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This review article explores the potential of metformin, a medication commonly
used for type 2 diabetes, as an antiviral and anti-inflammatory agent in the context
of coronavirus disease 2019 (COVID-19). Metformin has demonstrated inhibitory
effects on the growth of SARS-CoV-2 in cell culture models and has shown
promising results in reducing viral load and achieving undetectable viral levels in
clinical trials. Additionally, metformin exhibits anti-inflammatory properties by
reducing the production of pro-inflammatory cytokines and modulating immune
cell function, which may help prevent cytokine storms associated with severe
COVID-19. The drug’s ability to regulate the balance between pro-inflammatory
Th17 cells and anti-inflammatory Treg cells suggests its potential in mitigating
inflammation and restoring T cell functionality. Furthermore, metformin’s
modulation of the gut microbiota, particularly changes in bacterial taxa and the
production of short-chain fatty acids, may contribute to its therapeutic effects.
The interplay between metformin, bile acids, the gut microbiome, glucagon-like
peptide-1 secretion, and glycemic control has implications for themanagement of
diabetes and potential interventions in COVID-19. By refreshing the current
evidence, this review highlights the potential of metformin as a therapeutic
option in the management of COVID-19, while also exploring its effects on the
gut microbiome and immunometabolism.
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Introduction

Coronavirus disease 2019 (COVID-19), a global pandemic caused by the novel
coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has
impacted millions of individuals across the globe (Atzrodt et al., 2020). People with pre-
existing conditions like type 2 diabetes (T2D) are at a higher risk of experiencing severe
outcomes from COVID-19 (Al-Kuraishy et al., 2021; Kamyshnyi et al., 2021). T2D is a
chronic metabolic disorder characterized by insulin resistance and elevated blood glucose
levels, which can lead to various complications and impaired immune function (Hameed
et al., 2015).

Metformin, a commonly prescribed medication for T2D, has garnered attention for its
potential benefits beyond glycemic control (Kamyshnyi et al., 2021). Recent research
indicates that metformin may possess antiviral and anti-inflammatory properties,
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making it a promising candidate for combating SARS-CoV-
2 infection and reducing the adverse effects of COVID-19
(Petakh et al., 2022a; Petakh et al., 2022b; Petakh et al., 2022c;
Petakh et al., 2023a; Petakh et al., 2023b; Petakh et al., 2023c; Petakh
et al., 2023d; Erickson et al., 2023).

This review article aims to present an overview of the current
evidence related to metformin’s potential anti-SARS-CoV-2 effects,
its anti-inflammatory properties, and its role in modulating the
Th17/Treg balance. Additionally, it delves into the interactions
between metformin, the gut microbiota, bile acids, and glycemic
control concerning COVID-19 and T2D.

Anti-SARS-CoV-2 effect of metformin

Metformin, an established medication for T2D, has recently
gained attention for its potential antiviral properties against SARS-

CoV-2, as well as other RNA viruses such as Zika, dengue, hepatitis
B, hepatitis C, influenza, and human immunodeficiency viruses
(HIV) (Farfan-Morales et al., 2021; Justice et al., 2021;
Wiernsperger et al., 2022). Early studies in the 1940s even
demonstrated the beneficial effects of metformin in treating
patients with influenza (Ibrahim et al., 2021). In the context of
SARS-CoV-2, metformin may exert its antiviral effects by
preventing viral entry into cells through conformational changes
in the angiotensin I converting enzyme 2 (ACE2) receptor, which is
thought to be facilitated by AMP-activated protein kinase (AMPK)-
mediated phosphorylation at S680 of the ACE2 protein (Sharma
et al., 2020).

Additionally, metformin’s impact on intracellular pH regulation
within endosomes is noteworthy. Key components involved in
pH regulation within endosomes, such as Vacuolar ATPase
(V-ATPase) and endosomal Na+/H+ exchangers (eNHE), play
critical roles in this process. Research has indicated that

TABLE 1 Examination of the impact of metformin on SARS-CoV-2 infection models.

Author, year Study design Substrate Key findings

Bramante et al. (2023) In vivo (randomized trial) COVID-19 patients Metformin demonstrated a possible benefit in
preventing more severe outcomes such as emergency
department visits, hospitalization, or death

Carolyn et al. (2023) In vivo (randomized trial) COVID-19 patients Metformin showed a 42% reduction in ER visits/
hospitalizations/death through 14 days and a 58%
reduction in hospitalizations/death through 28 days.
Furthermore, metformin demonstrated a 42% reduction
in Long COVID through 10 months. Viral load analysis
revealed a 3.6-fold reduction with metformin compared
to placebo

Sun et al. (2022b) In vitro experimental
study

Human airway epithelial cell lines (BEAS2B, A549, and
16HBE)

Metformin exhibited multifaceted effects, including
restoration of autophagy, suppression of pyroptosis, and
attenuation of inflammatory response

Parthasarathy et al. (2022) In vitro experimental
study

Calu3 (respiratory epithelial cell line) and Caco2 (gut
epithelial cell line)

Metformin pretreatment effectively suppressed viral
replication and protein expression in both respiratory
and gut epithelial cell lines

Ventura-López et al. (2022) In vitro experimental
study

H1299 and Vero E6 cell lines Metformin glycinate demonstrated significant reduction
in viral load and enhanced cell viability against different
SARS-CoV-2 variants

Mercado-Gómez et al.
(2022)

In vitro experimental
study

Human primary hepatocytes, human upcyte second-
generation hepatocytes, humanized ACE2 (hACE2)
mice, and wild-type mice

Metformin exhibited hepatoprotective effects by
suppressing ACE2 expression, reducing viral infection
rates, and modulating inflammatory markers in
hepatocytes

Cory et al. (2021) In vitro experimental
study

Purified classical monocytes from healthy human
subjects

Metformin pretreatment resulted in the suppression of
glycolytic response and downregulation of pro-
inflammatory cytokines upon viral exposure

Chen et al. (2021) In vitro and in vivo assays In vivo: Midbrain dopaminergic neurons derived from
H9 human embryonic stem cells injected into mice. In
vitro: Midbrain dopaminergic neuron cell line derived
from human pluripotent stem cells

Metformin exhibited antiviral effects by reducing viral
RNA levels and preventing cellular senescence in
midbrain dopaminergic neurons

Schaller et al. (2021) Ex vivo and in vitro assays Cryopreserved bank of human lung tissue and Vero
E6 cell line

Metformin exhibited variable efficacy, with significant
reduction in SARS-CoV-2 titers observed in lung tissues
but not in Vero E6 cell line

Xian et al. (2021) In vitro and in vivo assays Bone marrow–derived macrophages from nondiabetic
mice

Metformin displayed immunomodulatory effects by
inhibiting NLRP3 inflammasome activation, cytokine
production, and mitochondrial dysfunction

Gordon et al. (2020) In vitro experimental
study

Vero E6 cell line Metformin demonstrated potent antiviral activity by
inhibiting viral replication and promoting cellular
viability
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metformin can directly impact eNHE and/or V-ATPase, leading to
elevated pH levels within endosomes. This elevation in pH levels
may suppress viral infection (Esam, 2020; Eaton et al., 2021).
Moreover, metformin might also have the potential to prevent
the development of pulmonary fibrosis, a complication associated
with COVID-19 (Esam, 2020).

In a study conducted by Haripriya Parthasarathy et al.,
metformin’s significant inhibitory effect on the growth of SARS-
CoV-2 was demonstrated in cell culture models (Parthasarathy et al.,
2022). As the viral infection progressed, AMPK phosphorylation
showed a steady increase, indicating its crucial role during the
infection process. When AMPK was activated in Calu3 and
Caco2 cell lines using metformin, there was a remarkable
suppression of SARS-CoV-2 infectious titers, with up to 99%
reduction observed in infected cells. Dose-variation studies
revealed half maximal inhibitory concentration (IC50) values of
0.4 mM and 1.43 mM in Calu3 and Caco2 cells, respectively. The
involvement of AMPK in metformin’s antiviral effect was further
confirmed by using other pharmacological compounds such as 5-
Aminoimidazole-4-carboxamide ribonucleoside (AICAR) and
Compound C (Table 1; Figure 1).

Additionally, promising results were observed in the viral load
analysis from a clinical trial (Carolyn et al., 2023). The mean change
in viral load from baseline to follow-up was notably lower with

metformin compared to the placebo group (−0.64 log10 copies/mL),
indicating a 4.4-fold greater decrease in viral load. On day 5, the rate
of undetectable SARS-CoV-2 viral load was 49.9% in the metformin
group and 54.6% in the placebo group, with a modest odds ratio of
1.235. Similarly, on day 10, the undetectable rate was 14.3% in the
metformin group and 22.6% in the placebo group, with an odds ratio
of 1.663, demonstrating a statistically significant difference between
the groups.

Ventura-López et al. conducted a trial where metformin
treatment demonstrated substantial advantages compared to the
placebo group. The metformin-treated participants experienced a
significant decrease in the need for supplemental oxygen, a more
pronounced reduction in the percentage of viral load, and a quicker
attainment of an undetectable viral load. However, there were no
significant differences in the duration of hospitalization between the
metformin and placebo groups (Ventura-López et al., 2022).

In the TOGETHER Trial, the use of metformin did not yield a
significant decrease in hospitalizations due to COVID-19.
Hospitalization was defined as either remaining in a COVID-19
emergency setting for more than 6 h or being transferred to a tertiary
care hospital within 28 days after randomization. The statistical
analysis showed that there was no significant difference between the
metformin and placebo group, with a relative risk of 1.14 and a 95%
credible interval of 0.73–1.81. Additionally, metformin did not

FIGURE 1
Effects against SARS-CoV-2.
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significantly affect viral clearance at day 7, time to hospitalization, or
clinical improvement 28 days after randomization. However, when
considering the per-protocol sample, which accounted for 83% of
the participants, there was a reduced likelihood of emergency
department visits and hospitalizations of COVID-19 patients,
resulting in an absolute risk reduction of 1.4% and 3.1%,
respectively (Reis et al., 2022).

Interferon responses to SARS-CoV-
2 and SAMHD1-cGAS-STING-
metformin interactions

Sterile alpha motif and histidine-aspartate domain-containing
protein 1 (SAMHD1) negatively regulates the interferon −1 signaling
pathway: the elevated innate immune response and IFN activation
upon genetic loss of SAMHD1 effectively suppress SARS-CoV-
2 replication (Oo et al., 2022).

The cGAS-STING pathway is central to detecting viral DNA and
initiating immune responses. Activation of cGAS-STING triggers
IRF3-mediated type I IFN production and autophagy-mediated
antiviral activity. cGAS produces cyclic GMP-AMP (cGAMP),
activating STING (Su et al., 2023). This pathway responds to
viral and bacterial DNA, as well as self-DNA from senescent or
dying cells.

SARS-CoV-2 infection induces micronuclei formation,
activating the cGAS-STING pathway, which can damage cells.
Viral proteins like ORF3a and ORF10 can interfere with this
pathway to evade immune responses (Han et al., 2022).

Metformin, a versatile drug, has significant effects on cGAS-
STING signaling. For example, in gastric cancer, metformin
promotes cGAS/STING activation by inhibiting AKT
phosphorylation (Shen et al., 2023). It also activates type I IFN
signaling against hepatitis C virus through AMPK (Tsai et al., 2017).

However, it is important to note that metformin can have
inhibitory effects on the type I IFN response in specific immune
cells, like human CD4+ T cells (Titov et al., 2019). This complex
interplay between metformin, the cGAS-STING pathway, and type I
IFN signaling underscores the intricate mechanisms involved in the
immune response against viral infections, including SARS-CoV-2.

Anti-inflammatory effect of metformin:
a protective mechanism against
cytokine storm

Metformin exerts its effects through various mechanisms,
including the activation of liver kinase B1, which leads to the
activation of AMPK, as well as the activation of NAD-dependent
deacetylase sirtuin-1 (SIRT1) and peroxisome proliferator–activated
receptor γ coactivator-1 α (PGC-1α) (Kulkarni et al., 2020; Triggle
et al., 2022). Furthermore, metformin inhibits mitochondrial
complex 1, nuclear factor κ-light-chain-enhancer of activated
B cells (NF-κB), and mammalian target of rapamycin complex 1
(mTORC1) (Kulkarni et al., 2020).

Metformin possesses anti-inflammatory properties, beneficial
for individuals both with and without diabetes (Cameron et al.,
2016). In the context of COVID-19, its anti-inflammatory actions

involve reducing the levels of various pro-inflammatory factors,
including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
interleukin-6 (IL-6), C-X-C motif chemokine ligand 5 (CXCL5),
C-X-C motif chemokine ligand 10 (CXCL10), and monocyte
chemoattractant protein-1 (MCP-1) (Justice et al., 2021).
Moreover, metformin inhibits the signal transducer and activator
of transcription 3 (STAT3) and has been shown to decrease the
formation of neutrophil extracellular traps (Bailey and Gwilt, 2022).
Another potential effect of metformin is preventing the activation of
the NLR family pyrin domain-containing 3 (NLRP3) inflammasome
(Wiernsperger et al., 2022).

Observational data suggest that prior usage of metformin before
COVID-19 infection is associated with lower levels of peak
C-reactive protein (CRP), as well as lower rates of admission and
peak ferritin in a subgroup analysis of patients in the intensive care
unit (Ma et al., 2022).

Metformin modulation of Th17/Treg
balance: anti-inflammatory effects.
Targeting immunometabolism to
prevent cytokine storm in COVID-19

Metformin has been shown to affect Th17 cell differentiation
through the AMPK/mTOR/STAT3 pathway (Tan et al., 2019). In
diseases like COVID-19 and systemic lupus erythematosus (SLE),
there is an increase in Th17 cells (Duan et al., 2019). Metformin’s
influence on CD4+ T cell glucose metabolism, achieved by inhibiting
mitochondrial complex I and oxidative phosphorylation, helps
normalize cellular processes crucial for CD4+ T cell activation,
proliferation, and differentiation. By targeting overactive effector
T cells, including Th1 and Th17 cells, as well as proinflammatory
cytokines such as interferon interferon-gamma (IFN-γ) and IL-17,
metformin shows potential in reducing inflammation in Systemic
Lupus Erythematosus (SLE) (Tan et al., 2019). In viral infections
such as COVID-19, CD8+ T cells play a vital role in eliminating the
virus by releasing cytotoxic molecules like perforin, granzyme, and
IFN-γ (Omarjee et al., 2020). The use of metformin at the doses
prescribed for diabetes treatment could potentially help restore
T cell functionality and alleviate the cytokine storm commonly
observed in COVID-19 (Salvatore et al., 2020; Scheen, 2020; Sharma
et al., 2020) (Figure 2).

AMPK and mTOR serve as metabolic detectors that influence
the balance between pro-inflammatory and anti-inflammatory cells.
Th17 cells rely on glycolysis for their energy needs, while regulatory
T cells (Tregs) rely on fatty acid oxidation. AMPK’s ability to
regulate metabolism affects the differentiation of these cell types.
On the other hand, mTOR activation, leading to the induction of
HIF1α, promotes glucose import and glycolysis at the
transcriptional and translational level. Lack of HIF1α induction
significantly reduces Th17 cells. In a rat model of collagen-induced
arthritis (CIA), metformin was found to activate AMPK, inhibit
mTOR, and regulate the Th17/Treg ratio. Metformin also reduced
the levels of proinflammatory cytokines TNFα, IL-1β, IL-6, and IL-
17 in the serum of rats with CIA, while decreasing the number of
splenic CD4+/RORγt+/IL-17 + T cells (Th17s) in a dose-dependent
manner. Furthermore, metformin positively correlated with the
increase of regulatory T cells (CD4+/CD25+/FOXP3+) in the
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study (Yang et al., 2017). Likewise, metformin played a role in
alleviating autoimmune insulitis in a model of Type 1 diabetes
(T1D) using NOD mice. Female NOD mice were administered
metformin or a control substance starting at 4 weeks of age. By the
time the mice reached 12 weeks of age, they showed signs of insulitis.
However, the mice treated with metformin displayed a higher
number of functional β cells compared to those on the control
treatment. Additionally, metformin significantly reduced the
number of pro-inflammatory IFN-γ+ and IL17+ CD4 T cells in
the spleen of NODmice, while concurrently increasing the presence
of regulatory IL-10+ and Foxp3+ CD4-T cells. This effect resulted in
the mitigation of autoimmune insulitis (Duan et al., 2019). The
imbalance in Teff/Treg ratios observed in collagen-induced arthritis
(CIA) and Type 1 diabetes (T1D) is also evident in various other
diseases, including T2D, obesity, aging, and rheumatoid arthritis.

Relationship between the gut
microbiota and metformin

Metformin is a widely used medication for the treatment of T2D
that has been shown to improve insulin sensitivity, reduce blood
glucose levels, and decrease the risk of cardiovascular disease
(Kamyshnyi et al., 2021; Mohammed et al., 2021). Nevertheless,
the precise mechanism of how metformin works remains
incompletely understood. Lately, there has been increasing
attention given to the connection between metformin and the gut
microbiome. Several studies have indicated that metformin could
potentially influence the gut microbiome, and these changes in the
gut microbiome might be linked to metformin’s therapeutic effects
(Table 2; Figure 3) (Forslund et al., 2015; Wu et al., 2017a; De La

Cuesta-Zuluaga et al., 2017; Barengolts et al., 2018; Sun et al., 2018;
Bryrup et al., 2019; Zhang et al., 2019; Chávez-Carbajal et al., 2020).

Research has revealed that the use of metformin is linked to
alterations in the relative abundance and diversity of specific gut
bacterial taxa (Petakh et al., 2023e). For instance, certain studies
have found that metformin use is associated with an increased
relative abundance of the genus Lactobacillus and a decreased
relative abundance of the genus Bacteroides (Lee et al., 2021).
Additionally, other studies have indicated that metformin use is
linked to an increased relative abundance of the genus Akkermansia,
a genus known for its potential to enhance insulin sensitivity (Ke
et al., 2021).

The exact mechanisms by which metformin modulates the gut
microbiome and how changes in the gut microbiome contribute to
metformin’s therapeutic effects are not fully understood. Several
potential mechanisms have been proposed, including the reduction
of pro-inflammatory cytokines and the increase of short-chain fatty
acids (SCFAs) (den Besten et al., 2013). In particular, SCFAs can
bind to G-protein-coupled receptors (GPCRs) such as free fatty acid
receptor 3 (FFAR3) and free fatty acid receptor 2 (FFAR2), which are
expressed on enteroendocrine L cells, causing the release of
glucagon-like peptide-1 (GLP-1) and Peptide YY. These
hormones regulate glucose metabolism and insulin secretion
(Holz et al., 1993). In rodent studies, an increase in acetate
production caused by changes in gut microbiota activates the
parasympathetic nervous system, leading to an increase in insulin
secretion in response to glucose and increased secretion of ghrelin.
This creates a positive feedback loop, causing excessive eating
(hyperphagia), increased fat storage, and ultimately obesity (Perry
et al., 2016). Long-term delivery of propionate to the colon has been
found to significantly reduce weight gain and accumulation of fat in

FIGURE 2
AMPK-dependent anti-inflammatory effects.
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TABLE 2 Major findings from the research of patients with T2D with/without metformin treatment.

Sample size Year of
publication

Age Techique Associated microbiota changes References

6 T2D with obesity 2020 47.0 ± 4.5 years Whole-genome
metagenomics
shotgun

↓Firmicutes, Oribacterium, and Paenibacillus Wang et al. (2020)

6 Controls

183 T2D 2012 13– years Metagenomic
sequencing

↑Akkermansia muciniphila, Bacteroides caccae,
Clostridium hathewayi, Clostridium ramosum,
Clostridium symbiosum, Desulfovibrio spp.,
Eggerthella lenta, and Escherichia coli

Qin et al. (2012)

185 Controls ↓Eubacterium rectale, Faecalibacterium
prausnitzii, Roseburia intestinalis, and Roseburia
inulinivorans

Healthy controls had a ↑ abundance of butyrate-
producing bacteria

53 TD 2013 69–72 years Metagenomic
sequencing

↑ Clostridium clostridioforme, Lactobacillus spp.,
and Streptococcus mutans

Karlsson et al. (2013)

49 Impaired glucose
tolerance

↓ Roseburia and Clostridium spp., Eubacterium
eligens, Bacteroides intestinalis

43 Controls

T2D with good glycemic
control (52 patients)

2020 T2D with good
glycemic control
(66.38 ± 1.314 years)

16S rRNA
sequencing

RT2D ↑ Bacteroides vulgatus and Veillonella
denticariosi

Shih et al. (2020)

Refractory T2D (RT2D)
(27 patients)

RT2D (64.37 ±
2.194 years)

RT2D ↓ Akkermansia muciniphila and
Fusobacterium spp.

Newly diagnosed T2D
(50 patients) 50 Controls

2018 51 ± 12 years 16S rRNA
sequencing

↑ Lactobacillus spp. Chen et al. (2019)

↓ Clostridium leptum and Clostridium coccoides

134 Prediabetic 2018 57–68 years 16S rRNA
sequencing

↓ Akkermansia muciniphila and Clostridium spp. Allin et al. (2018)

134 Controls

Treatment-naïve T2D
(77 patients)

2019 61.75 ± 9.09 years Whole-genome
metagenomics
shotgun

↑ Escherichia coli, Eggerthella spp., Streptococcus
salivarius

Zhong et al. (2019)

80 Prediabetic ↓ Clostridium spp., Faecalibacterium prausnitzii

97 Controls

18 T2D 2010 31–73 16S rRNA
sequencing

↑ Bacteroidetes, Clostridium coccoides, Firmicutes Larsen et al. (2010)

18 Controls ↓ Proportions of phylum Firmicutes and class
Clostridia

40 T2D 2016 40–77 16S rRNA
sequencing

↑ Collinsella spp., Streptococcus spp.,
Lactobacillus spp.

Candela et al. (2016)

13 Controls ↓ Bacteroides spp., Prevotella spp., Roseburia spp.,
Faecalibacterium spp.

25 T2D 2021 T2D (62.52 ± 7.58) 16S rRNA
sequencing

↑ Bifidobacterium spp. and Lactobacillus spp. Huang et al. (2021)

25 TD2 with retinopathy Controls (57.8 ±
10.06)

↓Escherichia-Shigella, Faecalibacterium,
Eubacterium_hallii_group and Clostridium
genera

25 Controls TD2 with retinopathy
(60.28 ± 10.5)

Metformin-treated (MT) 93 2015 35–75 years Metagenomic ↑Escherichia spp., ↓Intestinibacter spp. Forslund et al.
(2015)

Metformin-untreated
(MUT) 106

MT 14 2017 18–62 years 16S rRNA
sequencing

↑ Prevotella spp., Megasphaera spp.,
Butyrivibrio spp

De La
Cuesta-Zuluaga et al.
(2017)

(Continued on following page)
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the abdomen, and also prevents a decline in insulin sensitivity in
overweight adults (Chambers et al., 2015).

Human studies have demonstrated the beneficial effects of
short-chain fatty acids (SCFAs) on glucose homeostasis and
insulin sensitivity. For example, one study investigated the
impact of delivering propionate to the colon in overweight and
obese individuals using inulin-propionate ester (IPE). The
supplementation improved insulin sensitivity compared to a low-
fermentable fiber control (cellulose) and led to increased secretion of
GLP-1 and Peptide YY. Additionally, changes in gut bacterial
composition and markers of systemic inflammation were
observed, highlighting the significant physiological impact of
raising colonic propionate delivery in humans (Ch et al., 2019).

Another pilot-and-feasibility trial utilized high-amylose maize-
resistant starch modified with acetate and butyrate (HAMSAB),
resulting in increased SCFA concentrations in stools and plasma,
along with alterations in gut microbiota composition and function.
Subjects with the highest SCFA concentrations exhibited better
glycemic control, although glucose control and insulin
requirements remained unchanged (Bell et al., 2022). These
findings suggest that targeting the gut microbiota and its
metabolites, particularly SCFAs, may hold therapeutic potential
for treating metabolic disorders like obesity and diabetes.

Metformin has been extensively researched in both animal and
human subjects, and the findings suggest that it can influence the
secretion of gut hormones and increase glucose uptake and
utilization in the human intestine (Pénicaud et al., 1989; Bailey
et al., 1992; Wilcock and Bailey, 1994; Ma et al., 2004; Duca et al.,
2015; Koffert et al., 2017). However, the precise mechanism by
which metformin enhances gut glucose uptake and utilization
remains unclear.

Some studies have reported that metformin reduces the activity
of sodium-glucose transporter 1 (SGLT1) while increasing the
recruitment of glucose transporter 2 (GLUT2) to the apical
membrane of rat jejunum (Sakar et al., 2010). Meanwhile, other
research indicates that metformin increases SGLT1 gene expression
in the duodenum and jejunum, but has no significant effect on
GLUT2 gene expression in the intestine (Lenzen et al., 1996).
Tongzhi Wu et al. also investigated that metformin inhibits small
intestinal glucose absorption, which may contribute to augmented
GLP-1 secretion (Wu et al., 2017b).

One of the mechanisms that triggers GLP-1 release is glucose
absorption in the small intestine (Kuhre et al., 2015). Glucose-
induced GLP-1 release is triggered by various underlying
mechanisms, but it seems that SGLT1 plays a dominant role (Par
et al., 2012). SGLT1 mediates the uptake of glucose with Na+, which

TABLE 2 (Continued) Major findings from the research of patients with T2D with/without metformin treatment.

Sample size Year of
publication

Age Techique Associated microbiota changes References

MUT 14 Akkermansia muciniphila

↓ Oscillospira spp., Barnesiellaceae

27 healthy young men
without T2D

2019 18–35 years 16S rRNA
sequencing

↑ Escherichia/Shigella spp., Bilophila wadsworthia Bryrup et al. (2019)

↓Intestinibacter spp., Clostridium spp.

Treatment-naïve T2D
(22 patients)

2017 NA Metagenomic ↑Pectobacterium spp., Pantoea spp., Serratia spp.,
Dickeya spp., Helicobacter spp., Cronobacter spp.,
Erwinia spp., Yersinia spp., Enterobacter spp.,
Citrobacter spp., Escherichia spp., Bacillus spp

Wu et al. (2017a)

Treatment-naïve T2D with
metformin treatment
4 months (22 patients)

↓ Dethiosulfovibrio spp., Deferribacter spp.,
Subdoligranulum spp., Intestinibacter spp.

Treatment-naïve T2D
(22 patients)

2018 NA Metagenomic ↓Bacteroides fragilis Sun et al. (2018)

Treatment-naïve T2D with
metformin treatment 3 days
(22 patients)

MT 21 2018 35–70 16S rRNA
sequencing

↑Bifidobacterium spp., Catenibacterium spp.,
Parabacteroides spp.

Barengolts et al.
(2018)

MUT 11

T2D patients before MT 26 2019 NA 16S rRNA
sequencing

↑ Spirochaete spp., Turicibacter spp., and
Fusobacterium spp.

Zhang et al. (2019)

T2D patients after 3 months
of MT 51

Treatment-naïve T2D
(14 patients)

2020 48.1 ± 4.7 16S rRNA
sequencing

↑Pelomonas spp. Chávez-Carbajal
et al. (2020)

Treatment-naïve T2D with
metformin treatment 3 days
(14 patients)
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depolarizes the membrane and stimulates Ca2+ entry. This, in turn,
leads to the secretion of GLP-1 (Gorboulev et al., 2011; Kuhre et al.,
2015). SGLT1’s dominant role in glucose-stimulated GLP-1
secretion is further supported by the fact that SGLT1−/− mice not
only show impaired glucose absorption but also impaired GLP-1
release (Gorboulev et al., 2012).

In studies using germ-free mice as a “microbial knockout”model,
the transplantation of gut microbiota from healthy mice led to
modifications in genes related to glucose metabolism in the gut (El
Aidy et al., 2013). Prebiotics and probiotics have also been found to
influence the gut microbiome, affecting GLP-1 secretion (Ejtahed
et al., 2012; Balakumar et al., 2018). Bauer et al. demonstrated that
metformin can alter the gut microbiome in the upper small intestine,
resulting in an increase in SGLT-1 expression. In rodents fed a high-
fat diet, SGLT-1 expression was reduced but could be restored with
metformin administration (Bauer et al., 2018).

Research has shown that the presence of Lactobacillus
significantly increases after metformin treatment, suggesting a
possible link between Lactobacillus and the modification of
SGLT-1 following metformin administration. This increase in
SGLT-1 mediated metabolites produced by Lactobacillus has been
found to enhance glucose uptake in Caco-2 cells, supporting the idea
that Lactobacillus may be involved in the regulation of glucose
metabolism influenced by metformin (Rooj et al., 2010). Thus, these
findings indicate that Lactobacillus might play a role in regulating
glucose metabolism and may be associated with improvements in
glucose levels in both rodents and humans taking probiotic

supplements containing Lactobacillus (Yadav et al., 2007).
However, the specific mechanism by which metformin alters the
amount of Lactobacillus in the gut remains unknown.

In conclusion, the relationship between the gut microbiome and
metformin is an emerging field of research. While some studies have
shown that metformin use is associated with changes in the gut
microbiome, the exact mechanisms by which metformin modulates
the gut microbiome and how changes in the gut microbiome affect
metformin’s therapeutic effects are not yet fully understood and
require further investigation.

Interplay between metformin, bile
acids, gut microbiome, GLP-1, and
glycemic control in diabetes

Bile acids, traditionally known for their role in fat digestion and
absorption, have been found to act as signaling molecules,
influencing blood glucose regulation. When administered to
different parts of the gastrointestinal tract, bile acids increase
plasma GLP-1 concentrations and attenuate the blood glucose
response to small intestinal glucose infusion in both healthy
individuals and those with T2D (Wu et al., 2013a; Wu et al.,
2013b; Brønden et al., 2017). The glucose-lowering effect of bile
acids is believed to be mediated by the GLP-1 receptor, as evidenced
by the inhibition of this effect in T2D patients treated with a GLP-1
receptor antagonist (Sansome et al., 2020).

FIGURE 3
Microbiota-mediated effects of metformin.
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Roux-en-Y gastric bypass surgery, a type of bariatric surgery,
enhances GLP-1 secretion andmetabolic improvements by diverting
bile from the duodenum to the distal small intestine (Larraufie et al.,
2019; Madsen et al., 2019). Researchers are exploring bile acid-based
therapies that could mimic the effects of bariatric surgery by
delivering bile acids to the distal gut, which holds promise for
managing T2D (81).

Bile acids can interact with different receptors, including Takeda
G-protein-coupled receptor 5 (TGR5) and farnesoid X receptor
(FXR), both expressed in L-cells (Makishima et al., 1999; Ding et al.,
2015). TGR5 activation by bile acids increases GLP-1 secretion,
while FXR activation has a more variable effect (Thomas et al., 2009;
Li et al., 2013; Trabelsi et al., 2015; Kuhre et al., 2018). Additionally,
bile acids can activate bitter taste receptors throughout the
gastrointestinal tract, leading to GLP-1 secretion and weight loss
in rodents (Dotson et al., 2008).

Bile acid sequestrants have been investigated as a therapy for
T2D (Hansen et al., 2017). Although they moderately reduce blood
glucose, they also decrease GLP-1 secretion when combined with
exogenous or endogenous bile (Adrian et al., 2012; Hansen et al.,
2016; Brønden et al., 2018). The exact role of this reduction in GLP-1
in the benefits of bile acid sequestrants remains unknown,
necessitating further research on their chronic administration.

Metformin inhibits bile acid resorption, resulting in increased
fecal bile salt excretion (Scarpello et al., 1998). This mechanism may
explain the gastrointestinal adverse effects, such as diarrhea,
associated with metformin (Watson et al., 2019). Moreover, by
reducing proximal bile acid reabsorption, metformin increases
the exposure of the distal gut to bile acids, potentially enhancing
bile acid-induced GLP-1 secretion and glucose-lowering effects
(Sansome et al., 2020).

The gut microbiota, a group of bacteria in the gastrointestinal
tract, can be disrupted, leading to dysbiosis and contributing to
various diseases like obesity, T2D, and allergies (Gomaa, 2020). Both
metformin administration and T2D have been associated with
changes in gut microbial composition (Qin et al., 2012; Forslund
et al., 2015). Clinical trials have shown that metformin
administration can lead to changes in several bacterial strains in
healthy individuals and those with T2D (Wu et al., 2017a). These
changes may improve glucose tolerance and insulin sensitivity.
Notably, metformin use is linked to the reduction of Bacteroides
fragilis and alterations in bile acid composition, which can enhance
GLP-1 secretion and inhibit FXR activity (Sun et al., 2018). Although
the specific bacterial strains affected may vary between studies, it is
evident that metformin independently influences the gut microbiota
regardless of T2D presence (Sansome et al., 2020).

The role of gut microbiota in SARS-
CoV-2 infection

SARS-CoV-2, the causative agent of COVID-19, has been shown
to infect the gastrointestinal tract, and alterations in gut microbiota
composition have been linked to an increased susceptibility to viral
infections (Li et al., 2022; Xiang and Liu, 2022). Studies have
reported a decrease in beneficial gut bacteria, such as
Faecalibacterium prausnitzii and Bifidobacterium, and an increase
in pathogenic bacteria, such as Enterococcus faecalis and

Streptococcus, in COVID-19 patients (Yeoh et al., 2021; Ancona
et al., 2023; Petakh et al., 2023a). These changes in gut microbiota
composition were associated with increased levels of inflammatory
markers, such as IL-6 and CRP (Petakh et al., 2023a; Gradisteanu
et al., 2023). Moreover, COVID-19 patients with gastrointestinal
symptoms had a higher abundance of opportunistic pathogens,
suggesting that gut microbiota dysbiosis may contribute to the
severity of gastrointestinal symptoms in COVID-19 patients
(Wang et al., 2022).

The gut microbiota can influence the host’s immune response to
viral infections by regulating the production of antiviral cytokines
and modulating the activity of immune cells. For example, gut
bacteria can produce SCFAs, which have been shown to enhance the
antiviral immune response by increasing the production of IFN-γ
and natural killer (NK) cells (Carreca et al., 2022; Govers et al.,
2022). Moreover, the gut microbiota can influence the development
and function of Tregs, which play a crucial role in maintaining
immune homeostasis and preventing excessive inflammation
(Smigiel et al., 2014).

Recent research indicates that the gut microbiota may play a role
in influencing the immunogenicity of COVID-19 vaccines (Ng et al.,
2023). In one study, the use of antibiotics before vaccination was
associated with lower seroconversion rates and median antibody
levels after receiving one dose of the BNT162b2 vaccine, although
this effect was not observed after receiving two doses (Che et al.,
2022). Although the study did not directly analyze fecal microbiota,
it suggests that dysbiosis in the gutmicrobiota might have influenced
the immune response to the COVID-19 vaccine.

A study involving patients with inflammatory bowel disease
found that those with below-average concentrations of SARS-CoV-
2-specific antibodies had lower gut microbiota beta diversity and
exhibited different bacterial abundances compared to those with
above-average antibody concentrations (Alexander et al., 2023).
Additionally, differential abundance of fecal metabolites was
observed in above- and below-average responders. Specific gut
microbial species, such as Bilophila, were associated with above-
average response, while others like Streptococcus were associated
with below-average response. These findings imply that certain gut
microbial species and metabolites, including trimethylamine, short-
chain fatty acids (SCFAs), and bile acids, could be linked to COVID-
19 vaccine immunogenicity. However, it is essential to consider that
these studies have limitations, such as small sample sizes and the lack
of analysis of other factors that might influence the gut microbiota
and metabolome.

In addition to the gut microbiota’s role in modulating the
immune response to viral infections and influencing COVID-19
vaccine immunogenicity, emerging evidence suggests the existence
of a gut-lung axis that may contribute to the pathogenesis of
COVID-19. The gut-lung axis represents a bidirectional
communication pathway between the gut and the lungs, where
alterations in the gut microbiota can affect lung health and vice
versa (Synodinou et al., 2022).

Studies have demonstrated that gut dysbiosis, characterized by
an imbalance in the gut microbial composition, can lead to systemic
inflammation and immune dysregulation, which may have
implications for lung diseases. In the context of COVID-19, it
has been proposed that the gut-lung axis could influence the
severity of respiratory symptoms and the risk of developing
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complications (Petakh et al., 2023a; Petakh et al., 2023c; Petakh et al.,
2023d).

Metabolites produced by the gut microbiota, such as SCFAs and
bile acids, have the ability to enter the bloodstream and exert effects
on distant organs, including the lungs. SCFAs, generated by certain
gut bacteria through the fermentation of dietary fiber, possess
immunomodulatory properties and can influence immune
responses in the lungs (Dang et al., 2019). They are known to
regulate the production of inflammatory cytokines and promote the
generation of regulatory T cells, which help maintain immune
balance and reduce excessive inflammation in the lungs (de
Oliveira et al., 2021).

Moreover, alterations in the composition of the gut microbiota
can lead to increased gut permeability, enabling the translocation of
bacterial components, such as lipopolysaccharides (LPS), into the
bloodstream. This process, referred to as bacterial translocation, can
trigger systemic inflammation and contribute to the development of
lung injury (Sun Z. et al., 2022). In COVID-19 patients, the presence
of circulating LPS has been associated with disease severity and
poorer clinical outcomes (Giron et al., 2021).

Conclusion

In conclusion, metformin has shown potential as an antiviral
agent against SARS-CoV-2, as well as other RNA viruses. It may
inhibit viral entry into cells and suppress viral growth in cell culture
models. Clinical trials have demonstrated promising results, with
metformin leading to a decrease in viral load and a higher rate of
undetectable viral load in COVID-19 patients. Furthermore,
metformin’s anti-inflammatory effects may help prevent cytokine
storms by reducing the production of pro-inflammatory cytokines
and modulating immune cell function. The drug’s ability to regulate
Th17/Treg balance and influence immunometabolism suggests its
potential in mitigating inflammation and restoring T cell
functionality in COVID-19. Additionally, metformin’s
modulation of the gut microbiota, particularly changes in
bacterial taxa and the production of short-chain fatty acids, may

contribute to its therapeutic effects. Bile acids, gut microbiota, and
their interplay with metformin and GLP-1 have implications for
glycemic control and the management of diabetes. Understanding
the relationship between metformin, the gut microbiome, and
SARS-CoV-2 infection opens new avenues for research and
potential therapeutic interventions in COVID-19.
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