xu et al., 2013). SPARC is highly expressed in
obesity and type 2 diabetes mellitus (T2DM), and levels of
SPARC in plasma are relatively high in T2DM patients (Wu
et al., 2011). For diabetic rats, SPARC is significantly upregulated
in the liver and downregulated in the pancreas (Aseer et al., 2015). In
the plasma of diabetic patients, the content of SPARC is extremely
elevated (Lee et al., 2013). The serum SPARC level in the diabetic
nephropathy group was the highest (Li L. et al., 2015). SPARC is
highly expressed in the islets of NODmice and is highest in the islets
of young mice. SPARC identifies novel regulators of islet survival
and ß-cell growth, a new target for treating diabetes (Ryall et al.,
2014). Serum SPARC levels in T2DM patients who have coronary
heart disease were elevated (Wang et al., 2015). SPARC expression
correlates with fat mass in human adipose tissues (Kos et al., 2009).
SPARC can be identified as potential central biomarkers for future
drug development in the SD rat model of DMED (Wang Y. et al.,
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2022). In proliferative diabetic retinopathy (PDR), SPARC is highly
expressed and can be a valid therapeutic target for disease treatment
(Boneva et al., 2021).

As one of the diseases with the most complications, diabetes
continues to plague lives. Functional nanomaterials manipulate
SPARC to treat diabetes, which will definitely become a hot topic
in the future.

Glaucoma

Glaucoma, a disease affecting the optic neuron, is the second
most prevalent cause of irreversible blindness. One of the primary
hazardous factors for the development of glaucoma is elevated
intraocular pressure (IOP) (Wallace et al., 2014). SPARC has
been detected in different ocular tissues, including the cornea,
ciliary epithelium, and other tissues.

Regulatory mechanism of SPARC in
glaucoma

The influence of SPARC on TGF-β2-mediated ocular
hypertension offers a violent disease connection to primary
open-angle glaucoma (POAG) pathogenesis. SPARC may be a
curative target for certain eye diseases, for instance POAG
(Scavelli et al., 2015). In the iris of PACG, SPARC was
markedly elevated. By modifying the organization of the ECM
to affect the biomechanical properties of the iris, SPARC could
have a role in the generation of PACG (Chua et al., 2008). The

lack of SPARC reduces intraocular pressure in a glaucoma mouse
model (Wallace et al., 2015). The survival of postoperative
surgical wounds was significantly improved in a SPARC-null
mouse model of chronic glaucoma filtration (Seet et al., 2010). A
key regulator of the TGF-β2-mediated ocular hypertension node
is SPARC. By limiting the expression of collagen IV and
fibronectin, loss of SPARC markedly attenuates the effect of
TGF-β2 (Swaminathan et al., 2014). TGF-β2-mediated IOP
elevation: SPARC may be a downstream regulator (Kang et al.,
2013). Network pharmacology identified SPARC as a gene
associated with glaucoma pathogenesis (Moazzeni et al., 2019).
SPARC is involved in IOP dysregulation and is a potential
therapeutic target (Rhee et al., 2009). The outflow of the
aqueous humor across the TM pathway may be impaired by
SPARC.

Role of SPARC in glaucoma

SPARC has a major role in aqueous humor outflow across the
trabecular meshwork (TM) (Fu et al., 2021). For the treatment of
glaucoma, SPARC knockout has emerged as an attractive option
(Seet et al., 2012). SPARC was significantly elevated in idiopathic
open-angle glaucoma and angle-closure glaucoma. SPARC may
be considered a potential target for treating glaucoma
(NikhalaShree et al., 2019). SPARC levels in aqueous humor
are prognostic factors for the trabeculectomy surgical outcome
(Zhang Z. et al., 2018). SPARC remains a prospective index for
the treatment of glaucoma (Kang et al., 2011). In comparison
with the cataract group, the level of SPARC was evidently higher

FIGURE 5
SPARC as a candidate target and as a therapeutic prognostic indicator for the adjuvant treatment of cancer. As a new therapeutic target, SPARC is
extremely expressed in most tumors and will surely provide greater convenience for the effective treatment of tumors with functional nanomaterials in
the future.
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in the APAC group and was positively correlated with IOP
(Wang J. et al., 2018). SPARC is extremely issued in the fetal
cornea and TM (Carnes et al., 2018).

SPARC has become a good target for the treatment of a series of
ophthalmic diseases, such as glaucoma, and will bring good news to
patients in the future. Scarless treatment will be preferred by
everyone in the future.

Manipulation of SPARC by functional
nanomaterials

As a potential diagnostic marker and prognostic factor for
disease, SPARC has achieved certain therapeutic results in its
targeted agents as shown in Figure 6. The manipulation of
SPARC by functional nanomaterials plays a role in further
targeted treatment of diseases.

Manipulation of SPARC by functional
nanomaterials in RA and OA

RA and OA are bone degenerative diseases that have been
plaguing clinics. Li et al. designed a thermosensitive hydrogel
with negative charge targeting fibrocartilage for the continued
supply of docetaxel to promote fibrocartilage clearing in a
cartilage defect pattern. Fibrocartilage was stabilized by
microtubule stabilization. The mechanism of clearing was
confirmed to inhibit SPARC (Li J. et al., 2022). In RA and CIA
joints, SPARC is highly overexpressed in the synovial membrane
and synovial fluid. Given the major appetency between SPARC and

HSA, MTX@HSA NMs have become effective potential
nanomedicines for the cure of RA. Functional nanomaterial HSA
might significantly improve the therapeutic effect and anti-
inflammatory activity of MTX (Liu et al., 2019). Probes carrying
functional nanomaterials determine the pathogenesis of OA by
manipulating SPARC (Ceppi et al., 2019). RA and OA
significantly affect the mobility of patients. Manipulating SPARC
with functional nanomaterials to treat RA is bound to result in a
series of problems.

Manipulation of SPARC by functional
nanomaterials in tumors

Dual-targeted therapy for metastatic rectal cancer was carried
out by developing lactoferrin-mediated liposomes that bind to the
LRP-1 receptor. Lactoferrin modification and endogenous
albumin adsorption realize the advantages of functional
nanomaterial manipulation of SPARC for rectal cancer (Xu Y.
et al., 2022). A bioresponsive micro–nano (MTN) system was used
for the effective clearance of Cryptococcus neoformans in vivo. The
strategy is built on the excessive expression of matrix
metalloproteinase 3 (MMP-3) in the infectious
microenvironment (IME) and several associated target cells
based on the overexpression of SPARC. Using BSA as a carrier,
which is the natural carrier of SPARC, based on the overexpression
of SPARC, NPs were deeper targeted to lung tissue, brain, and
infected macrophages (Cheng et al., 2021). Albumin-based
nanoparticles have been shown to be a useful drug delivery
mechanism due to the intrinsic targeting of albumin through
SPARC-mediated acceptor endocytosis (Hassanin and Elzoghby,

FIGURE 6
Targeted therapy with SPARC as a potential target. Current research on manipulating SPARC to treat diseases with novel nanomaterials. Functional
nanomaterials can achieve targeted therapy of tumors by manipulating SPARC.
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2020). Fibrotic stroma and tumor-promoting pancreatic stellate
cells (PSCs) are key features in the microenvironment of
pancreatic ductal adenocarcinoma (PDA). Nab-PTX is an HSA
PTX nanoparticle. The enhanced matrix penetration may be due to
its small in vivo size and the high affinity of HSA for SPARC (Wei
et al., 2017). Based on the large avidity between HSA and SPARC,
precise targeting of cancer sites can be achieved and the
concentration of PDA drugs can be enhanced. HSA-coated MSe
@ DOX forms redox-responsive nanoparticles (HSA-MSe @ DOX)
on the surface, enhancing tumor targeting through nanoparticle
interactions with SPARC in MCF-7 cells (Zhao et al., 2017). As a
source of amino acids and energy for fast-growing cancer cells,
SPARC is overexpressed in many tumors and its role is to transport
albumin (Lin et al., 2016). Based on the high expression of SPARC
in cancer and inflammatory sites, manipulating SPARC with
functional nanomaterials to treat cancer will become an
efficient and feasible strategy.

Using HSA or BSA as a carrier, the drug can precisely be targeted
to the lesion, which avoids not only adverse reactions but also long
treatment cycle and multiple biological disadvantages of side effects.
The research of new nanomaterial manipulation on SPARC has
gradually deepened.

Future perspectives

The emergence of SPARC as a potential target and prognostic
indicator is good news for the entire medical community. The
investigation and research on the relationship between SPARC
and cancer has been very comprehensive, but there are very
limited articles on SPARC and RA for reference, which also
brings limitations to the development and utilization of
SPARC-targeted drug delivery systems. The effective treatment
of RA has always been a difficult problem in the medical field, and
the discovery of SPARC potential targets provides a bright spot
for our future research. Summarizing the SPARC therapeutic
mechanism and potential targets will provide impetus for the
targeted drug delivery system controlled by functional
nanomaterials or good prognosis of diseases.

Summary

As an albumin-binding protein, SPARC was originally
derived from human and fetal bovine bone and has high
affinity with HSA and BSA. Multiple studies have found that

TABLE 1 Summary of SPARC as a potential target and prognostic indicator.

Disease name Mechanism Reference

Rheumatoid arthritis Negative regulation of NF-κB and TGF-β pathways Mechanism of SPARC and SPARCL-1 regulating autophagy in
glutamate-induced hippocampal neuron injury (xxx); Cheng et al. (2021);

Critselis et al. (2019)

Gastric cancer SPARC expression can promote gastric cancer cell invasion, metastasis,
and angiogenesis

Haber et al. (2008); Hung et al. (2017)

Hepatocellular
carcinoma

Overexpression of SPARC in HCC cells leads to reduced tumorigenicity in
part by inducing MET

Ikuta et al. (2005)

Breast cancer SPARC curbs the mobility and invasion of breast cancer, while resisting
the platelet deficiency caused by SPARC

Lin et al. (2016); Lopez et al. (2006)

Non-small-cell lung
cancer

By stimulating microvascular remodeling and excessive deposition of
ECM proteins, SPARC induces pathological changes in non-small-cell

lung cancer and idiopathic pulmonary fibrosis

Ng et al. (2013); NikhalaShree et al. (2019)

Melanoma SPARC promotes cathepsin B-mediated melanoma invasion using
collagen I and α2β1 integrin as mediators. SPARC helps in cell growth

Piñero et al. (2020); Said et al. (2007c)

Esophageal cancer Downregulation of SPARC can reduce cell migration and invasion
involved in EMT through the p-FAK/p-ERK pathway

Swaminathan et al. (2014); Termine et al. (1981)

Ovarian cancer SPARC inhibits the NF-κB pathway mediating the macrophage-induced
invasion of ovarian cancer cells

Wan et al. (2015); Wang et al. (2012)

Rectal cancer Cox regression analysis identified the central genes of prognosis, and
SPARC was the central gene

Wang et al. (2022a)

Bladder cancer SPARC expression in human bladder cancer cell family negatively
correlates with its proliferation rate and inhibits cell cycle progression by

decelerating down the G1/S cell cycle

Wei et. (2017)

Head and neck
cancer

SPARC strengthens cell proliferation, migration, and mesenchymal
phenotype

Wu et al. (2017)

Diabetes SPARC is expressed in adipocytes, parenchymal and non-parenchymal
hepatocytes, and pancreatic cells. SPARC suppresses adipogenesis and

promotes insulin resistance

Xu et al. (2022b); Xue et al. (2011); Ye (2017)

Glaucoma The influence of SPARC on TGF-β2-mediated ocular hypertension gives a
unique insight into the pathogenesis of glaucoma

Zhang et al. (2021); Zhao et al. (2022)
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SPARC is highly expressed in RA joint inflammation sites,
various cancers, glaucoma, obese patients, diabetic patients,
and melanoma patients as shown in Table 1. With the rapid
development of the nano industry, targeted drug delivery systems
are gradually emerging. Functional nanomaterials manipulate
SPARC to produce anti-inflammatory therapeutic effects. RA
and cancer are diseases that have plagued human beings for a
long time. When alleviating the adverse reactions of patients, it is
very critical to find a precise target for the effective treatment of
cancer and RA. As a potential target for disease treatment,
SPARC mostly uses HSA and BSA as carriers. When utilizing
the affinity of the two, it can also efficiently and accurately load
the drug for disease treatment into target cells. At present, based
on several nanoparticles for the treatment of RA and tumors, for
the treatment of RA, SPARC as a prospective target not only has
an anti-inflammatory effect in the joint synovium but also
realizes the precise targeting of drugs, achieving the effect of
killing two birds with one stone.
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Glossary

SIN Sinomenine

SPARC Secreted protein acidic and rich in cysteine

NF-κB Nuclear factor-κB

HSA Human serum albumin

BSA Bovine serum albumin

FLS Fibroblast-like synovial cells

VEGF Vascular endothelial growth factor

MMPs Matrix metalloproteinases

FS Follistatin-like

EC Extracellular

ISG Interferon-stimulated gene

RA Rheumatoid arthritis

IHC Immunohistochemistry

ELISA Enzyme-linked immunosorbent assay

OA Osteoarthritis

TGF-β Transforming growth factor-β

ECM Extracellular matrix

RANKL Receptor activator of nuclear factor-κB ligand

GC Gastric cancer

DEGs Differentially expressed genes

PPI Protein–protein interaction

GDM Gestational diabetes mellitus

ADR Doxorubicin

5-FU 5-Fluorouracil

DEGs Differentially expressed genes

TME Tumor microenvironment

PPI Protein–protein interaction

GEO Gene Expression Omnibus

MET Mesenchymal–epithelial transition

ROS Reactive oxygen species

LDH Lactate dehydrogenase

NAFLD Non-alcoholic fatty liver disease

AMO Anti-miR-29a oligonucleotide

NCRT Neoadjuvant chemoradiotherapy

SNPs Single-nucleotide polymorphisms

HSCs Hepatic stellate cells

TNBC Triple-negative breast cancer

IRS Immune response scoring

MDSCs Myeloid-derived suppressor cells

CTGF Connective tissue growth factor

PT Phyllodes tumors

ISH In situ hybridization

NSCLC Non-small-cell lung cancer

ET-3 Endothelin-3

EMM Epidermal melanoma metastases

CSM Common skin metastasis

ESCC Esophageal squamous cell carcinoma

FFPE Formalin-fixed paraffin-embedded

BE Barrett’s esophagus

siRNA Small interfering RNA

OvCa Ovarian cancer

LARC Locally advanced rectal cancer

T2DM Type 2 diabetes mellitus

NOD Non-obese diabetic

SAAT Subcutaneous abdominal adipose tissue

DMED Diabetic erectile dysfunction

TM Trabecular meshwork
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