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Editorial on the Research Topic
Mechanisms of action of natural antisense transcripts on the post-
transcriptional regulation of sense protein coding gene expression during
development and in cancer

The evolutionary development of an organism is associated with increased complexity of
the regulatory potential of non-coding RNAs (ncRNAs), which constitute the majority of the
transcriptome (Chowdhary et al., 2021). The most studied ncRNAs are microRNAs
(miRNAs), which promote gene silencing by inhibiting translation of target genes and/
or by destabilizing mRNAs (Lee et al., 1993; Wightman et al., 1993). In contrast, long
ncRNAs (lncRNAs) are the least studied but the most complex group of ncRNAs. They have
emerged to be more diverse than short ncRNAs and to have complex gene regulatory
functions in cells. For instance, lncRNAs can form complex 3D secondary structures with the
capacity to bind to proteins and nucleic acids (DNA and RNA). This dual capacity equips
lncRNAs to be ideal regulators of the protein-nucleic acid network (Jadaliha et al., 2018).

Natural antisense transcripts (NATS) are lncRNAs that are transcribed from the
opposite strand of protein coding genes and are complementary to or overlap the
protein-coding transcript (Nishizawa et al., 2015). NATs are widespread in eukaryotic
genomes with approximately 25%–50% of human and mouse gene loci being transcribed
from the opposite as well as the forward strand (Katayama et al., 2005; Zhang et al., 2006).
Consistently, an overwhelming number of NATs has been identified [https://www.
gencodegenes.org, GENCODE Release (version30), Release date 04.2019], indicating the
possibility that antisense-mediated regulation affects a large number of genes (He et al.,
2008).

As part of this Research Topic, the comprehensive review by Khorkova et al. summarizes
NAT-dependent post-transcriptional regulation of gene expression in a wide variety of
biological mechanisms:
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(i) Multiple NATs have been shown to regulate mRNA
degradation or translation through sponging endogenous
miRNAs. Wang et al. explored the role of MEF2C
antisense RNA1 (MEF2C-AS1) on sponging miR-592 in
cervical cancer. They found that MEF2C-AS1 was
downregulated in cervical cancer and may regulate miR-
592 and its target, the R-spondin1 axis, to affect cervical
cancer cell invasion and migration. Liao et al. investigated the
role of the lncRNA, NEAT1, in high glucose-induced
hypertrophy of mesangial cells. They found that high
glucose leads to STAT3 activation, resulting in
downregulation of miR-222-3p by NEAT1, which acts as
an miR-sponge. In this manner, NEAT1 limited miR-222-3p
binding with CDK1B mRNA. The release of mRNA leads to
elevated CDK1B protein levels, resulting in mesangial cell
hypertrophy, which can cause diabetic nephropathy.

(ii) NATs bind their mRNA partner, thereby modulating its half-
life in a miRNA-independent manner. Short complementary
regions within the sense RNA:NAT pair may promote
intermolecular RNA:RNA interactions (Nishizawa et al.,
2015). These interactions are transient and unstable because
of the low melting temperature of the small RNA duplex. The
formation of this A-form RNA:RNA duplex triggers
conformational changes in the sense RNA, allowing either
enhanced accessibility of a stabilizing RNA-binding protein or
decreased affinity of an RNA decay factor to the mRNA,
thereby modulating its stability (Nishizawa et al., 2015;
Jadaliha et al., 2018). Regulation of transcript stability can
also be mediated by NAT-sponging of protein factors that
regulate mRNA degradation (Pu et al., 2021).

(iii) Mammalian-wide interspersed repeat (MIR)-NATs mediate
translational repression. NATs with embedded
retrotransposon-derived repeats, such as MIRs, termed
MIR-NATs, form effector domains that regulate mRNA-
ribosome pairing. MIR-NATs overlapping 5′-UTRs head-to-
head compete with internal ribosome entry sites (IRESs) for
the 40S ribosome subunit and repress translation (Simone
et al., 2021).

(iv) SINEUPs modulate translation initiation. SINEUPs (inverted
SINEB2 sequence-mediated upregulating molecules) are
encoded antisense to the 5′ end of the target sense mRNA
and can enhance its translation without upregulating mRNA
levels. The binding domain of SINEUPs is formed by the
antisense region overlapping the start codon of the target
mRNA and confers specificity to the protein coding
transcript. An effector domain at the 3′ end of a SINEUP
comprises embedded transposable element sequences, such as
inverted short interspersed nuclear element B2, which is
capable of upregulating translation by binding activating
protein complexes (Podbevsek et al., 2018).

(v) Regulation by NAT-encoded mini-proteins. Short ORFs
present in some NATs can be translated into peptides that
have downstream regulatory functions in processes such as
homeostasis regulation, disease pathogenesis, tumor
oncogenesis, and development. Pan et al. review the latest
developments in the field of lncRNA-encoded micropeptides.

(vi) Regulation of protein stability. NATs protect target proteins
from degradation by sponging/inhibiting the activity of

proteins involved in the ubiquitin-proteasome degradation
pathway (Wang et al., 2021; Zhang et al., 2022).

(vii) Subcellular localization of proteins: NATs can also modulate
the subcellular distribution of proteins (Suzuki et al., 2021),
although this aspect of their activity has not been extensively
studied.

As part of this Research Topic, Sirvinskas et al. report that
increased expression of the antisense lncRNA, CHROMR, was
associated with the development of malignancy and poor
prognosis in brain glioma patients. However, experimental
clarification of the mechanism of CHROMR action is required to
account for the prognostic efficacy of the mRNA PRKRA/lncRNA
CHROMR ratio that the authors claimed for glioma patients.

The recent discovery of vast ncRNA-based regulatory networks
has revealed that the tissue- and developmental-specific expression
of ncRNAs is important for them to be viable indicators of cell
physiological state. Dysregulation of these networks has been
implicated in diseases, including cancer. lncRNAs, NATs in
particular, play a significant role in the networks involved in
disease-relevant mechanisms, working either post-
transcriptionally, as described above, or transcriptionally and
epigenetically. In this Research Topic, Khorkova et al. fully
describe these NAT-mediated biological mechanisms and
highlight the recent clinical and pre-clinical developments in
nucleic acid-based therapeutics that aim to modulate
dysregulated ncRNA-based networks. This approach has opened
a new set of therapeutic targets that were previously inaccessible to
traditional protein-targeted small molecule inhibitors and will
enable numerous new therapeutic possibilities. We hope readers
of this Research Topic share our excitement in reading these articles
that describe the recent advances in Regulatory RNA research.
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