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Background:Colon cancer, a prevalent and deadly malignancy worldwide, ranks
as the third leading cause of cancer-related mortality. Disulfidptosis stress
triggers a unique form of programmed cell death known as disulfidoptosis,
characterized by excessive intracellular cystine accumulation. This study aimed
to establish reliable bioindicators based on long non-coding RNAs (LncRNAs)
associated with disulfidptosis-induced cell death, providing novel insights into
immunotherapeutic response and prognostic assessment in patients with colon
adenocarcinoma (COAD).

Methods: Univariate Cox proportional hazard analysis and Lasso regression
analysis were performed to identify differentially expressed genes strongly
associated with prognosis. Subsequently, a multifactorial model for prognostic
risk assessment was developed usingmultiple Cox proportional hazard regression.
Furthermore, we conducted comprehensive evaluations of the characteristics of
disulfidptosis response-related LncRNAs, considering clinicopathological
features, tumor microenvironment, and chemotherapy sensitivity. The
expression levels of prognosis-related genes in COAD patients were validated
using quantitative real-time fluorescence PCR (qRT-PCR). Additionally, the role of
ZEB1-SA1 in colon cancer was investigated through CCK8 assays, wound healing
experiment and transwell experiments.

Results: disulfidptosis response-related LncRNAs were identified as robust
predictors of COAD prognosis. Multifactorial analysis revealed that the risk
score derived from these LncRNAs served as an independent prognostic factor
for COAD. Patients in the low-risk group exhibited superior overall survival (OS)
compared to those in the high-risk group. Accordingly, our developedNomogram
prediction model, integrating clinical characteristics and risk scores,
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demonstrated excellent prognostic efficacy. In vitro experiments demonstrated
that ZEB1-SA1 promoted the proliferation and migration of COAD cells.

Conclusion: Leveraging medical big data and artificial intelligence, we constructed
a prediction model for disulfidptosis response-related LncRNAs based on the
TCGA-COAD cohort, enabling accurate prognostic prediction in colon cancer
patients. The implementation of this model in clinical practice can facilitate precise
classification of COAD patients, identification of specific subgroups more likely to
respond favorably to immunotherapy and chemotherapy, and inform the
development of personalized treatment strategies for COAD patients based on
scientific evidence.

KEYWORDS

Disulfidptosis, Colon cancer, LnRNAs, Tumor microenvironment, Prognostic markers,
Immunotherapy response, Chemotherapy sensitivity

1 Introduction

Colon cancer is a significant global health concern, which is
defined as any malignant tumour originating from the inner
epithelial layer of the colon (Rajamanickam and Agarwal, 2008),
ranking as the third most prevalent cancer worldwide and leading to
a substantial number of annual deaths (Wu et al., 2022). The
incidence of Colon cancer is on the rise globally, with a
particular increase observed in the Asian region. Projections by
the World Health Organization indicate a further escalation in
global Colon cancer cases, expected to reach 1.5 million by 2030
(Dmello et al., 2021). Due to the absence of early symptoms, most
colon cancer patients are diagnosed in the intermediate or advanced
stages, with little opportunity for radical surgery (Pan et al., 2021).
With effective prevention in the past, colon cancer mortality rates
have declined dramatically, but in 2008 it was estimated that there
were 108,070 new cases of colon cancer and 49.960 colon cancer
deaths (Rajamanickam and Agarwal, 2008). A survey of the
prognosis of colon cancer patients shows that the 5-year survival
rate for stage I colon cancer is 91 per cent, but drops to 72 per cent
for locally advanced disease and to 14 per cent for stage IV colon
cancer (Chetroiu et al., 2021). Cancer is a multifactorial, polygenic
disease involving many complex biological processes in its
development and progression. Presently, the primary modalities
employed in the management of Colon cancer comprise surgical
resection, chemotherapy, radiotherapy, and immunotherapy.
Surgical intervention is considered the preferred treatment for
patients with early-stage disease. Nevertheless, it should be noted
that surgery may not offer curative outcomes for all individuals,
particularly those diagnosed at advanced stages (Yao and Li, 2020).
Recurrence and metastasis of Colon cancer make the treatment of
this disease more challenging (Su et al., 2022). Currently, the TNM
staging system is widely used for the prognostic assessment of Colon
cancer patients. However, significant differences in patient survival
time have been reported even at the same staging, suggesting that
this assessment criterion is more limiting in predicting patient
survival time (Yang et al., 2015). In view of this, it has become
crucial to delve deeper into the pathogenesis of colon cancer, not
only to better understand its origin and progression, but also to
facilitate the emergence of more effective therapeutic strategies. A
deeper understanding of the pathogenesis of malignant tumors
holds the promise of innovative and improved therapeutic

approaches. In addition, the search for novel colon cancer
biomarkers is imperative for early detection and more effective
treatment, which highlights the urgent need for new therapeutic
pathways and predictive tools in the field of colon cancer treatment.
Thus, this study explores the prognostic and therapeutic aspects of
colon cancer based on the newly discovered biomarker.

Long non-coding RNAs (lncRNAs) are a class of RNAmolecules
characterized by their length of more than 200 nucleotides. Unlike
messenger RNAs (mRNAs) that encode proteins, lncRNAs do not
possess protein-coding capacity (Sun et al., 2019). Growing evidence
suggests that dysregulated expression of lncRNAs is implicated in
various diseases. Specifically, numerous studies have demonstrated
that lncRNAs exhibit distinct expression patterns that are spatially,
temporally, and cell-state specific, thereby playing pivotal roles in
tumorigenesis and cancer progression (Yang et al., 2018). Growing
evidence suggests that dysregulated expression of lncRNAs is
implicated in various diseases. Specifically, numerous studies
have demonstrated that lncRNAs exhibit distinct expression
patterns that are spatially, temporally, and cell-state specific,
thereby playing pivotal roles in tumorigenesis and cancer
progression (Cai et al., 2022). Notably, emerging research has
unveiled the significant involvement of lncRNAs in the
pathogenesis of Colon cancer. Among the recently discovered
programmed cell death pathways, disulfidoptosis has emerged as
a distinctive mechanism triggering programmed cell death through
specific signaling cascades (Liu X. et al., 2023). Therefore, studying
disulfidptosisLncRNAs (DRLs) associated with disulfidptosis death
may provide new predictive methods for tumor patient prognosis
and immune microenvironment. Meanwhile, using techniques such
as machine learning, accurate prediction models can be established
to support clinical treatment and individualized medicine. However,
the current research on disulfidptosis death-related lncRNAs in
Colon cancer is still in the initial stage.

Cell death is a fundamental process that plays a crucial role in
various biological activities, and its dysregulation is intimately linked
to the development and progression of numerous diseases. The
advantages and advances in bioinformatics and machine learning
provide opportunities for a deeper and more comprehensive
understanding of cell death and provide strong support for the
development of new therapeutic approaches and personalized
medicine. By applying a bioinformatics approach, we can identify
and resolve genes and proteins associated with cell death, revealing

Frontiers in Molecular Biosciences frontiersin.org02

Chi et al. 10.3389/fmolb.2023.1254232

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1254232


their regulatory mechanisms and interaction networks. This
systematic research approach can help us to comprehensively
understand the molecular mechanisms of cell death and identify
new therapeutic targets. Many important advances have been made
in cell death research, driven by bioinformatics and machine
learning. Medical big data and artificial intelligence have made
significant progress and advantages in cancer research (Zhang P.
et al., 2022; Zhao et al., 2022a; Zhao et al., 2022b; Zhao et al., 2022c;
Zhang et al., 2023a). With the continuous development of data
acquisition and storage technologies, more and more cancer dates
are available for analysis and mining, which can help to discover
patterns of disease progression and predict the risk of disease (Zhao
et al., 2023a; Liu J. et al., 2023; Zhao et al., 2023b; Zhao et al., 2023c;
Pei et al., 2023). Artificial intelligence is also playing an increasingly
important role in cancer diagnosis, treatment, and prognosis, for
example, in gene sequencing data analysis, cancer prediction, and
personalized treatment (Cui et al., 2022; Zhao Z. J. et al., 2022). The
advantages of medical big data and artificial intelligence are the
ability to process large amounts of data, discover hidden patterns,
and improve accuracy and personalized treatment, thus promising
better medical care and treatment options for cancer patients
(Zhang et al., 2023b). In this study, we have developed a
predictive model for colon cancer Disulfidptosis Response-
Related Long Non-Coding RNAs (DRLs) employing healthcare
big data and artificial intelligence techniques. Leveraging the
TCGA-COAD cohort, our model serves the purpose of
predicting various facets of colon cancer prognosis, mutations,
immune status, and responsiveness to chemotherapeutic drugs.
Our methodology involved data mining of patient information
from publicly available databases, followed by an extensive
analysis encompassing enrichment, immunological, and drug
sensitivity assessments. Additionally, we conducted internal
validation and experimental verification, affirming the
outstanding stability and reliability of the model we have
constructed. This comprehensive approach offers a novel
perspective for the implementation of precision and personalized
treatment strategies in the management of tumors. The integration
of medical big data and artificial intelligence provides a powerful
framework to enhance our understanding of Colon cancer and guide
tailored therapeutic interventions for improved patient outcomes.
As technology continues to advance and research methods become
more innovative, we believe the role of bioinformatics and machine
learning in cell death research will be further enhanced, leading to
greater breakthroughs in human health and disease treatment.

Our study represents a notable innovation and holds substantial
scientific significance. Initially, we successfully identified a panel of
long non-coding RNAs (lncRNAs) intricately linked to
disulfidptosis-induced apoptosis in colon cancer (COAD)
patients. Beyond RNA identification, our investigation advanced
to encompass the development of a predictive model rooted in these
lncRNAs. This model not only adeptly appraises COAD patient
prognostics but also furnishes insights into their immune milieu.
This pioneering approach is poised to furnish personalized
therapeutic strategies tailored to COAD patients, with a
particular emphasis on the realm of immunotherapy. Our
model’s capacity to enhance clinicians’ comprehension of
patients’ immune profiles promises more adept selection and
optimization of treatment modalities, thereby augmenting the

efficacy of immunotherapy. Of paramount significance, our
findings illuminate the pivotal role played by lncRNAs in
orchestrating immunotherapeutic responses, providing invaluable
guidance for the formulation of more efficacious immunotherapy
approaches. In sum, our study contributes noteworthy innovative
and scientific value to COAD patient care and advances in tumor
immunology.

2 Materials and methods

2.1 Data sources

Transcriptomic data and relevant clinical information of Colon
adenocarcinoma (COAD) patients were retrieved from the TCGA
database (https://portal.gdc.cancer.gov/). The data were accessed on
26 March 2023. Patients with missing samples in the Grade phase
were excluded from the study. The remaining patients were
randomly divided into training and test sets, maintaining a 7:
3 ratio. Genes associated with disulfidoptosis were specifically
selected for subsequent analysis. To distinguish between
messenger RNA (mRNA) and long non-coding RNA (lncRNA),
we utilized Strawberry Perl software, focusing on lncRNA-related
data in this study. Clinical data including age, gender, tumor stage,
and TNM stage were collected for the COAD patients.

2.2 Screening of DRLs

Differential gene expression analysis of COAD patients in
TCGA was performed using the “limma” R package (Ritchie
et al., 2015). Long non-coding RNAs (lncRNAs) with a standard
deviation greater than 0.2 and a t-test p-value less than 0.05 were
selected (Smyth, 2004). Subsequently, the correlation between the
identified lncRNAs and disulfidoptosis data was calculated.
LncRNAs with a correlation coefficient (corFilter) greater than or
equal to 0.4 and a p-value (pvalueFilter) less than or equal to
0.001 were retained. The visualization of the results was achieved
using the “dplyr” (Foster et al., 2018), “ggalluvial” (Brunson, 2020)
and “ggplot2” (Ito et al., 2013) R packages, specifically utilizing the
ggalluvial plots for enhanced visual representation.

2.3 Development and validation of
prognostic models for DRLs

To integrate disulfidptosis response-related long non-coding
RNAs (DRLs) and survival data in patients with Colon cancer
(COAD), we employed the “limma” R package. Initially, we
conducted univariate Cox regression analysis to identify
differentially expressed DRLs significantly associated with
prognosis. We set the significance threshold at a Cox p-value
(coxPfilter) of less than 0.05. Based on these findings, we utilized
the “caret” R package (Van E and ssen, 2012) to randomly divide the
samples into training and test groups in a 7:3 ratio. Subsequently, we
employed the “glmnet” R package (Engebretsen and Bohlin, 2019) to
perform a minimum absolute shrinkage and selection operator
(LASSO) Cox regression analysis, followed by a multivariate Cox

Frontiers in Molecular Biosciences frontiersin.org03

Chi et al. 10.3389/fmolb.2023.1254232

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1254232


regression analysis, to establish prognostic features. These features
were then utilized to derive a risk score formula. The formula was
calculated as follows: risk level = expressed lncRNA1 ×
CoeflncRNA1 + expressed lncRNA2 × CoeflncRNA2 + . . . +
expressed lncRNAn × CoeflncRNAn, where Coefi represents the
correlation coefficient. This study categorized COAD patients into
two groups: a low-risk group and a high-risk group. To evaluate the
prognostic efficacy of the derived risk score, we employed receiver
operating characteristic (ROC) curves using multiple metrics.
Internal validation was conducted by plotting ROC curves for
both the training and test sets. Furthermore, we compared the
overall survival of patients in the low-risk and high-risk groups
using Kaplan-Meier survival curves. Additionally, we performed
additional validation to assess the impact of clinical variables on
prognostic prediction, including clinical ROC curves, C-index, and
subgroup analysis.

2.4 Nomogram construction

To assess the ability of risk scores to serve as independent
predictors and to develop a Nomogram for prognostic evaluation,
we conducted univariate and multivariate Cox regression analyses.
These analyses were performed using the TCGA-COAD cohort. To
create a comprehensive visual representation, we utilized the “rms”
package in R to construct a column line graph. This graph
incorporated the risk scores along with clinicopathological
characteristics to predict survival outcomes at specific time
points, including 1, 3, and 5 years. The resulting Nomogram
provides a useful tool for clinicians to estimate individual patient
prognosis by considering the combined influence of risk scores and
clinicopathological features.

2.5 Functional enrichment analysis

We conducted functional enrichment analysis for the
differentially expressed genes associated with the four
disulfidptosis response-related long non-coding RNAs (DRLs).
This analysis aimed to annotate and investigate enriched
pathways. To achieve this, we utilized ClusterProfiler, a widely
used R package (Yu et al., 2012), to evaluate the KEGG pathway
and gene ontology (GO) terms associated with the differentially
expressed genes. By performing this analysis, we gained valuable
insights into the functional roles and pathways associated with the
identified genes. These findings provide a solid foundation for
subsequent studies and further exploration of the molecular
mechanisms underlying COAD.

2.6 Immunological analysis of risk
characteristics

To evaluate the immune infiltration score associated with the
risk characteristics, we employed multiple algorithms, including
XCELL (Aran et al., 2017), TIMER (Li T. et al., 2020),
QUANTISEQ (Chen et al., 2018), MCPCOUNT (Dienstmann
et al., 2019), and EPIC (Racle et al., 2017). These algorithms

allowed us to assess the immune cell composition within the
tumor microenvironment. By utilizing these algorithms, we
obtained comprehensive information on the infiltration levels of
various immune cell types in relation to the identified risk
characteristics. Furthermore, we compared the changes in
immune checkpoints between patients in the high-risk and low-
risk groups. Immune checkpoints play a crucial role in regulating the
immune response, and alterations in their expression can influence
tumor immune evasion. By examining the differences in immune
checkpoint expression patterns, we gained insights into the potential
immunological characteristics associated with the risk stratification.

2.7 Tumor mutation analysis

To obtain the tumor mutation load (TMB) data for COAD, we
retrieved the information from the TCGA database. TMB represents
the number of mutated bases per 1 million bases. The Strawberry
Perl program was employed to collect and classify the TMB data into
high and low categories, based on the TMB median. To further
analyze the mutation profiles, we utilized the R package “maftool”
(Mayakonda et al., 2018) to evaluate and present the 15 genes with
the highest tumor mutation frequency (TMF) among COAD
patients in the TCGA database. This analysis provided insights
into the specific genes that exhibited a high frequency of mutations
in COAD. Additionally, we compared the TMB levels between the
high-risk and low-risk groups and performed log-rank tests for
survival analysis. By examining the association between TMB and
patient survival, we aimed to explore the potential impact of TMB on
the prognosis of COAD patients.

2.8 Targeted drug sensitivity and
immunotherapy response prediction

To predict the response to immunotherapy in COAD patients,
we employed the Tumor Immune Dysfunction and Exclusion
(TIDE) score. The TIDE score is a computational method that
assesses the likelihood of response to immunotherapy based on the
tumor’s immune microenvironment. By calculating the TIDE score
for COAD patients, we aimed to predict their potential response to
immunotherapy treatment. Furthermore, to predict the sensitivity of
COAD patients to commonly used chemotherapeutic agents, we
utilized the R package “oncoPredict” (Maeser et al., 2021). This
package employs the half-maximal inhibitory concentration (IC50)
values of COAD patients, which were obtained from the Genomics
of Drug Sensitivity in Cancer (GDSC) database (Geeleher et al.,
2014). By analyzing the IC50 data, we were able to predict the
differential chemosensitivity of COAD patients to various
chemotherapeutic agents commonly used in clinical practice.

2.9 Cell culture and qPCR assay

In our experimental study, we utilized several cell lines,
including Caco-2 and SW480 colon cancer cells, along with
NCM460 normal breast cells. These cell lines were sourced from
the cell bank of the Central Laboratory of the Affiliated Hospital of
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Southwest Medical University. To ensure their proper growth and
maintenance, we cultured these cells in DMEM (HyClone) medium
supplemented with 10% fetal bovine serum (HyClone), 100 U/L
penicillin, and 100 mg/L streptomycin (Thermo Fisher). We
maintained standard culture conditions, which included a 5%
CO2 atmosphere, to provide an optimal environment for cell
viability and experimental consistency. For RNA extraction, we
employed the RNA Eazy Fast Tissue/Cell Kit (TIANGEN Biotech
Co.) following the manufacturer’s instructions. This kit facilitated
the isolation of total RNA from the cell samples. Subsequently, the
obtained RNA samples were utilized for cDNA synthesis using the
FastKing RT Kit (TIANGEN Biotech Co.). Real-time PCR was
performed on the StepOnePlus Real-Time PCR System (Thermo
Fisher) using the SuperReal PreMix Plus reagent (TIANGEN
Biotech Co.). The PCR protocol involved an initial pre-
denaturation step at 95°C for 15 min, followed by 40 cycles of
denaturation at 95°C for 10 s, annealing at 72°C for 20 s, and
extension at 60°C for 20 s. For your reference, the primer
sequences used in the PCR reaction can be found in Table 1.

2.10 Transient transfection

In our study, the colon cancer cell lines Caco-2 and SW480 were
cultured using Dulbecco’s modified Eagle’s medium (DMEM;
HyClone) supplemented with 10% fetal bovine serum (FBS;
Hyclone), 100 U/L penicillin, and 100 mg/L streptomycin
(Thermo Fisher). The cells were maintained at a temperature of
37°C in a 5% CO2 environment. For transient transfection
experiments, we utilized Lipofectamine 3000 (Invitrogen,
Carlsbad, CA, United States) as the transfection reagent. Negative
Control (NC) and ZEB1-SA1 siRNA (RiboBio, Guangzhou, China)
were transfected into the colon cancer cells according to the
manufacturer’s instructions. This involved preparing the
transfection mixture containing the siRNA and transfection
reagent, which was then added to the cells. The transfection
process was performed for a specified duration, typically
following the manufacturer’s recommended protocol. By using
Lipofectamine 3000 as the transfection reagent, we aimed to
efficiently introduce the Negative Control or ZEB1-SA1 siRNA
into the colon cancer cells, allowing for subsequent analysis and
investigation of the effects of gene knockdown or control on cellular
processes and molecular pathways.

2.11 CCK-8 assay

We assessed cell viability using the Cell Counting Kit-8
(CCK-8) assay. After 24 h of transfection, the colon cancer
cells were seeded into 96-well plates at a density of 1,500 cells
per well in 200 µL of complete medium. The cells were then

incubated at 37°C. To perform the CCK-8 assay, 10 µL of CCK-8
reagent (Beyotime, Shanghai, China) was added to each well
containing the cells. The plates were incubated for an additional
4 h at 37°C to allow the reagent to interact with the cells. During
this time, the CCK-8 reagent undergoes a colorimetric reaction
that correlates with cell viability. After the incubation period,
the optical density value (OD450) was measured using a
microplate reader. The OD450 measurement reflects the
absorbance of the CCK-8 formazan product, which is directly
proportional to the metabolic activity and viability of the cells.
By quantifying the OD450 values, we were able to assess the
relative cell viability and compare it across different
experimental conditions or treatment groups.

2.12 Transwell assay

The invasion capabilities of colon cancer cells were evaluated
using the Transwell assay, a well-established technique in cell
biology research. In this assay, a specific number of colon cancer
cells, approximately 1 × 10̂5 cells, were seeded into specialized
chambers. For assessing invasion potential, Matrigel-coated
chambers were used. The upper chamber was filled with
serum-free medium, creating a chemotactic gradient, while
the lower chamber contained complete DMEM medium,
providing a favorable environment for cell movement.
Following an incubation period of 24 h, the cells that
successfully invaded through the membrane were fixed using
a 4% paraformaldehyde solution. To visualize and quantify the
invaded cells, staining with 0.1% crystal violet was performed.
The stained cells were then observed and counted under a light
microscope, enabling the assessment of cell numbers and
invasion capabilities.

2.13 Wound healing experiment

In order to evaluate the migratory capacity of colon cancer
cells, a wound healing assay was employed. Cells post-
transfection were cultivated in six-well plates and maintained
at 37°C until they achieved an approximate confluency of 80%.
Uniform wounds were introduced into the cell monolayer
utilizing a 200 μL sterile pipette tip. After the creation of
these wounds, the cells were rinsed twice with PBS to
eliminate any remnants, and the medium was subsequently
refreshed with a serum-free variant. Using an Olympus
inverted microscope, the progression of cell migration to the
injured area was recorded at 0 and 24 h. This allowed for a
quantifiable assessment of the migration distance covered by the
cells.

2.14 Statistical analysis

We employed R software version 4.2.3 and Strawberry Perl
version 5.30.0 for statistical analyses. To assess the migration and
invasion abilities of colon cancer cells, we conducted the Transwell
assay. Cells were seeded into Matrigel-coated or uncoated

TABLE 1 Gene primer sequences for 4 DRLs.

Gene Sequences (5’–3’)

H-ZEB1-AS1-F GCTGTTGCTTCTCCCTTCTG

H-ZEB1-AS1-R GTGTCATCTCCCTTGCCACT
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chambers for invasion or migration, respectively. Following 24 h of
incubation, cells that migrated or invaded through the membrane
were fixed and stained. Quantification was performed using a light

microscope. In addition, we used Kaplan-Meier survival curves
and log-rank tests to compare the overall survival of high-risk and
low-risk groups. Prognostic characteristics were constructed using the

FIGURE 1
The identification process of candidate long non-coding RNAs (lncRNAs) associated with disulfidptosis. (A) The ggalluvial plot displays the co-
expression of 802 lncRNAs and their associated genes related to disulfidptosis. (B) Univariate Cox regression analysis is employed to evaluate the
prognostic significance of the disulfidptosis-associated lncRNAs. (C) The Lasso model is adjusted for parameter selection using tenfold cross-validation.
(D) Lasso coefficient curves are depicted. (E) The heat map visualizes the correlation between the four identified lncRNAs and the disulfidptosis-
associated genes. (F) A correlation study examines the relationship among the four lncRNAs associated with disulfidptosis. *p < 0.05; **p < 0.01; ***p <
0.001.
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LASSOCox regressionmodel, and their predictive power was evaluated
using ROC curves. Differences in tumor-infiltrating immune cells,
immune checkpoints, and immune function were assessed using the

Wilcoxon test. Significance thresholds were set at p < 0.05 and
FDR <0.05 to ensure robust statistical analysis with low false
discovery rates.

FIGURE 2
Present the Kaplan-Meier (KM) curves of risk models in various datasets, including the training and test groups. (A–C) The risk scores distribution is
shown for patients with COAD. (D–F) The survival time and status distribution of COAD patients in the low- and high-risk populations is displayed. (G–I) A
heat map illustrates the expressions of the four identified lncRNAs. (J–L) The overall survival (OS) curves are presented for high-risk and low-risk patients
in different groups. (M–O) The area under the curve (AUC) is depicted for 1-year, 3-year, and 5-year survival times in different groups to assess the
sensitivity and specificity of the prognostic model.
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3 Results

3.1 Identification of candidate disulfidptosis
death-associated LncRNAs

The analysis identified ten genes associated with disulfidptosis
(Liu X. et al., 2023). Co-expression analysis was performed between
these genes and disulfidptosis-associated lncRNAs, resulting in the
identification of 802 lncRNAs showing co-expression patterns
(Figure 1A). Further one-way Cox analysis led to the
identification of high-risk lncRNAs associated with disulfidptosis
(Figure 1B). Subsequently, the Lasso algorithm was applied to these
lncRNAs, revealing nine lncRNAs with the least cross-validation
error (Figures 1C, D). Among them, four relevant DRLs, namely,
AC083900.1, AP003555.1, SNHG7, and ZEB1-AS1, were identified
based on their regression coefficients (0.4138, 0.4786, 0.4745, and
0.4086, respectively). A multifactorial Cox proportional risk
regression model was employed to scale down the high-
dimensional data, and a risk score formula was derived as
follows: risk score = (0.4138 × AC083900.1 expression level) +
(0.4786 × AP003555.1 expression level) + (0.4745 ×
SNHG7 expression level) + (0.4086 × ZEB1-AS1 expression
level). Further analysis demonstrated strong correlations between
the genes associated with disulfidptosis and the identified DRLs
(Figure 1E), as well as strong correlations among the four DRLs
themselves (Figure 1F).

3.2 Model construction and testing of
disease predictive value

We divided the samples into a Train group and a Test group in a
7:3 ratio to construct the prognostic model and verify its accuracy.
The risk score for each sample was calculated by multiplying the
expression of the four selected disulfidptosis-related lncRNAs by
their corresponding regression coefficients. The samples were then
sorted based on the risk scores, and the high and low-risk groups
were defined using the median score. Survival analysis of COAD
patients in the TCGA cohort showed that elevated risk scores were
associated with poorer survival outcomes (Figures 2A–F). A heat
map was generated to visualize the expression patterns of the four
lncRNAs in the high and low-risk groups across the three datasets
(whole, test, and training), revealing distinct expression patterns
(Figures 2G–I). These findings support the identification of the four
lncRNAs as risk factors. Kaplan-Meier analysis demonstrated
significant differences in survival between the high-risk and low-
risk groups across the entire dataset, test subset, and training subset
(Figures 2J–L). The constructed model showed good predictive
accuracy, as indicated by the area under the curve (AUC) values
of 0.685, 0.742, and 0.714 for 1-year, 3-year, and 5-year survival,
respectively, in the entire COAD dataset (Figure 2M). Internal
validation using randomly grouped training and test sets further
confirmed the accuracy of the model, with AUC values of 0.693,
0.755, and 0.755 for the training group and 0.674, 0.709, and
0.667 for the validation group at 1, 3, and 5 years, respectively
(Figures 2M–O). These results demonstrate the high accuracy and
sensitivity of the prognostic model for predicting survival outcomes
in COAD patients.

3.3 Principal component analysis

Principal component analysis (PCA) was performed on four
different gene sets, including all genes, disulfidptosis-associated
genes, disulfidptosis-associated lncRNAs, and model lncRNAs, to
evaluate their respective contributions to the risk model. The PCA
plots for these gene sets are shown in Figures 3A–D. Notably, the
PCA plot of the risk lncRNAs revealed distinct separation between
high and low-risk patients, indicating significant differences and
successful stratification into two relatively independent clusters
(Figure 3D). These findings provide further validation for the
effectiveness of our method in accurately distinguishing between
low and high-risk populations. Moreover, they demonstrate the
robustness, generalizability, and predictive power of the risk model
in COAD patients.

3.4 Correlation analysis between DRLs and
clinicopathological characteristics

To examine the association between high and low-risk groups
and various clinical features, we generated a heat map displaying the
correlation between these groups and clinical characteristics such as
age, gender, stage, T stage, N stage, M stage, and risk scores
(Figure 4A). This comprehensive analysis incorporated data from
all TCGA Colon cell carcinoma patient samples. Furthermore, we
investigated the proportional differences in different clinical traits,
including age, gender, survival status, T stage, M stage, and N stage,
between the high and low-risk groups. Interestingly, we observed
distinct variations in the distribution of patients with different
clinicopathological traits between the high and low-risk groups.
Notably, the four identified DRLs exerted a significant influence on
the frequency of specific clinicopathological traits, highlighting their
potential clinical relevance (Figures 4B–G). These findings provide
valuable insights into the relationship between the risk model and
clinical characteristics, shedding light on potential associations and
implications in COAD patients.

3.5 Clinical subgroup analysis of
disulfidptosis-related lncRNA model

To further investigate the impact of the risk model on patient
prognosis within specific clinical subgroups, we divided COAD
patients into six distinct subgroups based on age
(>65 and ≤65 years), gender (male and female), M-stage (M0 and
M1), N-stage (N0 and N1-2), clinical stage (I-II and III-IV), and
T-stage (T1-T2 and T3-T4). Survival curves were then analyzed and
compared between the high- and low-risk groups within each
subgroup (Figures 5A–L). Our findings revealed that, except for
patients with M1 and T1-T2 stage, the overall survival rate of high-
risk patients was significantly lower than that of low-risk patients
across all subgroups. These results indicate that low-risk patients
exhibit a distinct survival advantage. Collectively, our analysis
demonstrates the robustness and reliability of the DRLs risk
model as a valuable clinical prediction tool, capable of accurately
predicting the prognosis of COAD patients across different clinical
subgroups.
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3.6 Independent prognostic analysis of
clinical characteristics and Nomogram
construction

To assess the prognostic value of the four DRLs in relation
to common clinical characteristics, we conducted both
univariate and multifactorial Cox analyses. In the univariate
analysis, age (p = 0.003), stage (p < 0.001), and risk score (p <
0.001) were found to be significantly associated with the
prognosis of COAD patients (Figure 6A). Subsequently, a
multifactorial Cox analysis was performed, which revealed
that age (p < 0.001), staging (p < 0.001), and risk score (p <
0.001) remained as reliable and independent predictors of risk
(Figure 6B). To enhance the clinical applicability of the risk

model, we constructed a column line plot incorporating sex,
age, staging, and risk score to predict the probability of
prognostic survival at 1, 3, and 5 years (Figure 6C). Notably,
the risk score exhibited the most significant impact on the
prediction of overall survival (OS), suggesting that COAD
prognosis can be more accurately predicted using this risk
model. Furthermore, calibration curves demonstrated
favorable agreement between predicted and observed values
for the probability of OS at 1, 3, and 5 years, indicating the
stability of the Nomogram plot (Figure 6D). The c-index values
and area under the ROC curve for the risk score surpassed
those of other clinical traits, underscoring the superior
accuracy of the constructed model in predicting patient
survival (Figures 6E, F).

FIGURE 3
The characteristics of DRLs enable better differentiation between high- and low-risk groups of patients. (A) Principal component analysis (PCA)
profiles of all genes demonstrate the overall gene expression patterns. (B) PCA profiles of disulfidptosis-associated genes specifically highlight the
expression patterns of genes associated with disulfidptosis. (C) PCA profiles of DRLs specifically focus on the expression patterns of the identified long
non-coding RNAs. (D) The PCA profiles of lncRNAs were generated using riskLnc features for further analysis.
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3.7 Enrichment analysis of COAD patients
based on prognostic markers

To investigate the functional relevance and signaling pathways
associated with risk scores, we conducted GO functional analysis
and KEGG enrichment analysis on differentially expressed genes
between the high- and low-risk groups. Significantly enriched
terms were identified based on the thresholds of FDR<0.05 and
p < 0.05. Notably, we observed distinct enrichment results between
the high- and low-risk groups. GO enrichment analysis revealed
that in terms of biological processes (BP), the high-risk group
exhibited significant enrichment in protein-DNA complex
assembly, protein-DNA complex subunit organization,
extracellular matrix organization, and external encapsulated

structure organization. Cellular components (CC) were
predominantly enriched in protein-DNA complexes, DNA
packaging complexes, nucleosomes, and related structures.
Molecular functions (MF) were mainly associated with the
structural components of protein heterodimer activity and
pigments (Figures 7A–C). In addition, the KEGG pathway
analysis revealed significant enrichment in pathways related to
systemic lupus erythematosus (SLE), alcoholism, and neutrophil
extracellular traps in cancer (Figures 7B–D). These findings
highlight differences in immune function-related pathways
between the low- and high-risk categories. Subsequently, we
performed immunological studies on the two subgroups of
COAD, further exploring their implications in immune function
and potential therapeutic targets.

FIGURE 4
Correlation analysis of DRLs with clinicopathological characteristics reveals their association with disease-related factors. (A) The heat map
illustrates the relationship between risk scores based on DRLs and various clinicopathological characteristics. Bar graphs depict the differences in patient
distribution between the high-risk and low-risk groups stratified by different pathological characteristics, including (B) age, (C) M-stage, (D) gender, (E)
N-stage, (F) stage, and (G) T-stage.
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3.8 Predictive analysis of the correlation
between immune cell infiltration and tumor
microenvironment by disulfidptosis-
associated lncRNA model

In order to investigate the relationship between the risk score
and the tumor microenvironment (TME), we assessed the
abundance of tumor-infiltrating immune cells (TIIC) using
various algorithms including XCELL, TIMER, QUANTISEQ,
MCPCOUNTER EPIC, CIBERSORT-ABS, and CIBERSORT (Fan
et al., 2021). We observed a positive correlation between the risk
score and the infiltration of most immune cell types, particularly
CD4+ T cells and CD8+ T cells (Figure 8A). This suggests that higher
risk scores are associated with increased immune cell infiltration in
COAD. To gain a comprehensive understanding of the immune
landscape in COAD, we utilized the CIBERSORT algorithm to
explore the infiltration of 22 immune cell subpopulations based
on mRNA expression in TCGA COAD patient tissues. The bar
graph representation showed varying levels of infiltration for
different immune cell populations, with relatively high
percentages of M0, M1, and M2 macrophages, as well as CD8+

T cells and CD4+ T cells (Figure 8B). Further analysis of the
differences between the high- and low-risk groups revealed that
CD8+ T cells were the only immune cell population that exhibited a
statistically significant difference, with higher levels in the high-risk
group compared to the low-risk group (Figure 8C). This suggests a
potential association between high-risk scores and increased

infiltration of CD8+ T cells. Moreover, we evaluated the stromal
cell scoring and stromal cell immune cell integrated scoring in the
tumor microenvironment between the high- and low-risk groups.
The results showed that the stromal cell scoring and stromal cell
immune cell integrated scoring were higher in the high-risk group,
indicating a higher abundance of stromal cells in this group
(Figure 8D). Additionally, we employed the Tumor
Immunosuppression and Rejection (TIDE) algorithm to estimate
the likelihood of response to immunotherapy based on the risk
model. The TIDE scores were significantly higher in the high-risk
group compared to the low-risk group (p < 0.05), suggesting that
high-risk patients may have a higher chance of evading
immunization, potentially leading to a poorer response to
immunotherapy (Figure 8E). These findings provide insights into
the immune cell composition and tumor microenvironment
characteristics associated with the risk scores in COAD,
highlighting potential implications for immunotherapy and
understanding the immune phenotype of the disease.

3.9 Differential analysis of lncRNAs drug
sensitivity associated with disulfidptosis

The analysis of immunotherapeutic agents in relation to the risk
score provided insights into the potential efficacy of immunotherapy
for COAD patients and the potential for dose adjustment. Among
the nine immunotherapeutic agents evaluated, all of them showed

FIGURE 5
Kaplan-Meier survival curves demonstrate the prognostic value of the risk model in COAD patients, stratified by various clinical characteristics. (A–L)
The figures present Kaplan-Meier curves for patients with COAD in the low- and high-risk groups, categorized based on different clinical characteristics.
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significant differences (p < 0.05) between the high- and low-risk
groups. Specifically, the low-risk group exhibited higher IC50 values,
indicating lower sensitivity to the immunotherapeutic agents, while
the high-risk group demonstrated greater sensitivity to these drugs
(Figures 9A–I). This information suggests that COAD patients with
higher risk scores may have a more favorable response to
immunotherapy, as indicated by their increased sensitivity to the
immunotherapeutic agents tested. The risk score can be utilized to
further investigate and enhance precise drug therapy for
immunotherapy in COAD patients. This analysis highlights the
potential utility of the risk model in guiding treatment decisions and
optimizing immunotherapeutic approaches.

3.10 Comparison of somatic mutations in
high and low-risk groups

Tumormutational burden (TMB) quantifies the number of non-
synonymousmutations occurring within specific genomic regions of
somatic cells. It serves as an indirect indicator of the tumor’s
potential to generate neoantigens, reflecting its immunotherapy
responsiveness (Huang et al., 2023). To investigate TMB in
COAD patients, we conducted an analysis on somatic mutation
data, classifying individuals into high-risk and low-risk groups
(Figures 10A, B). Notably, approximately 96.65% of COAD
patients in the high-risk group exhibited mutations, with APC

FIGURE 6
Line plotswere created to analyze the independent prognostic factors in COADpatients. (A, B) Single Cox andmultiple Cox regression analyses were
performed to identify significant factors. (C) Column line graphs were used to assess overall survival (OS) in COAD patients at one, three, and 5 years. (D)
Calibration curves were generated to evaluate the performance of the column line graphs. (E) C-index curves were plotted to assess the predictive
accuracy of different characteristics. (F) ROC curves were constructed to evaluate the discriminatory power of various characteristics.
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(69%), TP53 (54%), and TTN (48%) being the most frequently
mutated genes. Similarly, in the low-risk group, 94.71% of COAD
patients demonstrated mutations, wherein APC (73%), TP53 (51%),
and TTN (48%) were the top three genes affected.

The APC genes play a pivotal role as oncogenes by governing
cellular growth and maintaining stability. In tumor tissues of
individuals with colon cancer, APC genes are frequently
subjected to high levels of methylation. This methylation
phenomenon exerts a significant influence on the proliferation

and invasive potential of colon cancer cells, and is also associated
with clinical parameters including tumor size and degree of
differentiation (Li et al., 2017). Excitingly, the administration of
demethylating agents such as 5-aza-CdR (Sanaei et al., 2020),
procaine, and carboplatin (Sabit et al., 2016) has shown
promising therapeutic efficacy in patients with colon cancer.

To compare the tumor mutational loads between the two
groups, we analyzed the somatic mutation data and determined
the TMB for each group. Notably, the low-risk group exhibited a

FIGURE 7
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. (A) Histogram of the 10 most enriched
words of GO. (B)Histogram of the top 4most enriched words of KEGG. (C) Bubble chart of the top 10 GO-rich 10 words. (D) Bubble chart of the 4 richest
words in KEGG.
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lower TMB compared to the high-risk group (Figure 10C) (Lakens,
2015). Subsequently, we performed a survival analysis by
categorizing patients into two groups based on the median TMB
of each sample and employing the Kaplan-Meier test. The results
revealed a significant difference in patient survival between the high
and low mutational load groups, with a more favorable prognosis
observed in the low mutational load group (p = 0.019) (Figure 10D).
This finding may be attributed to the potential of high TMB to
trigger anti-tumor immune responses. Furthermore, when we
combined the tumor’s mutational load with the risk level of the
sample and performed a survival analysis, we observed that patients
with both high-risk and high TMB had the lowest overall survival

(p < 0.001) (Figure 10E). Consequently, our risk model, in
conjunction with TMB, holds promise for more accurate
prognostic predictions in COAD patients.

3.11 ZEB1-SA1 promotes the proliferation
and migration of colon cancer cells

Validated by qPCR, we observed elevated expression levels of
ZEB1-SA1 in colon cancer cells, which was consistent with the
results of bioinformatics analysis (Figure 11A). To investigate the
potential role of ZEB1-SA1 in colon cancer, we conducted in vitro

FIGURE 8
Risk scores for DRLs were utilized to predict the tumor microenvironment and immunotherapy outcomes. (A) An immune cell bubble plot was
generated. (B) A histogram depicted the proportion of 22 tumor-infiltrating immune cell types in COAD tumor samples. (C) Differences in different types
of immune cells between high- and low-risk groups. (D) Differences in tumor microenvironment (TME) scores between high- and low-risk groups were
examined. (E) Tumor Immune Dysfunction and Exclusion (TIDE) Variations in Tumor Immune Dysfunction and Exclusion (TIDE) scores between the
high-risk and low-risk groups were evaluated.
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experiments. Firstly, the CCK-8 assay demonstrated that silencing
ZEB1-SA1 led to a notable inhibition of cell proliferation (Figures
11B, C). Additionally, transwell assays and wound healing
experiment revealed that knockdown of ZEB1-SA1 significantly
attenuated the invasive and migratory abilities of the cells
(Figures 11D, E). Collectively, these results suggest that ZEB1-
SA1 functions as an oncogene, and its upregulation promotes the
proliferation, invasion, and migration of colon cancer cells.

4 Discussion

Colon cancer is a prevalent and deadly malignancy arising from
endothelial cells in the Colon. Its global incidence has been steadily
increasing, with approximately 1.4 million new cases and nearly
700,000 deaths reported annually (Li et al., 2022). Metastasis,

observed in 20%–25% of colon cancer patients at diagnosis, is
associated with poorer prognosis and increased treatment
challenges, often necessitating a combination of radiotherapy and
chemotherapy (Chang et al., 2021). However, other treatment
options are not as effective as chemotherapeutic drugs as
currently known. Once patients become resistant to
chemotherapy regimens, it will pose a significant challenge to
treatment (Li et al., 2011). After research, it has been found that
biomarkers of Colon cancer can help physicians to develop a
reasonable personalized drug treatment plan, which can
effectively reduce the mortality and morbidity of patients.
Therefore, therapeutic regimens based on biomarkers have great
potential and application in the treatment of Colon cancer (Pritzker,
2020). In recent times, Gan Boyi’s group and John Chen’s group
have proposed disulfidptosis: cells with high SLC7A11 expression
require regular NADPH supply, which is derived from oxidative

FIGURE 9
Variations in IC50 values of different immunotherapy drugs were examined based on risk scores: (A) AZ960, (B) BMS-345541, (C) BMS-536924, (D)
Epirubicin, (E) IGF1R_3801, (F) Luminespib, (G) OTX015, (H) Sabutoclax, and (I) Ulixertinib.
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glucose catabolism. If the glucose supply is cut off, NADPH will be
reduced, leading to the accumulation of toxic disulfidptosiss and,
eventually, cell death (Liu X. et al., 2023). The glucose deprivation
triggers disulfidptosis, forming disulfidptosis bonds mainly in the
actin cytoskeleton, particularly in cells with high
SLC7A11 expression. Rapid NADPH depletion follows, a pivotal
factor initiating disulfidptosis. The glucose deprivation also quickly
alters the actin cytoskeleton, reducing protein migration, causing
cell shrinkage, F-actin contraction, and membrane separation.
Additionally, inhibiting glucose uptake with GLUT inhibitors
replicates glucose starvation’s effects, promoting excessive
disulfidptosis bond formation in the actin cytoskeleton and
F-actin collapse, highlighting glucose metabolism’s role in
disulfidptosis (Meng et al., 2023). With this discovery of a novel
cell death mode caused by disulfidptosis accumulation, the medical
community is expected to design new therapies targeting cancer

cells, which have great potential for application in tumor therapy.
LncRNAs play a critical role in regulating Colon cancer (CRC) by
inhibiting tumor proliferation, metastasis, and controlling the
growth, migration, and invasion of CRC cells both in vivo and
in vitro (Li et al., 2018). However, the potential prognostic
significance of DRLs in Colon cancer has not been investigated.
Therefore, by studying Colon cancers carrying DRLs, a better
understanding of the pathogenic mechanisms can be obtained,
leading to earlier detection of lesions, risk stratification, and
further improvement of patient survival. Our study successfully
developed and validated a prognostic model for DRLs in Colon
cancer. The feasibility of this prognostic model was confirmed
through rigorous evaluation. We firmly believe that this multi-
biomarker prognostic model, which is based on DRLs, holds
great promise as an enhanced predictive tool in the medical field.
Its potential to provide more accurate and reliable prognostic

FIGURE 10
The mutation analysis of COAD tumors. (A, B) The top 15 most prevalent mutated genes in high-risk and low-risk patients are depicted. (C) The
overall survival curves demonstrate the differences between the high mutation group and low mutation group. (D) The overall survival curves compare
the four different subgroups.
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information is expected to actively contribute to improved treatment
strategies for Colon cancer.

Through comprehensive analysis of transcriptomic data, clinical
data and mutation data of COAD tumor samples in the TCGA
database, we successfully identified four DRLs and their significance
in assessing the prognosis and immune status of COAD patients.
Through one-way Cox and machine learning analyses, we identified
AC083900.1, AP003555.1, SNHG7, and ZEB1-AS1 as independent
prognostic variables for COAD (Chi et al., 2023). By categorizing
patients into low-risk and high-risk groups based on these DRLs, we
achieved accurate categorization and demonstrated that their
predictive performance was superior to traditional clinical
indicators. Further analyses showed significant differences

between the low and high-risk groups in terms of immune
relevance, mutation profile, and drug sensitivity. These findings
provide valuable insights for clinicians to make more informed
decisions and improve overall survival outcomes for COAD
patients. In addition, our validation using the disulfide model
suggests that the four DRLs may be involved in the bisulfite
death process, which further underscores their relevance in
personalizing therapeutic strategies and improving the prognosis
of COAD patients.

In recent years, an increasing number of long non-coding RNAs
(lncRNAs) have been implicated in cancer development and
progression. These lncRNAs play crucial roles in tumor cell
proliferation, differentiation, and drug resistance, thereby

FIGURE 11
ZEB1-AS1 has been shown to enhance the proliferation, invasion, and migration abilities of colon cancer cells. This was evaluated through various
assays: (A) qPCR assay, (B, C) CCK-8 assay, (D) Transwell assay, and (E) wound healing experiment.
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influencing cancer development, progression, and therapeutic
outcomes. As potential biomarkers for tumor prediction, they
have attracted considerable attention (Han et al., 2019). In our
study, we developed a prognostic model comprising four DRLs
(AC083900.1, AP003555.1, SNHG7, and ZEB1-AS1) closely
associated with the overall survival (OS) of COAD patients.
Notably, ZEB1-AS1 expression was significantly upregulated in
Colon cancer and correlated with the prognosis of Colon
adenocarcinoma patients (Wei et al., 2022). Aberrant expression
of ZEB1-AS1 is a critical driver of cancer cell invasion and
metastasis. Through the miR-101/ZEB1 axis, ZEB1-AS1 promotes
the proliferation and invasion of Colon cancer cells (Wu et al., 2018).
Compared to normal tissues, ZEB1-AS1 expression was significantly
elevated in Colon cancer tissues, while miR-101 levels were lower in
Colon cancer tissues, exhibiting a negative correlation with ZEB1-
AS1 and ZEB1 expression levels (Xiong et al., 2018). Consequently,
targeting ZEB1-AS1 may impact tumor progression and metastasis,
rendering it a promising biomarker. Furthermore, ZEB1-AS1
expression is correlated with tumor depth, degree of
differentiation, lymph node and distant metastasis, clinical
progression, and shortened survival, underscoring its pivotal role
in tumorigenesis and development (Wu et al., 2018). SNHG7 gene
expression has been found to be upregulated in various cancer types
(e.g., bladder cancer, cervical cancer, Colon cancer) and is
implicated as an oncogene involved in regulating cancer cell
functions such as proliferation, apoptosis, invasion, and
metastasis, thereby contributing to cancer cell survival and
development. Additionally, SNHG7 can function as a competing
endogenous RNA (ceRNA) to promote cancer development. Hence,
SNHG7 is regarded as a significant cancer-associated biomarker
(Zhang Y. et al., 2022). Recent studies have identified AP003555.1 as
a prognostic marker for predicting the prognosis of Colon cancer
(CRC) patients (Liu S. et al., 2023). Likewise, AC083900.1 has also
been associated with CRC. Collectively, these findings enhance our
understanding of COAD patients’ status and provide valuable
insights and recommendations for their treatment.

To effectively demonstrate the signature function of DRLs, we
performed an enrichment analysis of their pathways. As a result, we
found that the signaling of DRLs is associated with many molecular
functions, such as protein isoform activity and pigment structure
composition, as well as pathways including systemic lupus
erythematosus in cancer, alcohol toxicity, and the formation of
neutrophil extracellular traps (NETs). Among these, loose
extracellular chromatin fibers comprise the extracellular trap
(Fang et al., 2022) formed by activated neutrophils decorated
with excessive granules and cytoplasmic proteins. Recent studies
have shown that elevated levels of neutrophil counts and NETs in
the peripheral circulation are hallmarks of cancer. NETs can lead to
a hypercoagulable state, accumulate in the peripheral vasculature
and impair organ function, promote cancer development and
metastasis, isolate circulating tumor cells, and even stimulate
dormant cancer cells (Chu et al., 2021). Recent studies have
found that elevated levels of neutrophil counts and NETs may be
predictive of the presence of cancer. NETs are capable of promoting
DTC proliferation and metastasis through the remodeling of the
extracellular matrix (ECM). This remodeling process involves the
cleavage of laminin, resulting in the formation of a new epitope that
can be sensed by integral proteins on dormant cancer cells.

Consequently, dormant cancer cells are activated, re-enter the
cell cycle, and initiate invasive metastatic growth (Yang and Liu,
2021). This remodeling process involves the cleavage of laminin,
resulting in the formation of a new epitope that can be sensed by
integral proteins on dormant cancer cells. Consequently, dormant
cancer cells are activated, re-enter the cell cycle, and initiate invasive
metastatic growth.

The tumor microenvironment (TME) encompasses the contextual
milieu surrounding tumor cells, comprising diverse constituents
including blood vessels, immune cells, fibroblasts, and stroma. These
elements engage in dynamic interactions, wherein the equilibrium
between the immune system and the tumor intricately modulates
this dynamic interplay (Bruschini et al., 2021; Wu et al., 2023).
Comprehending immune cell infiltration within the TME holds
pivotal significance in elucidating tumor immune evasion
mechanisms and facilitating insights into tailored therapeutic
approaches. Enhanced understanding of immune infiltration in the
tumor microenvironment can optimize treatment protocols, ultimately
yielding improved clinical outcomes (Wu et al., 2023; Yang et al., 2023).
Understanding the immune cell infiltration within the TME is crucial
for comprehending the immune evasion mechanisms of tumors and
providing insights into personalized treatment strategies. By gaining in-
depth knowledge of immune infiltration in the tumor
microenvironment, treatment regimens can be optimized, leading to
improved clinical outcomes (Chen et al., 2022; Yu et al., 2022). It has
been shown that the activation of tumor-infiltrating CD8T cells is
significantly increased after resveratrol treatment. Resveratrol activates
CD8T cells against tumors by stimulating IL-18 derived from
macrophages (Zhang W. et al., 2022). Therefore, the use of
resveratrol to activate CD8+ T cells in high-risk populations holds
substantial therapeutic potential. CD8+ T lymphocytes have a positive
impact on various types of cancer, and their study and development in
cancer therapy carry significant implications (Li L. Q. et al., 2020).

High mutational load is characterized by an elevated number of
genetic alterations in tumor cells relative to their normal counterparts.
This condition is intricately linked to the amplification of tumor
antigenic or immunogenic neoantigens. Consequently, it promotes
the recruitment of tumor-infiltrating lymphocytes, including CD8+

T cells, which exhibit a notable correlation with high mutational
load (Kaumaya, 2020). Cancer cells often have new mutated genes
that are better antigens. Therefore the discovery of these widelymutated
neoantigens is significant for targeted therapy in COAD. Colon cancer
cells are usually characterized by abnormalities in chromosome number
and quality. The wild-type APC acts as a bridge between microtubules
and chromosomes, forming a complex with the mitotic checkpoint
proteins Bub1 and Bub3, which help promote proper growth of spindle
formation and maintain haploidy. If the APC gene is mutated,
truncated proteins may lose their ability to bind to Bub1 and fail to
properly maintain microtubule attachment to the kinetochore, leading
to defects in chromosome segregation, which then leads to poor
prognosis in Colon cancer patients (Narayan and Roy, 2003).
TP53 is an important tumor suppressor gene. Statistically,
TP53 gene mutations are frequently observed in a variety of cancers,
including Colon, breast, and bile duct cancers (Takano et al., 2016).
TP53 mutations predominantly occur within exons five to eight,
encompassing the core structural domain responsible for the folding
and stability of the p53 protein. Notably, residues 130–286 within this
region play a pivotal role in maintaining p53’s DNA-binding capacity,
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andmutations in this domain lead to the loss of p53’s functionality (Al-
Kuraya, 2009). The TTN gene encodes myosin, a crucial protein
involved in vertebrate rhabdomyolysis, contributing to its structural
and functional integrity (Zhang Y. et al., 2022). While the involvement
of the TTN gene in cancer biology remains contentious, emerging
evidence suggests its immunological relevance. Mutated TTN peptides
have demonstrated the ability to elicit CD8+ T cell responses, albeit at a
lower frequency compared to other tested antigens (Rus Bakarurraini
et al., 2020). The identification of highly mutated genes in COAD
presents novel avenues for targeted therapies, holding promise for
improved clinical outcomes.

Cell culture and qPCR assay played a key role in this study. We
selected Caco-2 and SW480 colon cancer cells and NCM460 normal
breast cells. Culture conditions included DMEMmedium supplemented
with 10% fetal bovine serum, 100 U/L penicillin, and 100mg/L
streptomycin to ensure cell growth and maintenance. RNA extraction
was performed using the RNA Eazy Fast Tissue/Cell Kit, followed by
cDNA synthesis using the FastKing RT Kit. We performed a real-time
PCR procedure consisting of an initial pre-denaturation step followed by
40 cycles including denaturation, annealing and extension steps.
Transient transfection was performed in order to study gene
regulation. Cell viability was determined by CCK-8 assay, which
reflects the metabolic activity and viability of the cells by
OD450 value. This assay was used for comparison between different
experimental conditions and treatment groups to provide quantitative
data on relative cell viability. Finally, the migratory and invasive capacity
of the cells was assessed by Transwell assay, which provided important
information about cell behaviour. These experimental methods
contribute to a deeper understanding of the molecular mechanisms
and cellular behaviours of colon cancer and provide a solid experimental
basis for the findings.

While our prognostic model has demonstrated significant utility in
predicting Colon cancer patient outcomes and aiding treatment
decision-making, it is important to acknowledge the limitations of
our study. Firstly, the reliance on data from public databases introduces
the potential for disparities between predicted outcomes and real-world
conditions. Therefore, it is imperative to obtain prospective clinical
information and sequencing data following immunotherapy to validate
the clinical efficacy of our model. Secondly, inter-individual variations
among COAD patients may influence the characteristics of the four
identified DRLs. Although we attempted to validate our findings using
external datasets such as GEO and ICGC, the inherent biases and
limitations associated with microarray data may have hindered the
acquisition of accurate LncRNA information. Addressing these
limitations and enhancing the robustness of our model will require
the development of novel strategies and further research endeavors.

5 Conclusion

In conclusion, our study successfully identified specific long non-
coding RNAs (lncRNAs) that are closely associated with death by
disulfide, revealing new prognostic biomarkers and potential
therapeutic targets for colon cancer (COAD) patients. In addition,
we utilized these lncRNAs to develop a predictive model that provides
accurate prognostic assessment for COAD patients and valuable
insights into their immune status. This model is expected to
optimize personalized systemic therapy for COAD patients.
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