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Spinal cord injury (SCI) can lead to serious functional disorders, which have
serious impacts on patients and society. The current traditional treatments of SCI
are not effective the injured spinal cord is difficult to repair and regenerate. In
recent years, stem cell transplantation for the treatment of SCI has been a hot
research topic. Dental pulp stem cells have strong abilities of self-renewal and
multi-directional differentiation, and have been applied for tissue engineering and
regenerative medicine. And dental pulp stem cells have certain advantages in
neuro-regenetation, bringing new hope to biotherapy for SCI. This article reviews
the characteristics of dental pulp stem cells and their research progress in the
treatment of SCI.

KEYWORDS

cell therapy, human dental stem cells, mesenchymal stem cells, spinal cord injury, the
potential therapeutic roles

1 Introduction

Spinal cord injury (SCI) is one of the most devastating of traumatic events, which can lead to
irreversible motor and sensory dysfunction below the lesion site (McDonald and Sadowsky, 2002;
Eli et al., 2021). Generally, the pathophysiology of SCI usually consists of the primary injury and
secondary injuries (McDonald and Sadowsky, 2002). The primary injury mainly refers to the
mechanical injury involving falls from height, sports and traffic accidents. Following the primary
injury, several pathological changes occur in the secondary injury, including hemorrhage, edema,
demyelination, axonal and neuronal necrosis and inflammatory reaction, which primarily
correlate with patient’s morbidity and mortality (Rowland et al., 2008; Ahuja and Fehlings,
2016). Therefore, the current neuroprotective and regenerative strategies mainly targeting the
secondary injury are expected to be used as therapy for SCI (McDonald and Sadowsky, 2002;
Rowland et al., 2008; Ahuja and Fehlings, 2016).

In recent years, biological regenerative therapy with stem cells has attracted more attention
in the treatment of SCI (Bonaventura et al., 2020; Andrzejewska et al., 2021; Zipser et al., 2022).
Previous experimental studies demonstrated that in animal models of SCI, stem cell therapy can
improve motor and sensory functions through multifarious mechanisms, involving restoration
of cell population, paracrine action, and microenvironment modulation (Bonaventura et al.,
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2020; Andrzejewska et al., 2021). Therefore, stem cell therapy is
considered as the most promising regenerative treatment of SCI.

Mesenchymal stem cells (MSCs) have been extensively studied for
biological regenerative medicine. MSCs can be sourced from a variety of
tissues and organs, including bone marrow, adipose tissue, umbilical
cord, blood, skeletal muscle, and oral cavity (Bonaventura et al., 2020;
Andrzejewska et al., 2021). Oral-derived mesenchymal stem cells have
attracted growing attention in the regenerative field based on their
unique features including multipotency, easy accessibility, genomic
stability, and faster proliferation rates (Bianco et al., 2016; Xu et al.,
2019; Bonaventura et al., 2020; Luzuriaga et al., 2021). Dental pup stem
cell (DPSC) has remained as the most extensively studied subtype of
oral-derived mesenchymal stem cells (Bianco et al., 2016; Xu et al., 2019;
Bonaventura et al., 2020; Bar et al., 2021; Luzuriaga et al., 2021; Mattei
and Monache, 2023). Derived from the neural crest, DPSCs exhibit
notable neuroregenerative potential, neurotrophic effects, and
immunomodulation, which indicate that DPSCs is an ideal cell
source for the injured spinal cord regeneration (Bianco et al., 2016;
Xu et al., 2019; Bonaventura et al., 2020; Bar et al., 2021; Luzuriaga et al.,
2021; Mattei andMonache, 2023). In this review, we will summarize the
biological characteristics of DPSCs and the recent progress for the
application of DPSCs in SCI treatment, with a focus on their possible
regenerative mechanisms for future application in DPSC-based therapy.

2 The pathophysiology of the
secondary injury following SCI

The secondary damage of SCI mainly involved cell death,
inflammatory response, axonal collapse and demyelination, glial scar
formation (Figure 1). In the acute phase of SCI, a primary mechanical
damage disrupts spinal cord tissue homeostasis, which activates resident
microglia and recruit macrophages from the bloodstream to the lesion
site (Schwab et al., 2006; Venkatesh et al., 2019). These inflammatory
cells secret multiple neurotoxic factors that induce necrotic and
apoptotic death in neurons, astrocytes, and oligodendrocytes
(Dumont et al., 2001; Kwon et al., 2004; Fan et al., 2018; Venkatesh
et al., 2019). And the initial mechanical injury, ischemia, inflammatory
response can cause irreversible axonal damage, and the necrosis and
apoptosis of oligodendrocytes, which eventually results in the process of
demyelination (Dumont et al., 2001; Kwon et al., 2004; Fan et al., 2018;
Venkatesh et al., 2019). In addition, reactive astrocytes and
oligodendrocytes near the injured spinal cord center generate
chondroitin sulfate proteoglycans and myelin proteins, which can
cause growth cone collapse, neurite retraction and inhibition of axon
regeneration (Siebert et al., 2014). Furthermore, the chondroitin sulfate
proteoglycans generated by activated microglia, macrophages and
astrocytes, can form a glial scar that also inhibits spontaneous
axonal regeneration (Ohtake and Li, 2015). Finally, multiple
pathogenic signals synergistically accelerate progressive neuronal
deterioration after SCI. Thus, an ideal biological therapy for SCI not
only can markedly reduce secondary damage, but also replace the
damaged neuron, axons, and circuits within the spinal cord.
Transplantation of stem cells has been applied for biological
treatment in animal models of SCI, with favorable functional
recovery (Ahuja and Fehlings, 2016; Andrzejewska et al., 2021;
Zipser et al., 2022). Despite the biological characteristics of various
types of stem cells differ, the therapeutic benefits of stem cells in SCI

have been reported including replacing lost cells, modulating
inflammatory reaction, improving the microenvironment and
promoting regeneration (Zipser et al., 2022).

3 Biological characteristics of DPSCs

DPSCs deriving from child or adult human dental pulp were initially
discovered by Gronthos and colleagues in 2000 (Gronthos et al., 2000).
The dental pulp tissue generated by the neural crest, is rich in
odontoblasts, blood vessels, nerve fibres, immune cells and
mesenchymal stem cells. DPSCs isolated from dental pulp, can
express neural markers, including glial fibrillary acidic protein
(GFAP), β-III tubulin, and microtubule-associated protein-2 (MAP-2)
(Martens et al., 2012; Li et al., 2019). In addition, DPSCs have been found
to express mesenchymal-like phenotypic markers (CD29, CD90, and
CD73) (Li et al., 2019), express stemness-relatedmarkers (Oct-4, Nanog,
and Sox-2) (Kerkis et al., 2006), cytoskeleton-related markers (Nestin
and Vimentin), tumor necrosis factor receptor superfamily proteins
(CD40, CD120a, CD261, CD262, CD264 and CD266), some integrins
(alpha-4, alpha-6 and alpha-10) and IL receptors (CD121a, CD130,
CD213a1, CD217 and CDw210b) (Niehage et al., 2016). Recently,
several new special markers are identified, such as Calreticulin,
Annexin A5, and Rho GDP dissociation inhibitor alpha (Lei et al.,
2021). Isolated DPSCs can not only maintain and repair periodontal
tissue, with the feature of high proliferation rate, but also show plasticity
in multi-lineage differentiation. Several in vitro studies have confirmed
DPSCs have the potential to differentiate into multiple cell types such as
osteoblasts-, chondrocytes-, adipocytes-, odontoblasts-, neural- and
myocytes-like cells (Fu et al., 2023) (Figure 2).

Furthermore, DPSCs have some biological advantages over
other tissue-derived MSCs. Because the dental pulp has similar
structure like neurovascular tissue, DPSCs have very higher ability to
generate neural and vascular cells than other MSCs (Luzuriaga et al.,
2020; Fu et al., 2023). And It has been demonstrated the secretion of
nerve growth factor (NGF) and brain derived neurotrophic factor
(BDNF) by DPSCs are very higher than bone mesenchymal stem
cells. (McDonald and Sadowsky, 2002; Eli et al., 2021). The secrecion
of vascular endothelial growth factor-A and vascular endothelial
growth factor-D by DPSCs are higher than other MSCs (Rowland
et al., 2008; Ahuja and Fehlings, 2016). These results indicate DPSCs
have very higher capacity for angiogenesis and neurogenesis.

4 The potential mechanisms of DPSCs
in SCI

Previous studies have demonstrated DPSCs show the potential
therapies for SCI through multiple mechanisms, mainly involving
neuronal differentiation, paracrine effects and exosome secretion
(Xu et al., 2019; Bonaventura et al., 2020; Fu et al., 2023) (Figure 2).

4.1 Neuronal-like differentiation
from hDPSCs

DPSCs retain the properties of neural crest cells, which possess
the differentiation capacity into neural crest-derived tissue. Several
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neural markers can be expressed in non-differentiated DPSCs, such
as musashi12, nestin, MAP2ab, βIII-tubulin, N-tubulin, and
neurogenin-2 (Kawashima, 2012; Luzuriaga et al., 2019a). Thus,
DPSCs have been promoted as potential candidates for damaged
neuron replacements. Previous studies have demonstrated DPSCs
not only can express several typical neural stem/progenitor markers
under the specific stimulation, but also differentiate toward
phenotypes of functionally active neurons, with the higher
expression of neurogenin-2, neuron-specific enolase,
neurofilament-M and glial fibrillary acidic protein, and activation
of voltage-gated sodium and potassium channels (Luzuriaga et al.,
2021). Multiple stimulations have been used to differentiate DPSCs
into neuron-like cells, involving several differentiating protocols
containing complex mixture of supplements (Luzuriaga et al.,
2019b), optogenetics (Niyazi et al., 2020), activation of K+
channels (Kogo et al., 2020), and Rho kinase inhibitor
(Srikawnawan et al., 2022). Darvishi et al. demonstrated human
DPSCs can differentiate to functional motor neuron in organotypic
culture system containing growth factors in two stages (Darvishi
et al., 2021). Differentiated DPSCs not only display motor neuron-
like morphology, with Nissl bodies in the cytoplasm, but also express
several motor neuron specific genes in post-induction stage, such as
Olig2, Islet-1 and HB9. In animal models of SCI, transplantation of
dental-derived mesenchymal stem cell alone or as part of designed
engineered tissue also have been shown to differentiate neuron-like
phenotype, replacing the defective neuronal tissue and improving
functional recovery after SCI (Zhang et al., 2016; Yang et al., 2017;
Kabatas et al., 2018; Qian et al., 2023; Zhou et al., 2023). Recently,
Qian et al. found the DPSC-loaded microspheres have improved
stemness and higher neurogenic differentiation potential of DPSCs,
promoting neural tissue regeneration in rat models of SCI (Qian
et al., 2023). The combination of biomaterials with DPSCs
represents a promising approach to enhance neurogenic
differentiation of DPSCs. The combination of chitosan 3D
porous scaffolds with bFGF enhances the expression of neural

markers in DPSCs through the activation of the extracellular
signal-regulated kinase (ERK) pathway (Zhang et al., 2016).
Moreover, usage of the DPSC-chitosan grafts improve locomotor
function in animal models of SCI, by the secretion of BDNF, GDNF
and NT-3, reducing the accumulation of active-caspase 3, and
impairing axonal loss and degradation. Zhou et al. reported the
roles of bioactive material zeolitic imidazolate framework 8 (ZIF-8)
on neural differentiation of DPSCs (Zhou et al., 2023). These authors
found after injection of methacryloyl hydrogel containing ZIF-8-
introduced DPSCs into the lesion, axon number and axon length of
DPSCs-differentiated neuron-like cells were significantly increased.
ZIF-8 can promote neural differentiation and angiogenesis of
DPSCs by activating the mitogen-activated protein kinase
signaling pathway. In addition, DPSCs can induce the formation
of extensive axonal regeneration and establish close contacts with
cocultured neurons (Pagella et al., 2020), which indicates functional
synapses may be formed. All mentioned above indicate DPSCs can
display a capacity for neuronal differentiation both in vivo and
in vitro.

4.2 Paracrine effects

The paracrine effects of DPSCs have been highlighted in
regenerative medicine. It has been reported that DPSCs can
secrete many bioactive molecules such as interleukin (IL)-10, IL-
13, follistatin, transforming growth factor-β1, hepatocyte growth
factor, neural cell adhesion molecule-1, and adiponectin (Ogata
et al., 2021; Ogata et al., 2022). The bioactive molecules secreted by
DPSCs can directly affect their own intracellular signal transduction,
and can also indirectly cause neighboring cells to secrete functional
active substances (Mattei et al., 2021). Moreover, several
neuroprotective factors can be detected in DPSC-conditioned
medium (DPSC-CM), including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), glial cell line derived

FIGURE 1
Pathological characteristics of spinal cord injury.
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neurotrophic factor (GDNF), neurotrophin 3 (NT-3), vascular
endothelial growth factor (VEGF) and platelet-derived growth
factor (PDGF) (Matsumura-Kawashima et al., 2021; Bousnaki
et al., 2022; Li et al., 2023). Asadi-Golshan et al. found
intraspinal administration of DPSC-CMs loaded in collagen
hydrogel can dramatically improve functional recovery in rat SCI
model (Asadi-Golshan et al., 2018). And the total loss number of
neurons and oligodendrocytes, and the spinal cord lesion volume
were significantly decreased after DPSC-CM therapy, which
indicated DPSC-CM containing growth factors are able to
promote axon regeneration and neuron survival in the early
stages of SCI. Moreover, de Almeida et al. found DPSCs
transplanted in a rat model of SCI could release trophic factors
into the damaged spinal cord tissue, inducing the presence of axons,
expressing some glial markers and improving locomotor functions
(Asadi-Golshan et al., 2021). Furthermore, DPSCs can secrete
several immunomodulatory and anti-inflammatory cytokines
such as Interleukin-8 (IL-8), Interleukin-6 (IL-6), Transforming
Growth Factor Beta (TGF-β), Hepatocyte Growth Factor (HGF)

and Indoleamine 2,3-dioxygenase (IDO) (Mattei et al., 2021).
Matsubara et al. show that DPSC-CM containing EDSiglec-9 and
monocyte chemoattractant protein-1can induce significant
functional recovery in a rodent SCI model by promoting
polarization of M2 macrophages (Kano et al., 2017). In addition,
intraperitoneally injected-DPSC-CM effectively decreased the
microglial pyroptosis by inhibiting the NLRP3/caspase-1/
interleukin-1β pathway, thereby promoting the functional
recovery after SCI (Liu et al., 2024). Furthermore, DPSCs can
secrete several immunomodulatory and anti-inflammatory
cytokines such as Interleukin-8, Interleukin-6, Transforming
Growth Factor Beta, Hepatocyte Growth Factor and Indoleamine
2,3-dioxygenase (Yamamoto et al., 2014). Matsubara et al. show that
DPSC-CM containing EDSiglec-9 and monocyte chemoattractant
protein-1 can induce significant functional recovery in a rodent SCI
model by promoting polarization of M2 macrophages (Asadi-
Golshan et al., 2021). In addition, intraperitoneally injected-
DPSC-CM effectively decreased the microglial pyroptosis by
inhibiting the NLRP3/caspase-1/interleukin-1β pathway, thereby

FIGURE 2
(A) Diagram of tooth, dental pulp and dental pulp stem cells (DPSCs). And multiple differentiation potentials of DPSCs into various cell types. (B) The
main mechanisms of dental pulp stem cells in neuroprotection. (C) The potential benefits of dental pulp stem cells in therapy for spinal cord injury.
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TABLE 1 Studies that assessed the use of dental pulp stem cells for spinal cord repair and regeneration.

Dental stem cells (DSCs)/
scaffold

Animal model Remarks Year References

Dental pulp stem cells (DPSCs) Mouse model of Compressive spinal
cord injury

DPSCs induce neuroplasticity and endogenous
axon guidance in a mouse model of SCI

2011 de Almeida et al.
(2011)

Dental pulp stem cells (DPSCs); exfoliated
deciduous teeth stem cells (SHEDs)

Injured rat spinal cord DPSCs and SHEDs possessed higher
neuroregenerative activities than BMSCs and
provided significant benefits for SCI; DSCs can
ameliorate several aspects of functional
recovery after SCI

2012 Sakai et al. (2012)

Dental pulp stem cells (DPSCs) and chitosan
scaffolds

SCI rat model Transplantation of DPSCs together with
chitosan scaffolds into an SCI rat model resulted
in the marked recovery of hind limb locomotor
functions

2016 Zhang et al. (2016)

Human dental follicle stem cells (DFSCs), stem
cells from apical papilla (SCAPs) dental pulp
stem cells (DPSCs)

SCI rat model DFSCs, demonstrated the potential in repairing
the completely Transected spinal cord and
promote functional recovery after injury

2017 Yang et al. (2017)

Thermosensitive heparin-poloxamer (HP)
hydrogel containing DPSCs and bFGF

Injured rat spinal cord Hydrogel containing DPSCs and bFGF had a
significant impact on spinal cord repair and
regeneration

2018 Luo et al. (2018)

fibroblast growth factor (FGF) 2-pretreated
human dental pulp cells (hDPCs)

SCI rat model the role of FGF2-responsive genes, especially
GABRB1, in recovery from SCI, using hDPCs
treated with FGF2

2019 Sugiyama et al. (2019)

Fibroblast growth factor (bFGF) and dental
pulp stem cells (DPSCs)

SCI mouse model bFGF and DPSCs worked together to attenuate
tissue inflammation of the injured spinal cord,
resulting in a superior nerve repair

2020 Albashari et al. (2020)

Highly vascularized scaffolds embedded with
human dental pulp stem cells (DPSCs)

a rat complete spinal cord transection
model

prevascularized DPSC-embedded constructs
bear angiogenic and neurotrophic potentials,
capable of augmenting and modulating SCI
repair

2020 Guo et al. (2020)

A calcium alginate hydrogel combined with
dental pulp stem cells (DPSCs) and fibroblast
growth factor 21 (FGF21)

mice model of HSCI Ca2+@Alg-FGF21 + DPSC hydrogel could
effectively promote the recovery after spinal
cord hemisection in mice via regulating
apoptosis and autophagy

2021 Zhu et al. (2021)

Human dental pulp stem cells (hDPSCs) and
platelet-rich plasma (PRP)

SCI rat model Significantly increased inhibition of neuronal
apoptosis and improved motor function
recovery of the spinal cord were observed
following double-treatment with hDPSCs
and PRP

2022 Hu et al. (2022)

Dental pulp stem cell (DPSC)-derived
exosomes

SCI rat model Dental pulp stem cell (DPSC)-derived
exosomes can reduce macrophage
M1 polarization through the ROS-MAPK-
NFκB P65 signaling pathway in treating SCI.

2022 Liu et al. (2022)

Human dental pulp stem cells (hDPSC)
cultivated in monolayer (2D) or as
spheroids (3D)

SCI rat model the 2D and 3D cell therapy approaches provide
successful immunomodulation and motor
recovery

2023 Paes et al. (2023)

Human dental pulp stem cells (hDPSC)-
loaded microspheres

SCI rat model hDPSC-loaded microspheres could promote
spinal cord regeneration in rat spinal cord
injury models

2023 Qian et al. (2023)

Dental pulp stem cells (DPSCs) were
introduced into the TPA@Laponite hydrogel

SCI rat model effectively reduced muscle spasms and
promoted recovery from SCI

2023 Ying et al. (2023)

Dental pulp stem cells (DPSCs) and zeolitic
imidazolate framework 8 (ZIF-8)

SCI rat model ZIF-8 promotes neural differentiation and
angiogenesis of DPSCs by activating the
Mitogen-activated protein kinase (MAPK)
signaling pathway

2023 Zhou et al. (2023)

Conditioned medium from human dental pulp
stem cells (hDPSCs)

a rat model of spinal cord injury conditioned medium from human dental pulp
stem cells can reduce microglial pyroptosis by
inhibiting the NLRP3/caspase-1/interleukin-1β
pathway, thereby promoting the recovery of
neurological function after spinal cord injury

2024 Liu et al. (2024)

Frontiers in Molecular Biosciences frontiersin.org05

Fu et al. 10.3389/fmolb.2024.1363838

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1363838


promoting the functional recovery after SCI (Kano et al., 2017).
Furthermore, several bioactive factors secreted from DPSCs can also
promote the regeneration of transected axons, through directly
inhibiting multiple axon growth inhibitors, including chondroitin
sulfate proteoglycan and myelin-associated glycoprotein (Sakai et al.,
2012). Therefore, the paracrine effects of DPSCs, mainly consisting
of trophic support and immunomodulation, can be used specifically
in the repair of damaged spinal cord tissue. Therefore, the paracrine
effects of DPSCs, mainly consisting of trophic support and
immunomodulation, can be used specifically in the repair of
damaged spinal cord tissue.

4.3 DPSCs-exosomes in SCI

MSCs can secret multiple molecules as soluble factors and
extracellular vesicles, which are involved in the transference of
various proteins and genetic materials (Hade et al., 2021). Exosomes
(EXs), one small particule of extracellular vesicles (usually 40–120 nm in
diameter), containing many bioactive macromolecules, such as proteins,
nucleic acids and lipids involved in biological regulation of cells (Liu
et al., 2021). Several previous studies demonstrated MSC-derived EXs
have the ability to enhance functional recovery in animal model of SCI
by reducing cell apoptosis and inflammation response, and promoting
angiogenesis (Liu et al., 2021; Mohebichamkhorami et al., 2022).
Depending on the cell sources, MSC-derived EXs have specific set of
proteins and nucleic acids that can promote tissue regeneration.
Currently, Oral-derived EXs have gained more attention due to their
potentials in therapy for SCI, which have more biological regulatory
property in anti-inflammation, immunomodulatory and
neuroprotection (Lambrichts et al., 2017; Li et al., 2021; Li et al.,
2022; Liu et al., 2022). Periodontal ligament-derived EXs in SCI
models lead to decrease in pro-inflammatory CD4-positive T cells
and inflammation cytokine expression such as IL-6, IL-17, IL-1β,
IFN-γ, and TNF-α (Li et al., 2021). Jonavice et al. showed that
DPSC-EVs can alter the phenotypes of microglia by suppressing NF-
κB signalling pathway. The shifting microglia M1/M2 polarization can
eventually contribute to improve microenvironment and functional
recovery after traumatic brain injury (Li et al., 2022). Recently, Liu
et al. demonstrate that administration of DPSCs-EXs can decrease the
inflammatory response and minimize neurological impairment by
reducing macrophage M1 polarization through suppressing ROS-
MAPK-NFkB P65 signaling pathway (Liu et al., 2022). In addition,
DPSC-EXs play important roles in neuronal axon regeneration, which
indicated their potential therapies for neurite growth, and axon
remodeling of spinal cord tissue (Lambrichts et al., 2017). Therefore,
DPSC-EXs as biological extracellular vesicles can promote functional
recovery in SCI through multiple neuroprotecitve mechanisms.

5 Conclusion

Previous published literature demonstrate DPSCs represent a
promising new cell source for cell-based treatment of SCI, with the
evidence of three mainly effective patterns, including neuronal
differentiation, paracrine effects and exosome secretion (Table 1).
Transplant of DPSCs or DPSCs-secretome can provide several
neuroprotective benefits for the treatment of SCI, such as suppressing

inflammatory response, inhibiting SCI-induced cellular apoptosis,
modulating promoting axonal regeneration, and cell replacement
especially in providing functional neuronal-like cell (Figure 2). These
regenerative mechanisms have shown great potential in reconstructing
the injured spinal cord and promoting functional recovery in
experimental model of SCI. However, many problems remain to be
resolved before the clinical usage of this therapy. Firstly, it is preliminary
important to achieve large-scale DPSCs manufacture, storage, and
transportation with minimum possibility of contamination. In
addition, concerns remain raised about the biological safety of DPSCs
therapy such as immunotoxicity, immunogenicity, and tumorigenicity.
Moreover, the quality of DPSCs is critical to clinical usage, such as the
standard source of dental pulp and culture conditions. Therefore, future
researches should be further investigated to guide the clinical application
of DPSCs.
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