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1 Introduction

DNA methylation (DNAm) commonly refers to the methylation of cytosines in the
mammalian genome, which mainly occurs at CpG sites (cytosines followed by guanines). Its
existence was initially predicted in 1948 (Hotchkiss, 1948) and the first analyses of eukaryotic
DNAm states were performed in 1978 (Bird and Southern, 1978). Since then, and speeded up
by recent genome-wide analyses, a large body of evidence suggests that proper DNAm is vital
for hematopoiesis. For example, aberrations affecting the function of the DNAmmachinery,
e.g., DNA methyltransferases (DNMTs) and demethylating enzymes (TETs among others)
(Figure 1A), have profound effects on the hematological system, from differentiation defects
to malignant transformation, as reviewed by Gore and Weinstein (2016) and Medeiros et al.
(2017). While DNAm is usually associated with gene expression changes, a clear link
between these two layers is still lacking. Less commonly considered is that DNAm can be
used as read out of other layers of information, such as cell identity (Ziller et al., 2013; Farlik
et al., 2016; Loyfer et al., 2023) and cell proliferation (Yang et al., 2016; Youn and Wang,
2018; Zhou et al., 2018; Duran-Ferrer et al., 2020; Minteer et al., 2023). This, together with
advancements in single-cell technologies, opens up new avenues to study cellular processes
from the single-cell DNAm (scDNAm) perspective. In this opinion piece, we address the
main processes that shape the DNA methylome during hematopoiesis and beyond, and
provide insights into how to utilise scDNAm studies to extract underlying layers of biological
information. Altogether, allowing to expand the opportunities for new discoveries in the
single-cell era.

2 Leveraging DNA methylation to extract underlying
features of normal and tumor cells

Different biological processes shape the DNA methylome of normal and malignant cells.
These comprise activation of lineage-specific, cell-stage specific, or tumor-specific enhancers,
as well as stochastic errors of DNAm maintenance during cell division, and deposition of
DNAm at polycomb-repressed regions. Here we focus on how DNAm changes affected by
these different processes can be leveraged to infer other information, such as cell identity,
proliferative and genome activation history, and the cell of origin of tumor cells. To understand
how the abovementioned features can be extrapolated using this epigenetic mark, DNAm
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changes targeting regulatory elements and proliferation-associated
epigenetic drift will be discussed. We believe that deeper insights into
these processes and better knowledge of the CpGs that they target will
allow for more comprehensive biological interpretations of large-scale
DNAm studies.

DNAm changes in regulatory elements are widely studied since
early observations that promoters of tumor suppressor genes (TSGs)
are hypermethylated in cancer with p16 as hallmark example
(Gonzalez-Zulueta et al., 1995; Herman et al., 1995). However, in
many cases silencing of TSGs precedes promoter DNAm and
demethylation does not necessarily reactivate gene expression as
reviewed by Jones (2012). In addition, promoter DNAm is not

directly linked to gene expression, but majorly depends on
promoter CpG density (Weber et al., 2007). Nevertheless, for a
fraction of promoters, DNAm and gene expression levels show
clear correlations, for instance mediated by methylation sensitive
transcription factors (TF) (Domcke et al., 2015; Maurano et al.,
2015; Grand et al., 2021). Interestingly, with the advancement of
genome-wide methods, the epigenomics field has opened up to
explore DNAm at enhancers. Even though active enhancers
harbour low DNAm levels (Stadler et al., 2011; Ziller et al., 2013),
it remains unclear if DNA demethylation is necessary for enhancer
activation. For most enhancers chromatin accessibility is not linked to
low DNAm levels at the single-molecule level (Kreibich et al., 2023).

FIGURE 1
Summary of relevant biological and technological (single-cell) DNA methylation analyses aspects. (A) Main enzymes directly involved in DNAm
modulation. TETs, Tet Methylcytosine Dioxygenases; TDG, Thymine DNA glycosylase; DNMTs, DNA methyltransferases. Deaminating enzymes such as
APOBECs and AID were not included in this overview, as they play a less prominent role in this pathway. (B)Different sets of CpGs that can be analysed to
retrieve underlying biological information. H3, histone 3; K4/9/27, lysine 4/9/27; me1/3, mono/trimethylation; ac, acetylation. (C) Graphical
overview of overlapping coverage, indicated by the number of cells in which information of a specific CpG is available. Targeting scDNAmmethods to a
specific set of the CpGs in the genome increases overlapping coverage (right) in comparison to randomly covering the same percentage of CpGs in each
cell (left). (D) Targeted methods reduce sequencing efforts and price, while increasing overlapping coverage. They can be based on targeting genomic
features such as CpG dense regions in scRRBS and transposable elements in scTEM-seq (for this method the number of CpGs is an approximation based
on the number of transposable elements covered per cell), or designed to capture information at specific genomic loci marked by their coordinates
(sciMET-cap and scTAM-seq). The latter methods are most powerful to increase overlapping coverage, which we assume reaches a plateau when a low
number of CpGs are analysed. This plateau is dependent on the technology and sequencing depth. We believe that this plateau is currently reached at
around 900 CpGs, using scTAM-seq. With the speed of technological developments and decrease of sequencing costs this number will increase.
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This suggests that DNA demethylation is not instructive for activation
of most enhancers. Nevertheless, enhancer DNAm is a powerful tool
to study lineage specification and cell differentiation, both guided by
TF programs driving unique enhancer activation patterns. In fact, it is
becoming increasingly clear that differential DNAm among cell
lineage and differentiation stages are mainly located in enhancers,
as shown by detailed DNAmmaps of hematopoietic cells (Farlik et al.,
2016; Roy et al., 2021), as well as for a broad set of other cell types
(Ziller et al., 2013; Loyfer et al., 2023). Enhancer DNAm can
furthermore be used as an indirect readout of cellular TF activity,
both in healthy and tumor cells. This can be achieved by applying TF
motif enrichment analyses in differentially methylated regions, as
shown for hematopoeitic cells types and their derivedmalignancies, as
well as for non-hematopoietic cells (Ziller et al., 2013; Kulis et al., 2015;
Farlik et al., 2016; Duran-Ferrer et al., 2020; Roy et al., 2021; Loyfer
et al., 2023). Finally, genomic regions with low DNAm levels can
represent inactive sites (lacking histone marks H3K27ac and
H3K4me1) that were active enhancers during earlier cell stages.
Clear examples are murine embryonic enhancers with low DNAm
levels in adult tissues (Hon et al., 2013; Jadhav et al., 2019). Hence, low
DNAm levels at these regions serve as an imprint of past enhancer
activity and can be used to study cellular history.

The clear segregation of cell types and cell stages based on DNAm
levels at enhancers implies that DNAm profiles can be very informative
to determine the cellular origin of tumors. This is of particular interest
in poorly differentiated tumors with unclear cell of origin, or in cases of
metastasis where the primary tumor cannot be determined. In fact,
ample examples exist where DNAm of tumor DNA or circulating cell-
free DNA can be used as biomarker to diagnose tumors, as reviewed or
analysed in large cohort studies (Liu et al., 2020; Barefoot et al., 2021;
Danilova et al., 2022; Stackpole et al., 2022). Moreover, DNAm cannot
only be exploited to study tumor cell of origin at the global cell type
level, but also at the more detailed level of differentiation stage. For
instance, different B-cell related tumors, such as chronic lymphocytic
leukemia (CLL) and mantle cell lymphoma, can be further divided into
subtypes originating from pre- or post-germinal center B cells (Kulis
et al., 2012; Queiros et al., 2016), being relevant for clinical decision
making and prognostic outcome.

Intriguingly, DNAm outside enhancers can also be leveraged to
understand cellular history. Cell division, for example, is accompanied
by global DNAm changes, leaving an epigenetic mark of proliferation.
It is one of the main contributors that shape the DNA methylome in
tumors as well as healthy cells (Yang et al., 2016; Youn andWang, 2018;
Zhou et al., 2018; Duran-Ferrer et al., 2020; Minteer et al., 2023). This
proliferation-associated drift is characterized by stochastic loss of
DNAm in heterochromatic regions (lacking the main regulatory
histone marks or containing H3K9me3). In contrast, polycomb-
repressed regions (marked by H3K27me3) stochastically accumulate
DNAm upon proliferation (Duran-Ferrer et al., 2020). Importantly,
while this is a relatively novel concept, the underlying observations are
not new; global DNAm loss in tumors and DNAm gain at TSG
promoters were already observed long ago (Feinberg and Vogelstein,
1983; Gama-Sosa et al., 1983; Gonzalez-Zulueta et al., 1995; Herman
et al., 1995), followed by many similar findings. All these likely
represent proliferation-associated drift. Of further note, the two
contrasting behaviours - loss and gain of DNAm - at different
genomic loci usually co-exist within a tumor, but some neoplasms
show a clear bias for one of the two (e.g., hypermethylation in acute

lymphoblastic leukemia and hypomethylation in multiple myelome)
(Duran-Ferrer et al., 2020). Thirdly, while some CpGs targeted by
proliferation-associated drift overlap with CpGs affected by ageing,
others do not, suggesting that these two processes are related but not
necessarily affect the same genomic regions (Duran-Ferrer et al., 2020;
Minteer et al., 2023). Though the functional impact of proliferation-
associatedDNAmdrift is still unknown, notion of this process is crucial
to investigate cancer development and progression. It can, for example,
be used to study the impact of genetic alterations on proliferation or as
powerful independent prognostic marker (Duran-Ferrer et al., 2020).
In contrast, it also can hamper DNAm interpretations. Particularly, the
presence of partially methylated domains due to the stochastic nature
of proliferation-associated drift limits the ability to distinguish
functional hemi-methylation events, e.g., imprinted or mono-allelic
changes, unless moving to the single-cell and/or single-molecule level.

In summary, in this section we have outlined the power of DNAm
data to characterise important underlying biological features of
normal and tumor cells. All stands or falls though, with selection
of the right CpGs. Namely, to study cell identity, CpGs in enhancers
marked by histone marks H3K27ac and H3K4me1 will be most
powerful. In contrast, for proliferative history, CpGs in H3K9me3-
and H3K27me3-marked regions need to be analysed, together with
those in heterochromatic regions lacking main regulatory histone
marks (Figure 1B). Of note, these regions can differ dependent on the
biological system. To define them, detailed, cell-type specific histone-
mark based chromatin state maps are needed. In this respect, large-
scale efforts to generate reference epigenomes are invaluable
(Roadmap Epigenomics et al., 2015; Stunnenberg et al., 2016), with
the BLUEPRINT consortium being at the forefront of providing
detailed characterisations of normal and malignant hematopoietic
cells (Martens and Stunnenberg, 2013). They provide excellent
resources enhancing the opportunities to read out underlying
biological information from DNAm data.

3 Challenges, opportunities, and
recommendations for single-cell DNA
methylation analyses

As shown in the previous paragraphs, bulk DNAm studies have
contributed to discoveries in normal hematological development and
its derived malignancies. However, these analyses do not enable the
exploration of cellular heterogeneity, nor the detection of rare cell types
such as low abundant healthy or pre-malignant cell states, respectively
arising during normal differentiation and tumor formation. Neither do
they allow us to study DNAm patterns in isolated small cell
populations, due to the high amount of input material needed. To
overcome these limitations, the DNAm field has directed major efforts
towards the development of single-cell technologies. In this section, we
will give an overview of the main recent advancements of scDNAm
methods and highlight key aspects to take into consideration to choose
the appropriate method dependent on the biological question of
interest. An overview of the highlighted methods and their main
features can be found in Table 1.

Single-cell DNAmmethods face multiple challenges, both from the
biological and technical perspective. A biological bottleneck is the large
number of CpGs present in every human cell, namely, two copies of
roughly 29MCpGs. Therefore, analyzing the entire DNAmethylome in
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large numbers of cells is very difficult, if not impossible, due to
sequencing limitations. Covering all CpGs in a single cell would
require 100–1,000 times more reads/cell in comparison with a
scRNA-seq experiment. Even with extreme sequencing efforts
(5–7M reads/cell), genome-wide single-cell methods can only cover
a random set of 6%–7.5% of the total number of CpGs/cell (Luo et al.,
2017; Mulqueen et al., 2018). Consequently, scDNAm methods suffer
fromhigh dropout rates, generating very sparse datasets. This sparsity is
furthermore augmented by other technical reasons such as degradation
of the DNA upon bisulfite treatment and PCR amplification biases or
failures. Importantly, the high level of randomness of CpG coverage in
genome-widemethods implies that it is unlikely to have the same CpGs
covered in different cells, resulting in a low so-called overlapping
coverage. In other words, for each cell one obtains information
about a different set of CpGs (Figure 1C). This leads to the loss of
single-CpG resolution when comparing DNAm readouts among cells,
since binarization of the data into larger regions is necessary. A related
biological limitation is that most CpGs have static DNAm levels; within
each tissue only a minor fraction of CpGs show dynamic methylation
(Kulis et al., 2015; Durek et al., 2016; Loyfer et al., 2023). This means
that only a small fraction of theDNAmethylome is informative. For the
above-mentioned reasons, aiming to analyze the entire DNA
methylome, as in genome-wide methods, hinders the ability to
obtain information about biologically relevant CpGs.

Nevertheless, genome-wide bisulfite-based scDNAm methods,
such as sci-MET (Mulqueen et al., 2018), sci-METv2 (Nichols et al.,
2022), snmC-seq (Luo et al., 2017), snmC-seq2 (Luo et al., 2018) and
Drop-BS (Zhang et al., 2023) offer exciting opportunities to perform

hypothesis-free DNAm analyses, with high-throughput methods
enabling readouts of thousands of cells. However, one must keep in
mind that the overlapping coverage and resolution obtained with these
methods largely depend on the sequencing depth one can afford. At
high sequencing depth they are effective in distinguishing cell types.
Hence, taking advantage of their unbiasedness, genome-wide methods
have been used to build cell-type specific DNAm atlases (Luo et al.,
2017), investigate hematopoiesis during embryonic development
(Mukamel et al., 2022), and study hematopoietic stem cell
populations (Hui et al., 2018). This illustrates their power to
uncover new cell types and intermediate differentiation stages.
Additionally, even with low sequencing depth we consider that they
can be employed to study proliferation-associated drift, as this can be
calculated using DNAm levels over large genomic regions. While
sequencing depth is of major importance, increased sequencing
efforts cannot control for the loss of information due to
degradation of DNA during bisulfite conversion. For this reason,
alternative genome-wide methods based on methylation-sensitive
restriction enzymes (MSRE) have been developed, such as epi-
gSCAR (Niemoller et al., 2021) and DARE (Viswanathan et al.,
2019). MSRE-based methods improve overlapping coverage, but at
the same time they are not completely unbiased, since CpGs should be
located inside anMSRE restriction site to be studied. Furthermore, they
are plate-based, which limits cellular throughput to a few cells per
experiment, unless one can count on the use of a robot to automate the
plate-based processing.

To overcome constraints related to the analysis of the entire DNA
methylome, we and others have developed targeted scDNAmmethods.

TABLE 1 Overview of highlighted single-cell DNA methylation methods. Brief overview of the methods mentioned in the text with their main features.

Method Basis Platform Cell
throughput*

Average CpG
coverage**

Comments References

DARE MSRE Plate based Low Genome-wide (400k CpGs/
cell, 1.2M total CpGs)

Multiomics allowed: combination with
CNV readout

Viswanathan et al.
(2019)

Drop-BS Bisulfite
conversion

Droplet
based

High Genome-wide (10k CpGs/
cell, 11M total CpGs)

Fast and very high-throughput Zhang et al. (2023)

epi-gSCAR MSRE Plate based Low Genome-wide (500k CpGs/
cell)

Multiomics allowed: combination with SNV
readout

Niemöller et al. (2021)

sciMET/
sciMETv2

Bisulfite
conversion

Plate based High Genome-wide (2M CpGs/
cell, 12M total CpGs)

High-throughput plate-based method using
combinatorial indexing

Mulqueen et al. (2018)
Nichols et al. (2022)

sciMET-cap Bisulfite
conversion

Plate based High Targeted to regulatory
elements (200k CpGs/cell)

High-throughput plate-based method using
combinatorial indexing and capture probes

Acharya et al. (2023)

scRRBS Bisulfite
conversion

Plate based Low Targeted to promoters
(250k—1M CpGs/cell)

Widely developed and utilized method.
Newer versions allow multiomics:

combination with whole transcriptome
and/or somatic mutations readouts

Guo et al. (2013)
Gaiti et al. (2019)
Gu et al. (2021)

scTAM-seq MSRE Droplet
based

High Tageted to customized
CpGs of interest

(400–900 CpGs/cell)

Multiomics allowed: combination with
somatic mutations, and cell-surface markers

readouts

Bianchi et al. (2022)

scTEM-seq Bisulfite
conversion

Plate based Low Targeted to SINE Alu and
LINE-1 transposable

elements

Multiomics allowed: combination with
whole transcriptome readout

Hunt et al. (2022)

snmC-seq/
snmC-seq2

Bisulfite
conversion

Plate based Low Genome-wide (1.5M CpGs/
cell)

Even though this is a low-throughput
method, in Luo et al. (2017) DNAm profiles

of > 1,000 cells were generated

Luo et al. (2017)
Luo et al. (2018)

MSRE, methylation-sensitive restriction enzymes; CNV, copy number variation; SNV, single nucleotides variant.

*We considered as high-throughput methods those that easily allow to reach an output of >1,000 cells per sample.

**We separated methods based on being targeted or genome-wide and we highlighted the number of CpGs per cell when clearly stated in the corresponding papers.
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We saw the opportunity of combining MSRE with a microfluidics
system, the Tapestri platform fromMission Bio, and developed scTAM-
seq (Bianchi et al., 2022). Our methodology builds upon an important
development to reduce the needed sequencing depth (and thus the
price) by targeting biological informative CpGs (Figure 1D). Other
targeted methods have so far focused on covering specific functional
regions in the genome such as regulatory regions in sciMET-cap
(Acharya et al., 2023), promoters in scRRBS (Guo et al., 2013; Gaiti
et al., 2019; Gu et al., 2021), or LINEs and SINEs in scTEM-seq (Hunt
et al., 2022). While these methods do reduce sequencing requirements,
they still suffer from low overlapping coverage. Furthermore, scRRBS
and scTEM-seq are plate-based which limits cellular throughput as
mentioned above. Yet, such approaches have shed important light onto
DNAm dynamics in relation to clonal hematopoiesis and CLL (Gaiti
et al., 2019; Izzo et al., 2020). To maximize overlapping coverage and
allow cell comparisons of a highly informative set of methylation sites at
the single-CpG level, we developed the microfluidics-based method
scTAM-seq, using a rigorous selection of approximately 400 genomic
sites. This method allowed us not only to read out distinct B-cell stages
but also to capture the continuous process of memory B-cell formation
(Bianchi et al., 2022). Of notice, thismethod requires prior knowledge of
the system to design the CpG panel. Nevertheless, we believe that our
method will open new doors to characterise complex, continuous
biological systems with transitional cell states such as hematological
differentiation (Velten et al., 2017; Weinreb et al., 2020), cellular
reprogramming (Kong et al., 2022), as well as tumor development
and plasticity (Kinker et al., 2020; Nadeu et al., 2022).

Overall, in this section, we have discussed the major aspects to
consider when opting to use scDNAm methods. The most suitable
method to profile the DNAmethylome in single cells will depend on 1)
the knowledge of the model, 2) the biological question to be answered,
and 3) the budget. That being said, to obtain a global snapshot of the
DNAm landscape or build cellular DNAm atlases, unbiased genome-
wide methods are the most appropriate (Luo et al., 2018; Nichols et al.,
2022; Zhang et al., 2023), followed by less-expensive targeted
approaches such as scRRBS (Guo et al., 2013) or sciMET-cap
(Acharya et al., 2023). Based on the number of input cells, either
plate-based (low input) or droplet-based/combinatorial-indexing-based
(high input) methods would be preferred. Finally, if one aims to study a
small set of highly informative CpGs (up to 900) at single-CpG level, we
believe that scTAM-seq is optimal (Bianchi et al., 2022). The
overlapping coverage that can be achieved by this method allows the
study of DNAm variability at individual genomic loci as well as their
combinatorial DNAm behaviors in unprecedented detail.

4 Discussion

The single-cell field has evolved extensively in recent years,
providing highly informative atlases of many tissue types through
large-scale initiatives such as the Human Cell Atlas (Regev et al., 2017).
The field has largely focused on transcriptomic and chromatin
accessibility readouts though, with single-cell explorations of the
DNA methylome lagging far behind. This implies that our view of
the DNA methylome at single-cell level is still in its infancy, while
highly relevant information can be extracted from this epigenetic layer.
In this opinion piece, we describe the underlying biological features that
can be read out from DNAm data and we lined out the main

developments of the scDNAm field in recent years. In this way, we
aim to underline the biological relevance of DNAm studies in the
single-cell era, an emerging field withmany opportunities. Importantly,
the scDNAm field is rapidly progressing and while we write this piece,
new technologies are being developed with the aim to increase the
targeted amount of CpGs, overlapping coverage, and resolution, while
reducing sequencing efforts and therefore the costs. Furthermore,
though out of the scope of this piece, techniques are developed to
combine DNAm studies with other (epi)genetic layers of information
(Viswanathan et al., 2019; Niemoller et al., 2021; Bianchi et al., 2022;
Angermueller et al., 2016; Hou et al., 2016; Guo et al., 2017; Clark et al.,
2018; Linker et al., 2019; Gu et al., 2021; Hunt et al., 2022). Such single-
cell multi-omics technologies shall aid in better understanding of the
correlations between DNAm and other molecular features such as
somatic mutations, copy number variations, chromatin accessibility,
gene expression, cell-surface proteins, and alternative splicing. In
summary, with all recent biological insights and technical
advancements, the scDNAm field has exciting times ahead, heading
towards deep characterisations of complex biological processes such as
cell differentiation, cellular reprogramming, and tumor formation,
capturing the potential paths cells can follow within these
continuous landscapes.
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