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The tumour-associated carbonic anhydrases (CA) IX and XII are upregulated by
cancer cells to combat cellular and metabolic stress imparted by hypoxia and
acidosis in solid tumours. Owing to its tumour-specific expression and function,
CAIX is an attractive therapeutic target and this has driven intense efforts to develop
pharmacologic agents to target its activity, including smallmolecule inhibitors.Many
studies in multiple solid tumour models have demonstrated that targeting CAIX
activity with the selective CAIX/XII inhibitor, SLC-0111, results in anti-tumour
efficacy, particularly when used in combination with chemotherapy or immune
checkpoint blockade, and has now advanced to the clinic. However, it has been
observed that sustainability and durability of CAIX inhibition, even in combination
with chemotherapy agents, is limited by the occurrence of adaptive resistance,
resulting in tumour recurrence. Importantly, the data from these models
demonstrates that CAIX inhibition may sensitize tumour cells to cytotoxic drugs
and evidence now points to ferroptosis, an iron-dependent form of regulated cell
death (RCD) that results from accumulation of toxic levels of phospholipid
peroxidation as a major mechanism involved in CAIX-mediated sensitization to
cancer therapy. In this mini-review, we discuss recent advances demonstrating the
mechanistic role CAIX plays in sensitizing cancer cells to ferroptosis.
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1 Introduction

Hypoxia is an important feature of the tumour microenvironment (TME) of solid cancers
and its presence is associated with poor patient prognosis and resistance to anti-cancer therapies
(Nakazawa et al., 2016; Gillies et al., 2018). Hypoxia is also known to provide an environmental
niche for cancer stem cells and to promote invasion and metastasis (Jain, 2014). Intratumoural
hypoxia promotes hypoxia-inducible factor 1 alpha (HIF-1α)-mediated metabolic
reprogramming by tumour cells, resulting in a shift toward increased glycolysis and altered
oxidative phosphorylation in a bid to meet energy and biosynthetic demands in a low oxygen
environment (Xie and Simon, 2017). These processes lead to the accumulation of acidic
metabolites by tumour cells, including lactate, protons (H+) and carbon dioxide (CO2). The
aforementioned metabolites contribute to the disruption of intracellular pH (pHi) homeostasis
and negatively impact cell viability (Parks et al., 2013; Corbet and Feron, 2017). Cancer cells must,
therefore, actively adapt to these challenging environmental conditions in order to survive.
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To effectively combat hypoxic and acidic cellular stress, cancer cells
activate a network of enzymes and transporters that function to
maintain pHi homeostasis (Parks et al., 2013), including the
tumour-associated carbonic anhydrases (CA) IX (CAIX) and CAXII
(Neri and Supuran, 2011; Corbet and Feron, 2017). CAIX is a cell
surface, HIF-1α inducible metalloenzyme that catalyzes the reversible
hydration of CO2 to bicarbonate (HCO3

−) and H+ (Neri and Supuran,
2011). In hypoxic tumours, CAIX activity contributes to the
maintenance of a pHi favorable for cancer cell survival and growth,
and simultaneously facilitates acidification of the TME, thereby
promoting tumour cell invasion and metastasis, as well as
immunosuppression and therapeutic resistance (McDonald et al.,
2012; Boyd et al., 2017; Chafe et al., 2019; Pastorekova and Gillies,
2019). Inhibition of CAIX expression disrupts pH regulation, reduces
cancer stem cells, inhibits epithelial mesenchymal transition (EMT) and
ultimately diminishes tumour growth and metastasis (Chiche et al.,
2009; Lou et al., 2011; Lock et al., 2013; McDonald et al., 2019).

CAIX is robustly expressed in across a spectrum of hypoxic solid
tumours and correlates both with poor prognosis (Chia et al., 2001;
Loncaster et al., 2001; Klatte et al., 2009; Korkeila et al., 2009; Ilie et al.,
2010) and with reduced therapeutic response (Koukourakis et al., 2001;
Generali et al., 2006; Tan et al., 2009; McIntyre et al., 2012). In contrast,
the expression of CAIX in normal human normal tissue is low and is
confined to gastric and gall bladder epithelia (Supuran et al., 2018;
Pastorekova and Gillies, 2019). These attributes serve to make CAIX an
attractive therapeutic target, a position that, in turn, has driven the
development of CAIX/CAXII small molecule inhibitors.

The 4-[(4-fluorophenyl) carbamoyl] amino-benzene sulfonamide,
designated SLC-0111 (also known as U-104), is a selective small
molecule inhibitor of CAIX (Pacchiano et al., 2011). Several
preclinical studies have now demonstrated that targeting CAIX
activity with SLC-0111 results in anti-tumour efficacy in multiple
solid tumour models, including including triple negative breast
cancer (Lou et al., 2011; Lock et al., 2013; Chafe et al., 2015; Bozdag
et al., 2018; Hedlund et al., 2019), pancreatic cancer (McDonald et al.,
2019) and melanoma (Chafe et al., 2019). Furthermore, a growing
number of studies support the use of CAIX inhibitors as effective
anti-cancer agents in combination with chemotherapy or immune
checkpoint blockade. For example, treatment of mutant KRAS-driven
PDAC tumours with the combination of gemcitabine and SLC-0111
results in acidosis and cell death, and prolongs survival by tumour-
bearing mice (McDonald et al., 2019). Similarly, inhibition of CAIX
activity with SLC-0111 potentiates the impact of temozolomide
treatment in preclinical models of glioblastoma (Boyd et al., 2017),
and combining CAIX inhibition with immune checkpoint blockade
enhances anti-tumour efficacy an in vivo model of melanoma (Chafe
et al., 2019). Mechanistically, inhibition of CAIX enhances chemo- and
immunotherapeutic responses in these tumours through the regulation
of pH and acidosis (Boyd et al., 2017; Chafe et al., 2019; McDonald et al.,
2019). Evaluation of SLC-0111 in a Phase 1 clinical trial (NCT02215850)
of patients with advanced cancer demonstrated good safety and
pharmacokinetic profiles, and defined a maximum tolerated dose for
Phase 2 trials (McDonald et al., 2020). SLC-0111 is currently being
evaluated in combination with gemcitabine in pancreatic cancer patients
with CAIX positive tumours (NCT03450018).

Furthermore, in silico and computational approaches may offer
complementary strategies for both designing effective CAIX inhibitors
and for discerning potentially actionable therapeutic combinations. For

example, molecular docking and molecular dynamic simulation
analyses have been performed alongside conventional fluorescence
binding studies to delineate novel classes of CAIX inhibitors with
efficient binding parameters (Kumari et al., 2016). To evaluate co-
targeting of CAIX and other pathways relevant to cancer progression, a
hybrid computational model that accounts for both tumour-immune
interactions and tumour metabolism-mediated acidosis within the
TME was recently developed (Grajek et al., 2023). When used to
evaluate the role of CAIX expression on the efficacy of immune
checkpoint inhibitors (ICI), the model showed that CAIX expression
inhibits the immune response and that suppressing CAIX expression
improves response to immune checkpoint blockade (Grajek et al.,
2023). Computational modeling has also demonstrated that
combination therapy using SLC-111 and ICI moves the incomplete
response to ICI to tumour eradication (Grajek and Poleszczuk, 2023).
These studies highlight the ability of in silico studies to recapitulate
experimental findings and suggest that they may offer an additional
technological link between pre-clinical studies and clinical applications.

It is clear that extensive pre-clinical and translational work,
using genetic, pharmacological and in silico approaches has
established CAIX inhibition as a promising cancer therapeutic
target, especially for “difficult to treat” solid tumours. However, it
has been observed that sustainability and durability of CAIX
inhibition, even in combination with chemotherapy agents, is
limited by the occurrence of adaptive resistance, resulting in
tumour recurrence (Lou et al., 2011; Lock et al., 2013; Boyd
et al., 2017; Chafe et al., 2019; McDonald et al., 2019).
Importantly, the data from these models demonstrates that CAIX
inhibition may sensitize tumour cells to cytotoxic drugs and
evidence now points to ferroptosis, an iron-dependent form of
regulated cell death (RCD) that results from accumulation of
toxic levels of phospholipid peroxidation (Stockwell, 2022), as a
major mechanism involved in CAIX-mediated sensitization to
cancer therapy. In this mini-review, we discuss recent advances
demonstrating the mechanistic role CAIX plays in sensitizing cancer
cells to ferroptosis.

2 Co-vulnerability of iron-sulfur
cluster—xCT and carbonic anhydrase IX

The acquisition of therapeutic resistance is a major impediment to
durable treatment response in patients with cancer (Tyner et al., 2022).
One promising therapeutic approach for overcoming treatment
resistance is the identification of synthetic lethal interactions (O’Neil
et al., 2017). Synthetic lethality refers to the continued survival of cells in
response to a single genetic hit, whereas the co-occurrence of multiple
genetic events results in cell death (O’Neil et al., 2017). Thus,
identification of synthetic lethal interactions reveal co-vulnerabilities
in cancer cells that may be targeted pharmacologically to generate novel
therapeutic approaches.

Recently, an unbiased, genome-wide synthetic lethal CRISPR
screen was performed in breast cancer cells in hypoxia to establish
potential vulnerabilities that, together with inhibition of CA9
expression, would enhance cell death and limit therapeutic
resistance, offering an avenue toward suppressing tumor
resistance and recurrence (Chafe et al., 2021). These analyses
uncovered genes associated with redox homeostasis as co-
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vulnerabilities with CA9, in particular the cysteine desulfurase,
NFS1, which functions to catalyze the initial step in the
biogenesis of iron-sulfur clusters (Figure 1) (Chafe et al., 2021).
These iron-sulfur clusters are essential cofactors for mitochondrial
transport chain proteins. NFS1, which has been shown to protect
cells from ferroptosis and is required for growth of metastatic breast
tumours in the lung (Alvarez et al., 2017), removes a thiol group
from cysteine to generate alanine and transfers the sulfur to an ISCU
scaffold protein (Rouault and Maio, 2017; Maio and Rouault, 2020).

Combinatorial genetic depletion of CA9 and NFS1 expression, or
pharmacologic inhibition of CAIX/XII in combination with
NFS1 depletion, results in increased cellular iron pools, increased
lipid peroxidation and increased ferroptosis of tumour cells (Figure 1)
(Chafe et al., 2021). Furthermore, co-targeting of NFS1 and CAIX
activity in vivo results in enhanced tumour growth control compared
to targeting each protein individually (Chafe et al., 2021).

Recognizing the challenges associated with specifically targeting
NFS1 for clinical application, further investigations have focused on

targeting the NFS1 axis upstream through inhibition of the cell
surface cysteine glutamate transporter, xCT, to limit the availability
of cellular cysteine, a substrate of NFS1, in combination with
inhibition of CAIX (Figure 1). Targeting CAIX activity in
combination with erastin-mediated inhibition of xCT enhanced
ferroptosis in cancer cells in a pH-dependent manner, providing
an effective approach to exploiting the synthetic lethal interaction
between CAIX and NFS1 using pharmacologic agents (Chafe et al.,
2021). These studies suggest that inhibitors targeting CAIX may
provide an effective strategy to enhance the activity of ferroptosis
inducing compounds in cancer therapy.

Further studies have strengthened the link between CAIX and
ferroptosis. The CA9 gene was among four “hub” ferroptosis-related
genes identified using machine learning and bioinformatics
approaches to establish key genes and molecular interactions
associated with ferroptosis in colorectal cancer (Xue et al., 2023).
Interestingly, expression of CA9 was positively correlated with
expression of transferrin receptor 2 (TFR2) in colorectal cancer,

FIGURE 1
CAIX regulates tumour cell vulnerability to ferroptosis. Pharmacologic inhibition of CAIX activity, in combination with inhibition of NFS1 expression,
results in intracellular acidosis and impaired iron-sulfur clustering. These events lead to increased ROS and increased labile iron which drives lipid
peroxidation and increases ferroptosis. Targeting CAIX activity in combination with erastin-mediated inhibition of xCT provides an effective approach to
exploiting the synthetic lethal interaction between CAIX and NFS1 using pharmacologic agents. Additionally, inhibition of CAIX increases glutamine
uptake and glutathione (GSH) synthesis as a compensatory reaction to cellular stress. Co-targeting of CAIX and key metabolic nodes in glutamine
metabolism and glutathione production enhances tumour cell cytotoxicity through ferroptosis. Combining CAIX/XII inhibitors with ferroptosis inducers
targeting GPX4, such as RSL3 and ML-162, exploit this metabolic covulnerability to increase ferroptotic cell death.
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suggesting an association between CA9 and iron transport, which is
a key process associated with ferroptosis (Xue et al., 2023). Hypoxia-
mediated upregulation of CA9 expression and increased catalytic
iron (Fe2+) has also been observed in malignant mesothelioma (Li
et al., 2019). Inhibition of CAIX activity using SLC-0111 decreased
viability of malignant mesothelioma cells and induced a gene
expression pattern similar to that seen with erastin-induced
ferroptosis (Li et al., 2019). Inhibition of CA9 in these cells
increased mitochondrial and lysosomal catalytic iron,
mitochondrial ROS and lipid peroxidation. The observed
cytotoxicity was significantly inhibited by Z-VAD-FMK,
deferoxamine, and ferrostatin-1, suggesting that reduced cell
viability occurred through a combination of apoptosis and
ferroptosis (Li et al., 2019).

Evidence also suggests that combinatorial targeting of CA9 with
chemotherapy in chemoresistant tumours may re-sensitize tumour
cells to anti-cancer therapy, in part by enhancing ferroptosis. In
gastric cancer cells, induction of chemoresistance using standard of
care multi-agent perioperative chemotherapy (e.g.,
FLOT—Leucovorin, 5-Fluorouracil, Docetaxel, Oxaliplatin or
FOLFOX—Leucovorin, 5-Fluorouracil, Oxaliplatin) resulted in
increased CAIX expression, while combining these
chemotherapies with SLC-0111 improved therapeutic efficacy in
the drug resistant cells (Andreucci et al., 2023). While this study did
not explore the relationship with ferroptosis, studies in gefitinib-
resistant lung cancer, in which CAIX is upregulated, have elucidated
a role of CAIX in regulating vulnerability to ferroptosis (Zhang et al.,
2023). CAIX was found to provide resistance to ferroptosis-inducing
drugs such as erastin through inhibition of transferrin endocytosis
and stabilization of ferritin, while treatment of gefitinib-resistant
lung cancer cells with CAIX inhibitor SLC-0111 (U-104) in
combination with cisplatin enhanced ferroptosis in vivo (Zhang
et al., 2023).

CAIX may also play a role in sensitizing cells to ferroptosis
induced by radiation therapy. Escalating doses of ionizing radiation
were observed to induce the expression of ferroptosis markers and
lipid peroxidation by glioma cells (Huang et al., 2023). In this
context, knockdown of CA9 expression by glioma cells in
hypoxia, an environment known to increase radioresistance of
glioma cells, altered the expression of proteins involved in iron
regulation and enhanced ferroptosis induced by radiation (Huang
et al., 2023). Such results suggest that inhibition of CA9 may
sensitize radioresistant glioma cells to ferroptosis in hypoxia.

3 Co-vulnerability of carbonic
anhydrase IX and glutamine
dependency

Metabolic plasticity by cancer cells enables the initiation of
compensatory mechanisms to promote adaptation and resistance
in response to therapeutic challenge (Shen et al., 2020). The
contribution of CAIX to the regulation of pH and redox
homeostasis by tumour cells in hypoxia positions it at an
intersection with metabolic reprogramming and suggests that
targeting CAIX, in combination with key metabolic nodes
involved in the generation of anti-oxidants, may disrupt redox
balance and sensitize cancer cells to ferroptosis.

Using triple negative breast cancer cells as a model, a recent
large-scale, unbiased proteomic screen carried out to identify
proteins that interact with CAIX in hypoxic cancer cells revealed
that CAIX associates with the glutamine transporter, SLC1A5
(Figure 1) (Swayampakula et al., 2017). Further investigation
confirmed that CAIX associates and co-localizes with SLC1A5 in
cancer cells, and functions to maintain redox homeostasis through
the GSH/GPX4 axis (Figure 1) (Venkateswaran et al., 2023).
Inhibition of hypoxia-induced CAIX was found to increase
glutamine uptake and glutathione (GSH) synthesis across a
spectrum of cancer types. Importantly, co-targeting of CAIX and
either Gln transport or Gln metabolism, using inhibitors of
SLC1A5 or GLS and GCLC, respectively, enhanced tumour cell
cytotoxicity through ferroptosis (Venkateswaran et al., 2023).
Similarly, combined inhibition of CAIX and GPX4 using the
ferroptosis inducer RSL3 synergistically enhanced ferroptosis and
co-targeting of CAIX activity and GSH synthesis in vivo decreased
tumour growth and increased survival through a ferrroptosis-
mediated mechanism (Venkateswaran et al., 2023).

4 Conclusion

In conclusion, it is becoming increasingly clear that CAIX
contributes functionally to the regulation of ferroptosis by cancer
cells in hypoxia. While the use of CAIX inhibitors as single agents
has met with some success, suppressing CAIX function in the
context of large-scale unbiased genomic and proteomic
approaches has revealed metabolic co-vulnerabilities that, when
targeted in combination with CAIX, synergistically enhance
ferroptosis of cancer cells. In the future, co-targeting CAIX/XII
activity in combination with ferroptosis inducers, such as inhibitors
of GPX4, have the potential to achieve substantial in-roads in
treating hypoxic tumours, especially those exhibiting chemo- and
radio-resistance.
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