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The gut microbiota in cattle is essential for protein, energy, and vitamin
production and hence, microbiota perturbations can affect cattle
performance. This study evaluated the effect of intramammary (IMM) ceftiofur
treatment and lactation stage on the functional gut microbiome and
metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM
ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate
(cases), while the other half received the teat sealant (controls). Fecal samples
were collected before treatment at dry off, during the dry period (weeks 1 and 5)
and the first week after calving (week 9). Shotgun metagenomic sequencing was
applied to predict microbial metabolic pathways whereas untargeted
metabolomics was used identify polar and nonpolar metabolites. Compared
to controls, long-term changes were observed in the cows given ceftiofur,
including a lower abundance of microbial pathways linked to energy
production, amino acid biosynthesis, and other vital molecules. The
metabolome of treated cows had elevated levels of stachyose,
phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after
the IMM ceftiofur application, indicating alterations in microbial fermentation,
lipid metabolism, energy, and cellular signaling. Differences were also observed
by sampling, with cows in late lactation having more diverse metabolic pathways
and a unique metabolome containing higher levels of histamine and histamine-
producing bacteria. These data illustrate how IMM ceftiofur treatment can alter
the functionality of the hindgut metabolome and microbiome. Understanding
how antibiotics and lactation stages, which are each characterized by unique
diets and physiology, impact the function of resident microbes is critical to define
normal gut function in dairy cattle.
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1 Introduction

The gut microbiota of ruminants produces proteins, vitamins,
and ~75% of the energy necessary for the host through an obligatory
symbiotic relationship (Bergman, 1990). Rumen microorganisms
ferment the plant biomass to generate energy in the form of volatile
fatty acids (VFAs) (Bergman, 1990) and convert nitrogen-
containing compounds into protein (Bach et al., 2005). Thus,
prior studies have sought to determine the relationship between
the microbiome composition of cattle and animal production and
methane emissions (reviewed by (O’Hara et al., 2020)). Most
notably, microbial communities of the gastrointestinal tract were
shown to influence the quality and yield of milk production,
affecting key components such as fat, protein, and lactose
content (Jami et al., 2014; Xu et al., 2017; Buitenhuis et al., 2019;
Wu et al., 2021). Consequently, shifts in the microbiome and
metabolome can potentially alter milk composition and affect
cow health. Although antibiotics are known to cause
perturbations in the gut microbiome, little is known about the
specific effects of intramammary (IMM) antibiotic treatment on
the function of the fecal microbiome in dairy cows.

β-lactam antibiotics such as ceftiofur, a third-generation
cephalosporin, are often used in dairy cattle for the treatment of
mastitis or dry cow therapy (Hallberg et al., 2006; Campos et al.,
2021). When cephalosporins are applied intramammarily, they are
mainly excreted through the urine and udder (Wilson and Gilbert,
1986; Rule et al., 1998; Ray et al., 2014). Yet, ~13% of the IMM-
administered ceftiofur dose in lactating cows, which includes two
doses of 125 mg per quarter given 12 h apart, is detectable in the
feces 5–6 days post-treatment (European Agency for the Evaluation
of Medicinal Products, 2002). When administered subcutaneously
to Holstein steers, ceftiofur active metabolites were shown to alter
the microbiota composition of the gut (Foster et al., 2019) due to
activity against both Gram-negative and Gram-positive bacteria.
Our previous study of Holstein cows given IMM ceftiofur treatment
at dry-off also showed an altered abundance of specific taxa in the
short and long-term, although no effect was observed on microbiota
diversity (Vasco et al., 2023). Specifically, we observed a higher
abundance of Actinobacteria and Bacteroidetes and lower
abundance of Proteobacteria and Firmicutes in the cows given
IMM antibiotics at dry off versus untreated cattle over a 9-week
period. It is therefore possible that these taxa play an important role
in the function of the gut microbiota during antibiotic therapy.

To examine the function of microbial communities,
metagenomic approaches have been applied that enable the
prediction of microbial metabolic capacity based on the detection
of genes encoding enzymes and mapping them onto metabolic
pathways (Beghini et al., 2021). The characterization of
metabolites from host, dietary, and microbiome sources can also
provide a better understanding of the functional interactions
between the microbiome and environment. Untargeted
metabolomics, for instance, uses liquid chromatography–tandem
mass spectrometry (LC–MS/MS) to simultaneously detect multiple
compounds based on their retention time and spectral
fragmentation patterns (MS/MS) (Rakusanova et al., 2023).
Metabolomics of the rumen content of dairy cows has improved
understanding of diet-related metabolism while defining how it is
influenced by the introduction of grain into the diet (Saleem et al.,

2012) and identifying differences between fecal and rumen
metabolites (Malheiros et al., 2021). Furthermore, integrated
‘omics approaches such as metagenomics, metatranscriptomics,
and metabolomics, have been used to characterize the functional
microbiome in the rumen to identify microbial features linked to
feed efficiency (Xue et al., 2022).

Since we demonstrated that IMM ceftiofur treatment of dairy cattle
impacted the fecal microbiota and antibiotic-resistant bacterial
populations when compared to cows without treatment (Vasco
et al., 2023), we sought to characterize the function of the hindgut
microbiome andmetabolome in the same dairy cows. To identify short-
and long-term changes due to antibiotic therapy, samples were taken a
day prior to dry-off and ceftiofur treatment and again at 1 and 9 weeks
later as described (Vasco et al., 2023). These time points correspond to
three different stages of lactation and include late lactation (day -1), dry-
off (week 1), and the periparturient period (week 9).

The different stages of lactation differ with respect to the diet
given to the cows but also their physiology as outlined by the
National Research Council (National Research Council, 2001).
Indeed, cows in late lactation require a maintenance diet
containing high levels of metabolizable protein and energy.
During the dry period when cows are not producing milk,
however, the mammary gland and udder tissue will involute and
regenerate before the next lactation. The dry period lasts about
60 days prior to calving. As opposed to lactation, cows require lower
quantities of metabolizable energy in their diet during the dry
period. Comparatively, early lactation lasts approximately 30 days
post-calving and represents the start of the lactation period. Higher
levels of energy, calcium, and metabolizable protein are required for
fresh cows when compared to dry cows to compensate for the energy
imbalance induced by milk production and low dry-matter intake
(National Research Council, 2001). This energy deficit generally
persists through the 60th day of lactation, after which the cows shift
to a net positive energy state. Since dietary changes are also linked to
alterations in the gut microbiota in dairy cattle (Lin et al., 2023), we
applied multi-omics approaches to identify interactions between the
microbiome andmetabolites present in fecal samples from ceftiofur-
treated and ceftiofur-untreated dairy cows during different stages of
lactation. The findings of this study enhance understanding of the
effects that both ceftiofur treatment and lactation stage have on the
function of the gut microbiome.

2 Materials and methods

2.1 Study population and
epidemiological data

Forty Holstein cows were enrolled at the start of the dry-off
period in June-November of 2019 at the Michigan State University
(MSU) Dairy Cattle Teaching and Research Center as described
(Vasco et al., 2023). After the last milking, twenty cows (cases)
received a single IMM infusion containing 500 mg of ceftiofur
hydrochloride (CHCL; SpectramastDC®; Zoetis Animal Health)
along with a non-antibiotic teat sealant with bismuth subnitrate
(Orbeseal®; Zoetis Animal Health) in each teat (n = 4; total of 2 g of
CHCL). Cows in the control group (n = 20) received only the IMM
teat sealant. All cows had a somatic cell count (SCC)
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of <150,000 cells/mL at the most recent Dairy Herd Improvement
Association test and none received antibiotics in the prior 90 days of
lactation. The study protocol was approved by the Institutional
Animal Care and Use Committee at MSU (IACUC number
ROTO201800166) prior to sampling.

To avoid a parity effect, controls were matched to the ceftiofur-
treated cows based on parity as well as monthly milk production.
Diet regimens were formulated using Spartan Dairy 3™ software per
guidelines outlined in the Nutrient Requirements of Dairy Cattle
report (National Research Council, 2001). Based on the dietary
information extracted from farm records, different diets were given
to the cows in accordance with their production demands across the
sampling period (Table 1); the matched treated and control cows
were given the same diets within each lactation stage. Near the end of
lactation, which corresponded to a day prior to the IMM treatment
(day -1), cows received the maintenance diet containing 14% more
metabolizable energy and 2.5 times more metabolizable protein (g)
than is provided in the dry-off diet (weeks 1 through 5)
(Supplementary Table S1). At week 9, animals were given a diet
for fresh cows consisting of 64% of dry matter intake when
compared to lactating cows, but with transitioning levels of
energy and protein that were 15% and 64% higher than during
dry-off, respectively.

Animals in all phases received corn silage, soybean meal with
47.5% crude protein, CFE MSU dairy base, and haylage. It was only

during the lactation and fresh periods that the ration included corn
(ground fine and fed dry) as well as MSU fresh high supplement to
increase the energy density and provide essential nutrients such as
calcium, magnesium, potassium, and niacin to prevent metabolic
disorders that can occur during the transition into lactation.
Comparatively, soybean hull pellets, cottonseed, and long bulk
brown midrib (BMR) corn silage (CS) were exclusively given to
cows in late lactation, while alfalfa hay was only provided to fresh
cows. Although grass silage, MSU straw, grass pasture, and ignite
supplement (Quality Liquid Feeds®, WI, Unites States) were given to
all animals, they were only provided during the dry period in small
quantities. The ignite supplement contains 25% protein, fat, trace
minerals, and vitamins A, D, and E (https://onealsfarmandgarden.
com/products/tub-qlf-ignite-30).

2.2 Sample collection and processing

Fecal samples were collected from all cows at four time points
corresponding to the different stages of lactation (Figure 1). These
stages included late lactation (day -1), dry-off (weeks 1 and 5), and
the periparturient period (week 9). Along with physiological
differences, the dietary needs of the animals and feed
formulations differ across the three lactation stages. Samples were
collected before ceftiofur administration at the end of lactation when

TABLE 1 Diet rations fed to dairy cows at four different lactation stages.

Ration component Maintenance Early dry Close-up Fresh

As-Fed (kg) 48.77 32.58 19.89 31.35

DM Fed (kg) 24.04 12.98 12.74 15.89

Corn grain ground fine (DM fed kg) 4.31 0 0 2.27

Corn gluten feed dry (DM fed kg) 1.81 0 0 0.45

Soybean Hulls Pellet (DM fed kg) 2.04 0 0 0

Soybean meal 475 solvent (DM fed kg) 1.13 0.95 2.72 1.36

Cottonseed Fuzzy (DM fed kg) 1.36 0 0 0

MSU Corn silage (DM fed kg) 4.08 4.08 3.8 5.58

MSU Haylage (DM fed kg) 4.08 4.04 0 2.72

CFE MSU dairy base (DM fed kg) 0.45 0.27 0.32 0.36

MSU Long bunk BMR CS (DM fed kg) 3.63 0 0 0

MSU fresh high supplement (DM fed kg) 1.13 0 0 1.07

MSU Purchased Alfalfa Hay (DM fed kg) 0 0 0 2.09

CFE MSU PreFresh DE (DM fed kg) 0 0 0.45 0

MSU Low K Grass Hay (DM fed kg) 0 0 4.76 0

SoyChlor (DM fed kg) 0 0 0.69 0

MSU grasslage (DM fed kg) 0 2.72 0 0

MSU Straw (DM fed kg) 0 0.91 0 0

Grass Pasture 16 CP 55 NDF 7 LNDF (DM fed kg) 0 0 0 0

QLF Ignite Dry Cow 25 (tub) (DM fed kg) 0 0 0 0

DM, dry matter; NDF, neutral detergent fiber; LNDF, Lignin as a percent of the NDF; CP, crude protein; CS, corn silage; BMR, brown midrib.
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the cows received a maintenance diet (day -1) as well as after dry-off
(week 1; week 5) when they were given an early dry diet. The final
sample was collected during or just prior to calving (week 9) when
the cows were given the fresh formulation. One cow could not be
sampled at week 9 due to birthing by cesarean section that required
antibiotics treatment, leaving 79 samples for analysis from the 9-
week sampling point and 159 samples in all. As indicated previously
(Vasco et al., 2023), the fecal samples were collected via the rectum
using clean obstetric sleeves and transported in a cooler to MSU in
sterilized sampling bags for processing.

Each sample was homogenized by hand and aliquots containing
0.25 g of feces and 0.25 g of feces in 750 µL of 190 Proof ethanol were
stored for metabolite and DNA extractions, respectively. All fecal
aliquots were flash frozen with liquid nitrogen for 1 min and were
stored at −80°C until further processing. The 119 samples collected at
the day -1, week 1, and week 9 samplings were used for both untargeted
metabolomics and metagenomic sequencing, while metagenomic
sequencing data were also available for the 40 samples collected at
week 5 through our prior study (Vasco et al., 2023). Since we previously
observed similar microbiota diversity and composition in the samples
collected at weeks 1 and 5, metabolomics was not applied to the week 5
(dry-off) samples.

2.3 Metagenomics analyses

2.3.1 Metagenomic sequencing
Fecal samples were centrifuged for 5 min at 16,000 rpm at 4°C to

remove the supernatant and the pellets were washed twice with 1 mL
of 1× PBS as described (Vasco et al., 2023). DNA was extracted with
the DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD, United
States) using the manufacturer’s protocol followed by an additional
wash step using the C5 solution to improve quality. Samples with an
average dsDNA concentration of 1,277.3 ng (±310.5 ng) as
measured using a Qubit, were sent to CosmosID (Rockville, MD,
United States) for metagenomic next-generation sequencing
(mNGS). The Nextera™ XT DNA Library Preparation Kit
(Illumina, San Diego, CA, United States) was used on all samples
and sequencing was performed using the Illumina HiSeq X platform
(2 × 150 bp).

2.3.2 Microbiome characterization
Metagenomic analyses to characterize the gut microbiota and

resistome in the same cows were described previously (Vasco et al.,
2023). Briefly, removal of bovine DNA and adapter sequences was
performed and the microbiome and resistome composition were

FIGURE 1
Diagram illustrating the animal treatment schedule and sample collections across the stages of lactation. The fecal sampling regimen coincidedwith
three key lactation stages. These include: 1) the end of lactation (1 day before the initiation of dry cow therapy with intramammary (IMM) ceftiofur, or Day
-1); 2) after dry cow therapy during the dry-off period (Weeks 1 and 5); and 3) 9 weeks after treatment at the end of the dry-off period and beginning of the
fresh phase (Week 9). The black line demonstrates the fluctuations in milk production across each stage.
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analyzed with MetaPhlan4 (Blanco-Miguez et al., 2023) and
Resistome Gene Identifier (Alcock et al., 2020), respectively. The
software KMA was used to identify plasmids, virulence genes and
viruses using the databases PLSDB (Schmartz et al., 2022), VFDB
(Chen et al., 2005), and Virus-Host (Mihara et al., 2016). Abundance
scores were determined based on genome equivalents and the
number of reads to calculate the relative abundance of taxa
and genes.

An evaluation of the function of the cattle microbiome was
performed using the HUMAnN 3.0 pipeline (Beghini et al., 2021),
which allows for the identification of metabolic pathways with their
microbial species-level contributions. The following databases were
used: ChocoPhlAn 3 (Beghini et al., 2021) for taxonomic
identification, UniRef90 (Steinegger and Söding, 2018) for
enzyme commission number screening, and MetaCyc v24.0
(Caspi et al., 2020) for the assignation of pathways. First, paired-
raw sequences were processed with Trimommatic v.0.39 (Bolger
et al., 2014) to remove low-quality reads and adapters used for
Illumina sequencing. Burrows-Wheeler Aligner v.0.7.15 (Li, 2013)
and SAMtools v.1.4.1 (Danecek et al., 2021) removed bovine DNA
reads [Bos taurus, ARS-UCD1.2 (Rosen et al., 2020)]. Trimmed non-
host paired FASTQ reads were merged with the UNIX command
‘cat’. Merged reads were used as input for HUMAnN 3.0 and the
resulting pathway abundances, reported as reads-per-kilobase
(RPK), were normalized as the relative abundance per sample. A
joined matrix containing the pathway relative abundances for all
samples was generated with the command “humann_join_tables”,
whereas pathways of interest were depicted with the “humann_
barplot” function while stratifying the pathway contributions by
bacterial taxa (https://github.com/biobakery/humann).

2.4 Extraction of metabolites from
cattle feces

Metabolite extractions were performed on all 119 fecal samples
collected at day -1 (n = 40), week 1 (n = 40), and week 9 (n = 39).
Internal standard solutions were prepared for quality control and
normalization including: 1) labeled short-chain fatty acids (SCFAs)
(10 µM each of [13C]sodium formate, [13C2]sodium acetate, [13C3]
sodium propionate, and [13C4]sodium butyrate) in 50:50 (v/v)
methanol/water; 2)) [13C16]palmitic acid (10 µM in 100%
isopropanol); 3) phenylalanine-d7 (10 µM in 50:50 methanol/
water); 4) succinic acid-d4 (10 µM in 50:50 methanol/water); and
5) labeled bile acids (10 µM each of glycocholic acid-d4 and
glycoursodeoxycholic acid-d4 in 50:50 methanol/water). A total of
20 mg of feces was weighed under sterile conditions and 350 µL of
ice-cold methanol containing 0.1% butylated hydroxytoluene (BHT)
was added. The sample was homogenized and incubated on ice for
10 min. For feces sedimentation, 10 µL of each standard was mixed
into the samples, agitated for 30 s, and centrifuged at 10,000 × rpm at
4°C for 10 min. The supernatant was pipette-transferred to a sterile
microcentrifuge tube on ice, while ice-cold HPLC-grade isopropanol
(200 µL) was added to the pellet, homogenized for 30 s, and
centrifuged at 10,000 × rpm and 4°C for 10 min. Finally, the
isopropanol supernatant was combined with the initial extract
and 100 µL aliquots of the mixed extracts were stored into glass
vials inserted in 2-mL amber glass autosampler vials sealed with

9 mm screw septum caps. Metabolite extracts were preserved
at −80°C until analyzed.

2.5 Metabolomics analyses

2.5.1 Untargeted metabolomics
Polar and nonpolar positive metabolites, which are a group of

metabolites that carry a net positive charge, were analyzed through
LC-MS/MS in a Thermo Scientific Vanquish™ Ultra High-
Performance Liquid Chromatography (UHPLC) coupled to a Q
Exactive™Hybrid Quadrupole-Orbitrap™mass spectrometer (MS).
Metabolites with a net negative charge were not evaluated in this
study. Along with the samples (n = 119), three blanks and pools were
included at the beginning of each run (polar and nonpolar) and for
every 20 samples. The Xcalibur™ software (ThermoFisher
Scientific™, United States) was used for method setup and data
acquisition.

The analysis of polar and nonpolar metabolites was conducted
using distinct chromatographic conditions tailored to the properties
of each metabolite class. Nonpolar metabolites were detected with
reversed-phase chromatography using 10 µL of each sample injected
with a column Waters Acquity Ethylene Bridged Hybrid (BEH)-
C18 UPLC (2.1 × 100 mm) at 60°C. A 0.4 mL/min flow rate was used
for a gradient analysis that consisted of 98% mobile phase A (water
plus 0.1% formic acid) and 2% mobile phase B (acetonitrile plus
0.1% formic acid) for 1 min. Mobile phase B was ramped to 100% at
minute 8 and was held for 2 min. Lastly, mobile phase B was
returned to 2% at 10.01 min and held at that concentration for
two more minutes.

By contrast, polar metabolites were detected through
hydrophilic interaction liquid chromatography (HILIC). A
Waters BEH-Amide UPLC column (2.1 × 100 mm) held at 60°C
was used to inject 10 µL of sample. The gradient analysis was carried
out at a rate of 0.4 mL/min starting with 100% mobile phase B
(10 mM ammonium formate/10 mM ammonium hydroxide in 95:
5 acetonitrile/water (v/v)) and 0% mobile phase A (10 mM
ammonium formate/10 mM ammonium hydroxide in water) for
1 min. Mobile phase B was ramped to 40% at minute 8 and held at
this concentration for 2 min. Mobile phase B was returned to 100%
at minute 10.01 and held at this concentration for 2 min.

Data were acquired using a data-dependent MS/MS method
with electrospray ionization in positive mode and capillary voltage
of 3.5 kV, transfer capillary temperature at 262.5°C, sheath gas at 50,
auxiliary gas at 12.5, probe heater at 425°C, and S-lens RF level at 50.
Survey scans were acquired at 35,000 resolution, automatic gain
control (AGC) target of 1E6, maximum inject time 100 m, and m/z
range 100–1,500. The top 5 ions were selected for MS/MS with a
resolution setting of 17,500, AGC target of 1E5, minimum AGC of
5E3, maximum inject time 50 m, isolation window of 1.5, fixed first
mass at m/z 50, dynamic exclusion setting of 3 s and stepped
normalized collision energy settings of 20, 40 and 60.

2.5.2 Mass-spectrometry (MS) data processing
Raw files (.RAW) for each sample were transformed to mzXML

format with the Global Natural Product Social Molecular
Networking (GNPS) conversion software. MS data processing
was performed using MZmine v2.53 (Pluskal et al., 2010) while
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analyzing the polar and nonpolar files separately. Instead of using
standards for comparison, we determined the noise levels for
MS1 and MS2 (centroided spectrum type) using the blanks and
pools. First, mzXML files were imported to MZmine for mass
detection at the levels MS1 and MS2 using a noise level of
4E04 for MS1 and 3.5E03 for MS2, which was set based on
visual analyses of chromatograms from the pools and blanks.
Chromatograms were built with the ADAP (Automated Data
Analysis Pipeline) (Myers et al., 2017) module using a scan
retention time of 1.00–10.00 min for MS level 1, minimum group
size in number of scans equal to 4, group intensity threshold of
4.0E4, minimum highest intensity of 5.0E4, and scan to scan
accuracy of 0.002 m/z or 10.00 ppm.

Chromatograms were smoothed using the Savitzky Golay
algorithm with a filter width of 5 and deconvoluted with local
minimum feature resolver. The deconvolution settings included
MS/MS scan pairing with a retention time tolerance of
0.15 absolute min and MS1 to MS2 precursor tolerance of
0.002 Da. Additionally, the deconvolution algorithm was set up
with a chromatographic threshold of 83.3999%, minimum search
range RT/Mobility (absolute) of 0.05, minimum relative height of
0.0%, minimum absolute height of 5.0E4, min ratio of peak top/edge
1.80, and peak duration range (min/mobility) 0.00–1.51. Isotopes
were grouped with a m/z tolerance of 0.0015 m/z or 3.0 ppm, a
retention time tolerance of 0.05 absolute mins, and a maximum
charge of 2 while choosing the most intense representative isotopes.

Next, an aligned feature list containing data from all samples was
generated with module join aligner using a tolerance of 0.0015 m/z
or 5.0 ppm, weight for m/z of 3, retention time (RT) tolerance of
0.1 absolute min, and weight for RT of 1. Gaps in the aligned list
were filled with the module peak finder using an intensity tolerance
of 20%, an m/z tolerance of 0.002 m/z or 10.0 ppm, and a retention
time tolerance of 0.05 absolute min. Duplicate peaks generated
during gap filling were removed at a m/z tolerance of 8.0E-4 m/z
or 1.5 ppm and an RT tolerance of 0.035 absolute (min). To identify
only those features present in at least three samples, the module
“feature list rows filter” was used with at least 3 peaks in a row,
keeping only peaks with MS2 scan, and resetting the peak number
ID. Finally, the feature list was exported for analyses in GNPS for the
Feature-Based Molecular Networking (FBMN) workflow using filter
rows only with MS2. The exported files consisted of a feature
quantification table (.CSV format) and an MS/MS spectral
summary file (.MGF format) with a list of MS/MS spectra
associated with the LC-MS/MS ion features.

2.5.3 Metabolite classification
The FBMN workflow in GNPS was used (Wang et al., 2016;

Nothias et al., 2020) after importing the MGF file and feature
quantification table generated in MZmine as well as the metadata
containing the sample attributes. Precursor ion mass and fragment
ion mass tolerances were set at 0.02 Da. Default settings were used
for the advanced options except for minimum matched fragment
ions for networks and library search minmatched peaks, which were
set at 4. All the spectra with IDs were downloaded; library ID and the
network component index were recorded for each metabolite and
are referred to as “cluster” for the downstream analyses. Molecular
networks were visualized in GNPS to identify metabolite
components and clusters of interest.

2.5.4 Metabolome data analyses
The R package Phyloseq v.1.38 was used to analyze

metabolomics diversity and composition (McMurdie and
Holmes, 2013). A Phyloseq object was generated by merging
metadata with the feature table containing cluster intensities, and
the cluster identifications, which included three levels: network
component, library ID and cluster numbers. The R package
decontam v.1.14 (Davis et al., 2018) was used to remove
contaminant clusters associated with the standards based on a
combined method that uses the Fisher’s exact test. This method
concatenates the probabilities of a cluster being present in a sample
based on the amount of feces used for the metabolite extraction and
the prevalence of a given cluster in controls versus the samples.
Although the standards were present in the blanks and assessed
separately, they were excluded from the final analysis. Lastly, cluster
intensities were normalized to their relative abundances per sample.

2.5.5 Metabolome diversity analyses
The alpha diversity was calculated using the Shannon index and

the number of observed features. The paired, one-tailed Wilcoxon
signed-rank test was used to compare alpha diversity between
groups and time points, whereas the Friedman’s test was used to
compare the indexes by animal over time since it accounts for
repeated measures. Differences in beta-diversity or metabolome
composition, were evaluated based on Bray-Curtis dissimilarity
distances that were mapped with Principal Coordinate Analyses
(PCoA) using the R packages Vegan v.2.5-7 (Dixon, 2003) and
ggplot2 v.3.3.5 (Wickham, 2011). The mean compositions,
represented by the centroid of each group of samples in the
PCoA, were compared with permutational multivariate analysis
of variance (PERMANOVA) with 999 permutations, while
dispersion was compared with PERMDISP (Anderson, 2006).

2.6 Statistical analyses

2.6.1 Detecting significantly different features
between groups

To detect significantly different features between the treatment
groups and stages of lactation (time points), the following were used: 1)
Linear Discriminant Analysis (LDA) Effect Size (LEfSe) (Segata et al.,
2011); 2) Analysis of compositions of microbiomes with bias correction
(ANCOM-BC) (Lin and Peddada, 2020); and 3) Microbiome
Multivariable Associations with Linear Models (MaAsLin2) (Mallick
et al., 2021), as suggested in a prior study (Nearing et al., 2022). LEfSe
analysis was performed on normalized log2 abundances, focusing solely
on features that passed a significance threshold in the Kruskal-Wallis
test (p-value ≤0.05). ANCOM-BC analysis was conducted to detect
differences between groups applying the Holm method for p-value
adjustment. This analysis included only features present in at least 90%
of samples, setting a convergence tolerance of 1e-05 and limiting the
analysis to 100 iterations to minimize type I error rates. MaAsLin2 was
utilized to identify associations with the group as a fixed effect, requiring
a minimum feature prevalence of 90% and employing z-score
standardization for data normalization. Because case and control
cows were paired and shared the same environment, timing since
treatment, parity, and diet, other covariates (random effects) were not
included when using any of these analytical methods. Significantly
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different features (adjusted p-value ≤0.05) were noted if they were
detected using at least two of the three methods. Pairwise comparisons
were made between treatment groups at each time point as well as
between stages of lactation. Random Forest (RF) with 5,000 decision
trees was used to estimate the out-of-bag (OOB) error rate that allows
for correctly classifying the sample groups based on the metabolite
composition. RF was also used to predict features (clusters and
components) based on the discriminatory levels between sample
groups ranked by their mean decrease accuracy (MDA).

2.6.2 Multi-omics analyses
Associations between the fecal microbiome and metabolome

were examined by correlating the relative abundances of known
metabolites (by library ID) with microbial taxa at the phylum and
species levels and for antimicrobial resistance genes (ARGs),
virulence genes, and microbial metabolic pathways across
samples. Spearman correlations were calculated with the R
package Hmisc (https://cran.r-project.org/web/packages/Hmisc/
index.html); coefficients (ρ) >0.75 with p-values < 0.01 were
filtered to construct networks with Gephi v.0.9.2 (Bastian et al.
, 2009).

To characterize patterns of change in the abundance of
microbial and metabolic features, hierarchical clustering was
performed using the R package stats v4.1.2 (https://www.r-
project.org/). Only those features that differed significantly

between lactation stages using two of the three analytical
methods (LefSe, ANCOM-BC and MaAsLin2) were included in
this analysis. First, a distance matrix was constructed with the
Euclidean metric using the fold-change (FC) relative to each
feature average per sample. The FC was calculated by computing
the mean abundance of each feature across samples, and by dividing
the abundance of a feature from a given sample by their
corresponding mean. The distance matrix was used for
hierarchical clustering with the Ward method (ward.D) and the
resulting tree was cut into 30 clusters. The optimal number of
clusters was identified with the NbClust v3.0.1 package (Charrad
et al., 2014), which resulted in five clusters; however, a finer analysis
of each branch was biologically more meaningful. Boxplots of each
hierarchical clustering group were constructed to visualize the
patterns of change between stages of lactation. Experimental and
analytical methods are summarized in Figure 2.

3 Results

3.1 Untargeted metabolomics reveals a
diverse metabolite composition

Analysis of mass-spectra identified twice the amount of
nonpolar (n = 11,007) metabolite clusters than polar (n = 5,390)

FIGURE 2
Summary of the methodology applied to analyze the functional gut microbiome of dairy cattle. Metagenomic sequencing (top panel) was used to
characterize the microbial metabolic pathways, while metabolomics (bottom panel) was used to examine the metabolome composition among fecal
samples collected from 40 dairy cows.
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clusters. Likewise, molecular networks aggregating metabolites
based on their MS2 spectral similarity resulted in 1,122 nonpolar
and 658 polar components (Supplementary Figure S1A). Network
components connect clusters (nodes) that are structurally related via
edges representing a modified cosine score that is calculated based
on ions that differ by the mass difference (Supplementary Figure
S1B). Only a small fraction of clusters had annotations based on
library matches, corresponding to 2.48% of the total metabolites
(polar, n = 135; nonpolar, n = 270), of which 68 were found with
both polar and nonpolar modes.

In the metabolite clusters with library matches, various classes of
metabolites were observed in all samples (Figure 3). These included
amino acids, lactones, carboxylic acids, cyclic anhydrides,
phospholipids, glycerides, ketones, sugars, fatty acids, nucleosides,
chromones, vitamins, and butanoate derivatives. Additionally,
several highly abundant metabolites including guanosine,
benzofuran-2-one, phthalic anhydride, phosphocholine,
monoelaidin, anzacyclotridecan-2-one, cytidine, glycan lacto-N-
biose, glycan lacto-N-biose, hexanedioic acid, propanoic acid,
octadecenoic acid, and others, were found in all samples. A

FIGURE 3
Fecal metabolome of dairy cows. The hierarchical clustering method Ward D2 was used to cluster rows (metabolites) and columns (samples) and
onlymetabolites with library identificationwere included and aggregated at the class level. The color scale represents the logarithm (log) 10 of the relative
abundance, with orange representing the most abundant metabolites and blue representing the least. Columns correspond to the samples, in which the
time of collection (time_Tx) and IMM ceftiofur treatment status (Treatment) are indicated.

Frontiers in Molecular Biosciences frontiersin.org08

Vasco et al. 10.3389/fmolb.2024.1364637

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1364637


comprehensive list of the relative abundance of each metabolite and
class detected is shown in Supplementary Table S2. Importantly,
known metabolites categorized at the class level clustered together
based on the stage of lactation but not the ceftiofur treatment status.
The samples collected during the fresh period were most similar to
each other.

3.2 Microbial metabolic pathways highlight
the importance of essential molecule
biosynthesis

Among the 159 samples, 262 metabolic pathways were identified
that were assigned to bacterial taxa representing 797 pathways with
different bacterial contributions. Only nine bacterial genera,
however, were assigned to the pathways and included:
Bifidobacterium (n = 75 pathways), Clostridium (n = 4),
Escherichia (n = 25), Methanobrevibacter (n = 18), Olsenella (n =
2), Ruminococcaceae unclassified (n = 26), Sarcina (n = 12),
Turicibacter (n = 12), other (n = 262), and unclassified (n =
200). On average, 93% of the reads were classified as unmapped
and 6% as unintegrated for microbial metabolic pathways.

At the class level the most abundant microbial pathways were
associated with the biosynthesis of amino acids, nucleoside and
nucleotides, carbohydrates, and vitamins (Supplementary Figure
S2). Aminoacyl-tRNA charging, fermentation and glycolysis
pathways were also highly abundant in all samples. Pathways
associated with the biosynthesis of fatty acid/lipids, cell
structures, aromatic compounds, pentose phosphate and
secondary metabolites were also common but were found in
lower abundance. Similarly, pathways linked to the degradation
of nucleoside/nucleotides as well as carbohydrates, carboxylates, and
amine polyamines were commonly found (Supplementary Table
S3). The abundance of microbial metabolic pathways varied between
phases, with late lactation predominantly displaying elevated levels
for most pathways. Nonetheless, no distinct clustering at the class
level was evident among the lactation stages or by treatment status
(Supplementary Figure S2).

3.3 Fluctuations in alpha diversity were
observed across the sampling period

The within-sample diversity was measured by comparing the
number of observed features and the Shannon index for the
metabolomes and metagenomes among samples collected from
the same time point, between two time points, and over the
entire sampling period while accounting for repeated measures.
For the number of nonpolar metabolites, considerable fluctuations
in alpha diversity were detected over time (ANOVA, nonpolar: p =
0.001). The number of polar metabolites, however, displayed a more
consistent number of clusters (Observed, ANOVA, p = 0.288) but
with varying evenness (Shannon, ANOVA, p = 0.005) (Figures
4A,D). A significantly greater number of nonpolar metabolites
was detected during lactation (day -1) relative to the dry-off
period (week 1) (t-test: p < 0.0001), though no difference was
observed relative to the fresh period (t-test, p = 0.086). Fresh
cows exhibited a similar number of metabolites as when they

were dry (t-test, polar: p = 0.71, nonpolar: 0.98) but with lower
evenness for polar (Shannon, t-test, p = 0.0028) and nonpolar
(Shannon, t-test, nonpolar: p = 0.0025) metabolites (Figures
4B,E). Although the metabolite richness was similar between
fresh and lactating cows, the Shannon index showed lower
diversity in the fresh phase denoting a transition like the one
detected for diet composition. No differences were observed
between polar and nonpolar metabolites when comparing the
ceftiofur-treated and control cattle at any of the time points.

For the metabolic pathway predications, fluctuations in alpha
diversity were also observed across samplings (ANOVA, p < 0.0001)
(Figures 4C,F). Interestingly, the alpha diversity was more similar
between the dry and fresh cows than between fresh and lactating
cows despite the similarity in diet. Compared to cows in the dry and
fresh periods, cows in late lactation had a significantly greater
quantity and diversity of microbial metabolic pathways (t-test,
p < 0.0001). Stratifying by treatment status did not result in
significant differences in alpha diversity between the groups,
except that the number of metabolic pathways at week 5 was
significantly higher in control cows as compared to the cows
given IMM ceftiofur at dry off (t-test, p < 0.001). Because
samples from week 5 were not analyzed with untargeted
metabolomics, however, we could not compare between
treatment groups at this time point. Nonetheless, no long-term
effects in the number of metabolites were observed at week 9
(fresh cows).

3.4 Beta diversity of the metabolome and
microbial pathways varies across samplings,
whereas the effects of ceftiofur treatment
manifest several weeks post-treatment

Bray-Curtis dissimilarity distances showed significant
differences between samplings for polar and nonpolar
metabolome composition comprising all metabolite clusters
(PERMANOVA, p < 0.001) (Figure 5A). Although the microbial
pathways had overlapping composition between dry and fresh cows
(PERMANOVA, p > 0.3), the lactating cows showed a significantly
higher dispersion in the PCoA compared to the samples from dry
and fresh cows (PERMDISP, F = 53.32, p = 1.34e-11) as well as a
different average composition (PERMANOVA, F = 63.69, p = 0.001)
(Figure 5B). Despite the metabolome composition differences
associated with the sampling period, the microbial metabolic
pathways were similar in the dry and fresh phases. Furthermore,
cows treated with IMM ceftiofur had an identical mean metabolite
composition as the controls (PERMANOVA, p > 0.38) even though
differences in the composition of the microbial pathways were
observed in weeks 5 (PERMANOVA, F = 4.25, p = 0.007) and 9
(PERMANOVA, F = 2.67, p = 0.045).

3.5 Differences in the metabolome were
observed between ceftiofur-treated and
control cows at specific time points

After comparing the abundance of a total of 16,589 metabolite
clusters, 3,753 metabolite components, and 797 microbial-metabolic
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FIGURE 4
Alpha diversity of metabolites and microbial pathways. The top three panels show the number of observed features for (A) polar, (B) nonpolar, and
(C) microbial metabolic pathways, while the bottom panels represent the Shannon index, for (D) polar, (E) nonpolar, and (F) microbial metabolic
pathways, respectively. p-values were calculated with one-sided and paired t-test to compare treatment groups within a sampling point (black) or
between time points regardless of treatment (gray). Each boxplot shows the median, lower, and upper quartiles with the whiskers representing
extreme values in the distribution. Friedman’s test, which accounts for repeated measures, indicates significant fluctuations in alpha diversity over time.

FIGURE 5
Beta diversity of (A) polar and nonpolar metabolites; and (B)microbial pathways. PCoA of the Bray-Curtis dissimilarity is clustered by treatment and
sampling point (ellipses contain at least 90% of the samples in a group). Control animals are indicated by circles, whereas the ceftiofur-treated animals are
indicated by triangles within each plot.
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pathways, only one metabolite cluster was significantly different
between controls and cows treated with IMM ceftiofur 1 week after
the treatment. This cluster corresponds to the nonpolar-positive
metabolite cluster #6574 with a parent mass of 245.07 m/z, and a
consensus retention time of 1.08 min (Supplementary Figure S3).
This cluster is not identifiable and was not part of a network
component, thereby limiting our understanding of its occurrence
in the ceftiofur-treated animals. Similarly, RF could not correctly
classify the metabolomic composition by treatment group at any
time point; the OOB estimate of error rate was >55% when groups
were compared based on metabolite or microbial-pathway
composition at each time point.

Comparing groups with RF when considering only metabolite
clusters with a library ID, which excluded unknown metabolites, the
classifier error between treatment groups was reduced. Specifically, the
OOBwas 30% at day -1, 25% at week 1, and 18% at week 9. The primary
identifiable metabolites that influenced the classification with RF varied
across the time points. A week after drying off, for instance, inosine and
palmitoylcarnitine were higher and lower, respectively, in cows treated
with IMM ceftiofur (Mean decrease accuracy (MDA): 10.43, 7.83) than
controls (Figure 6A). At week 9, the most important classifier was Leu-
Val, followed by (E)-5-(4-methoxy-5-methyl-6-oxopyran-2-yl)-3-
methylhex-4-enoic acid, which was higher in the controls relative to
the antibiotic-treated cows (MDA: 14.31) (Figure 6B). By contrast,

aleuretic acid (MDA: 7.49) was higher in the antibiotic-treated cows at
week 9 compared to the controls.

3.6 Predicted microbial functions differed
between ceftiofur-treated and control cows
at specific time points

In the microbial metabolic pathway analysis, we identified
nuanced distinctions among treatment groups. During the first
week, for example, only seven microbial metabolic pathways
exhibited disparities between cows treated with ceftiofur and the
control group. These differences included an elevated presence of
thiamine phosphate pathways by yeasts, as well as reduced levels of
biosynthesis of cis-vaccenate and the degradation of punine
ribonucleosides, D-fructuronate, and 4-deoxy-L-threo-hex-
4enopyranuronate in the ceftiofur-treated cows.

At week 5, 17 microbial pathways were significantly less
abundant in the cows treated with ceftiofur than the control
cows; these included pathways involved in the biosynthesis of
amino acids (i.e., L-ornithine, L-isoleucine, L-lysin, L-threonine,
L-methionine), peptidoglycan, glycogen, isoprene, preQ0,
chorismate, and coenzyme A, as well as in the degradation
of L-arginine (Figure 7A). The unintegrated pathways of

FIGURE 6
Hindgut metabolites identified in dairy cows with IMM ceftiofur (antibiotic) treatment relative to the control group. Differences in the relative
abundance of eachmetabolite are shown at (A) 1 week after treatment (Week 1) and (B) 9 weeks after treatment (Week 9). The bars in the figure represent
the mean fold change along with the corresponding confidence interval. One-tailed Wilcoxon signed-rank test was used to compare the relative
abundance and significance (p-value) is shown as **≤0.01, or *≤0.05. NCGC00380646-01 represents (E)-5-(4-methoxy-5-methyl-6-oxopyran-2-
yl)-3-methylhex-4-enoic acid.
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Ruminococcaceae bacterium P7 and methylerythritol phosphate
pathway I, however, were significantly lower in ceftiofur-treated
cows. During week 5, several pathways were primarily identified in
control cows but were absent in those given ceftiofur (Figure 7B).
These pathways include L-arginine degradation XIII (controls, n =
5), the incomplete reductive TCA cycle (controls, n = 5), and
L-ornithine biosynthesis II (controls, n = 6; ceftiofur, n = 1).

At week 9 (fresh phase), eleven microbial pathways explained
differences between treatments using RF (Figure 7C). The most
important differentially abundant pathways among the ceftiofur-
treated cows included those related to peptidoglycan maturation,
degradation of D-galacturonate, glycogen, purines, D-galactose, and
the biosynthesis of 6-hydroxymethy-dihydropterin diphosphate and
L-cysteine. Mirroring the observations from week 5, three microbial

pathways were exclusive to controls (n = 4) at week 9, while another
pathway was detected in just one ceftiofur-treated cow and seven
controls. Curiously, a higher abundance of pathways related to
anaerobic energy metabolism, and the biosynthesis of
L-methionine and L-alanine were identified in cows treated with
ceftiofur compared to the controls.

3.7 Differences in metabolites and microbial
pathways were detected across samplings
regardless of treatment status

The OOB error was 1.68% across the samplings, as the
metabolomes of two fresh cows were misclassified as lactating

FIGURE 7
Differentially abundant microbial pathways in cows treated with IMM ceftiofur (antibiotic) compared to the control group. Differences in the relative
abundance of eachmicrobial pathway are shown at: (A) 1 week after IMM treatment (Week 1); (B) 5 weeks after treatment (Week 5); and (C) 9 weeks after
treatment (Week 9). The bars in the figure represent the mean fold change along with the corresponding confidence interval. One-tailed Wilcoxon
signed-rank test was used to compare the relative abundance and significance (p-value) is shown as **≤0.01, or *≤0.05.
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cows. Hierarchical clustering of the 50 most important metabolite
components identified with RF showed a transitional composition in
fresh cows between the lactation stages (Supplementary Figure S4).
Only four of these 50 components had clusters with library
identification representing long-chain fatty acids, which were
more abundant in the dry-off period (week 1), and amino acids
that were increased during lactation (Supplementary Figure S5).

Differential abundance tests also identified 9,850 features that
differed between samplings, corresponding to 46.59% of the total
features (metabolites and microbial pathways) (Supplementary
Figure S6). Dry and fresh cows showed a lower number of
different features (53.88% of the total) than lactating and dry and
cows (64.64%) or lactating and fresh cows (66.9%). In particular, the
dry and fresh cows only differed in a few microbial pathways,
whereas approximately one-third of the microbial metabolic
pathways had varying abundances during lactation as compared
to the other stages.

Among the top 25 most important metabolites classified by RF
with library matches (Figure 8), cows in late lactation had a greater

abundance of oxoheptadecanedioic acid, tri(propylene glycol) butyl
ether, apigenin tetramethoxyflavone, phosphocholine, and
phenylalanine compared to dry and fresh cows. Conversely, dry
cows had higher concentrations of coenzyme Q10, myristoyl
ethanolamide, riboflavin, harmol, oxobutanoic acid,
guanidineacetic acid, citrulline, and phosphoethanolamide. Fresh
cows demonstrated increased abundance of glutamate, histidine,
and lysine, alongside histamine, which was elevated in both fresh
and lactating cows compared to dry cows. Similarly, an evaluation of
the top 25 microbial metabolic pathways showed that multiple
pathways were significantly higher in lactating cows compared to
those cows in the other stages (Figure 9). Pathways involved in the
biosynthesis of nucleotides, amino acids, cell wall and glycolysis are
among the most abundant. Intriguingly, during dry-off (week 5),
higher levels of 2-oxobutanoate degradation I pathways
were detected.

Notably, the top 8 most important pathways that predicted the
sampling period through RF corresponded to three categories: 1) cell
division, 2) amino acid biosynthesis, and 3) carbohydrate

FIGURE 8
Differentially abundant metabolites across the three samplings in all 40 dairy cows regardless of treatment status. Each sampling corresponds to
different stages of lactation. Day -1 corresponds to late lactation,Week 1 to dry off, andWeek 9 to fresh cows. Data from all animals was combined and not
stratified by treatment status. The bars in the figure represent the mean fold change along with the corresponding confidence interval.
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biosynthesis. These pathways were significantly higher during
lactation, particularly those related to cell division that were
mostly absent during the dry-off period. Cell-division pathways
included inosine-5′-phosphate biosynthesis III, pyrimidine
deoxyribonucleotides de novo biosynthesis IV, UDP-N-acetyl-D-
glucosamine biosynthesis I, and O-antigen building blocks
biosynthesis (E. coli), which were assigned to Bifidobacterium,
Turicibacter, Olsenella, and Escherichia coli (Supplementary
Figure S7). The three main pathways related to amino acid
biosynthesis involved the superpathway of L-lysine, L-lysine
biosynthesis VI, L-valine biosynthesis, and L-threonine and
L-methionine biosynthesis II (Supplementary Figure S8). During
lactation, these amino acid biosynthesis pathways were mainly
assigned to Bifidobacterium spp. No taxa could be assigned to
these pathways in the samples collected during the dry and fresh
periods. Finally, carbohydrate biosynthesis pathways included
glycogen biosynthesis I (from ADP-D-Glucose), sucrose
biosynthesis II, and horismite biosynthesis I (Supplementary
Figure S9). Although Sarcina was the main taxa assigned to

glycogen and sucrose biosynthesis during the dry-off and fresh
periods, Bifidobacterium was mainly associated with carbohydrate
biosynthesis during lactation.

3.8 Multi-omics analysis identifies
correlations between the microbiome and
metabolome

Positive Spearman’s correlations among metabolites, microbial
pathways, microbial species, viruses, and antimicrobial resistance
genes were analyzed. Potential functional relationships between
metabolites and microbial species included uncultured Firmicutes
and Bacteroidetes species with triacylglycerol (TAG); Clostridium
with N,N,N-trimethyllysine, N,N-dimethyldodecylamine N-oxide
and myristamidopropyl betaine; Proteobacteria and Blautia with
histamine; monolinolenin, beauvericin [+NH4+], and
neobavaisoflavone, with Campylobacter, Ruminococcaceae
uncultured bacteria (GGB3236), and bacteriophages from

FIGURE 9
Differentially abundant microbial pathways across samplings in 40 dairy cows regardless of treatment status. The different samplings are shown and
correspond to the different stages of lactation. Day -1 represents late lactation, while Week 1 and Week 9 represent the dry-off and fresh periods,
respectively. The bars in the figure represent the mean fold change along with the corresponding confidence interval.
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enterobacteria (Vectrevirus Vec3); 2′-deoxyadenosine with
Gammaproteobacterial; 1,2-Diheptadecanoyl-sn-glycero-3-
phosphocholine with uncultured Bacteroidetes. Fruchterman
Reingold networks show other correlations between the
microbiome and polar metabolites (Supplementary Figure S10) as
well as nonpolar metabolites (Supplementary Figure S11).

3.9 Metabolome and microbiome patterns
changed across the sampling period

To better explore the functional associations of differentially
abundant features, hierarchical clustering was performed with
only those known metabolic clusters that differed significantly
between samplings using LefSe, MaAsLin2 and ANCOM-BC. A
tree was constructed based on a distance matrix highlighting the
fold-change of metabolites and metagenomic features that
differed significantly (n = 684). One relevant group showed
concomitant higher levels of Actinobacteria, Proteobacteria,
and histamine during lactation (Figure 10). This finding
suggests a role of these taxa in the production of pro-
inflammatory compounds such as histamine, which was also
observed in the correlation networks.

Fresh cows showed higher levels of urate and nonpolar plant-
derived compounds, which was likely due to a diet rich in alfalfa hay
that was provided to the animals during this phase. Other clusters also
showed patterns with lower contrast across the stages of lactation, with
the most relevant HC groups displayed in Supplementary Figure S12.
For instance, higher quantities of amino acids and dipeptides were
detected with the polar mode on samples from lactation, which was
related to a higher abundance of bacterial amino acid synthesis
pathways mentioned priorly (Supplementary Figure S8). Not
surprisingly, higher levels of androstane were also detected in fresh
cows, which are expected to have peak levels of estrogens at this time
(Supplementary Figure S13).

4 Discussion

In this study, we sought to identify changes in the gut
metabolome of dairy cows due to IMM treatment with ceftiofur
applied at dry-off over a 9-week period. Although IMM ceftiofur
treatment impacted the abundance of specific metabolites,
substantial alterations in the overall metabolome composition
were not observed and could be attributed to low levels of
ceftiofur metabolites in the cattle gut. Indeed, ceftiofur
metabolites were not detected in the feces of IMM-treated cows
1-week after treatment. This was an anticipated finding as a prior
study of steers treated subcutaneously found the total concentration
of ceftiofur equivalents to be negligible in the gastrointestinal tract
after 96 h (Foster et al., 2019). Another study showed that ceftiofur
excretion began as early as 24 h after intramuscular administration,
but most residues were detected in the urine (60%–80%) (Brown
et al., 1991). Therefore, the lack of detection of ceftiofur metabolites
in our samples post-treatment likely contributed to fewer functional
alterations in the gut. Regardless, several metabolites were detected
in greater abundance in the ceftiofur-treated versus -untreated cows
along with an uncharacterized metabolite, which was found
exclusively in the treated cows 1-week after treatment. This
metabolite could represent a constituent of Spectramast® DC,
which also contains microcrystalline wax, oleoyl oilyoxyglyceride,
and cottonseed oil as well. Additional studies are needed for
verification.

Among the metabolites present in greater abundance in the
ceftiofur-treated cows was stachyose, an oligosaccharide of plant
origin that is resistant to host enzymatic digestion (Zheng et al.,
2000). Its presence suggests potential disruptions in gut bacteria
responsible for its fermentation. Additionally, the enhanced levels of
PE-DAG and inosine detected in the ceftiofur-treated cows suggest
variation in microbial metabolism of lipids, energy, and cellular
signaling, while lower concentrations of anti-inflammatory
compounds, daphnoretin and dehydrocostus lactone (He et al.,

FIGURE 10
Metagenome and metabolome patterns by sampling period. This figure shows the variation in metagenome feature abundance at the genus and
phylum levels as well as metabolome feature abundance across the sampling period. The samplings correspond to the Lactation (left panel), Dry-off
(middle panel), and Fresh (right panel) periods. Emphasis is placed on features that are dominant in one sampling but nearly absent in others. These
patterns were discerned using Hierarchical Clustering with the Ward D2 method. The Y-axis details the fold-change, compared to the average
feature abundance across all samples. Boxplots encapsulate the median and interquartiles with whiskers indicating extreme values and marked outliers
also presented.
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2002; Chen et al., 2020), were discerned. Diminished fatty acid
oxidation processes, as reflected by the reduced levels of
palmitoylcarnitine, phospholipids, and trisaccharide maltrotiose
in the ceftiofur-treated cows, also suggest differences in digestive
processes compared to the controls.

Microbial metabolic pathways were also modified following
IMM ceftiofur treatment. While the impact was not immediately
observable in these pathways 1-week after treatment, discernible
functional alterations were detected by week 5. Indeed, the
diminished abundance of numerous microbial metabolic
pathways at week 5 suggests a curtailed metabolic potential of
the bovine microbiome in response to ceftiofur treatment.
Notable among these were decreased utilization and biosynthesis
of certain amino acids encompassing L-arginine, L-ornithine,
L-isoleucine, L-lysine, L-threonine, and L-methionine.
Furthermore, the capacity to produce precursor molecules and
the synthesis of crucial biochemicals such as sterols, carotenoids,
chlorophylls, fatty acids, cholesterol, among others, was decreased in
the ceftiofur-treated group. Since the metagenomic analysis did not
invariably elucidate the activity of the gene-encoded enzymes
present in fecal samples in the first week post-treatment, the
application of metatranscriptomics could be used in future
studies to provide clarification.

Importantly, ceftiofur treatment had no short-term or
persistent effects on metabolome diversity in the cow gut over
the 9-week sampling period. Although this result is consistent
with our findings showing no difference in microbiome diversity
in the same cohort of cows (Vasco et al., 2023), the ceftiofur-
treated microbiome showed a reduced propensity for energy
production. Evidence for this observation is provided by the
observed downturn in the biosynthesis of glycogen and coenzyme
A. By the ninth week, however, multiple pathways associated
with Bifidobacterium were more abundant in ceftiofur-treated
cows. For example, L-methionine and L-alanine, which are
prominently involved in anaerobic energy metabolism and the
biosynthesis of amino acids, are associated with the genus
Bifidobacterium, a member of the phylum Actinobacteria that
was significantly more abundant in ceftiofur-treated cows
previously (Vasco et al., 2023). Despite these observations, a
decline in sugar degradation (such as D-galactose, purine
ribonucleosides, glycogen, D-galacturonate) and a reduction in
the production of vitamin B12 and peptidoglycan maturation
were observed in the ninth week following ceftiofur treatment.
These findings highlight the complex and multilayered response
of the bovine gut microbiome to IMM ceftiofur treatment.

While we did not collect milk samples for evaluation in this
study, it is worth noting that treatment-associated modifications
in the gut microbiome and metabolome could potentially impact
milk quality. The presence of Bifidobacterium, for example, has
been linked to higher milk-fat yields (Jami et al., 2014), while
genus Prevotella (phylum Bacteroidetes) has been connected to
metabolic pathways integral to protein and fat content in milk as
well as the production of volatile fatty acids (Wu et al., 2021).
Despite these associations, the primary determinants of milk
composition are specific to each herd’s diet (Albonico et al., 2020)
and to a lesser extent, the interplay between genetic makeup and
the composition of rumen bacteria (Buitenhuis et al., 2019). It is
important to recognize that even though IMM ceftiofur may exert

specific effects on the fecal metabolome and the functionality of
the microbiome, the judicious application of antibiotic therapy
during the dry-off period is essential for preventing mastitis. This
condition not only impairs milk production but also has adverse
consequences on the welfare of the animal (Ruegg, 2017). We did
not assess the efficacy of IMM ceftiofur in preventing IMM
infections herein, nor did we investigate whether IMM
infections induce inflammation and independently perturb the
gut microbiota.

Moreover, our analysis demonstrated that the overall
metabolome and related microbial metabolic pathways varied
across the sampling period. Each stage of lactation, which is
characterized by unique physiology and diets, had a distinct
metabolome and functional microbiome, highlighting the
collective role that these factors play in metabolome variation
regardless of ceftiofur treatment. Even though the individual
impact of these factors could not be explored based on our study
design, prior studies have shown that diet impacts the fecal
metabolome and microbiome composition in cows (Zhang
et al., 2018; Hagey et al., 2019; Liu et al., 2020; Vasco et al.,
2021). For instance, increasing grain-forage ratios have been
linked to a higher abundance of Proteobacteria and a lower
abundance of Bacteroidetes in feces (Zhang et al., 2018; Liu
et al., 2020). Moreover, diets with >30% grain given to cows
in early lactation significantly changed the ruminal metabolome,
increasing the abundance of short-chain fatty acids as well as
toxins, inflammatory compounds, putrescine, methylamines, and
ethanolamine (Saleem et al., 2012). Herein, cows in late lactation
(day -1) received the highest amount of grain in the diet,
constituting about 39% of the dry matter intake vs 26% in
fresh cows (week 9) and 7% in dry cows (week 1). It is
therefore likely that different feed ingredients will have
distinct effects on the metabolome and microbial activity in
the bovine gastrointestinal tract.

Comparatively, those cows sampled during late lactation also
had enhanced diversity of microbial pathways and metabolites.
Phenylalanine, for instance, is an essential amino acid, and had
higher levels during late lactation. This finding suggests increased
protein intake or metabolism in cows on the maintenance diet
compared to the diets used during other stages of lactation
(Reitelseder et al., 2020). It also aligns with the diet formulation
containing higher levels of crude protein compared to those
administered in the early dry and fresh phases. Similarly,
compounds like phosphocholine and carnitine are involved in
lipid metabolism and energy production; hence, the higher levels
observed during late lactation may reflect differences in energy
substrate utilization compared to dry and fresh phases. Higher
levels of dry matter, fat, net energy, non-fiber carbohydrates,
starch and vitamin A were also provided during lactation that
could have differentially impacted community function and
require further examination.

During late lactation when a higher abundance of
Actinobacteria and Proteobacteria was observed, greater levels
of histamine were also found. Microbial-origin gut histamine,
which is linked to grain-rich diets, has been associated with
inflammatory responses, such as laminitis (Garner et al., 2002),
and inflammatory reactions in the bovine lung (Barcik et al.,
2019). Furthermore, increased levels of histamine in the gut can
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lead to symptoms such as increased vascular permeability,
edema, and the recruitment of inflammatory cells (Ashina
et al., 2015). These outcomes can result in the translocation of
bacteria, toxins, and other molecules across the intestinal barrier,
potentially contributing to inflammatory processes and other
gut issues.

During the dry-off period, cows are typically transitioned to a
diet primarily composed of forage with a lower percentage of grain
(Dancy et al., 2019), which could impact the metabolic response. For
example, propionic acid is a volatile fatty acid produced during
rumen fermentation of carbohydrates, and its higher levels may
reflect increased fermentation of forage-based diets, particularly
grasslage (Ribeiro et al., 2009). Compounds like citrulline,
guanidinacetic acid, oxobutanoic acid, riboflavin, myristoyl
ethanolamide, and coenzyme Q10 are involved in energy
metabolism, amino acid metabolism, and cellular processes, and
their levels may be influenced by metabolic shifts. Similarly, during
dry off, cows also exhibited a higher abundance of the 2-
oxobutanoate degradation I pathway, which plays a role in the
breakdown of specific amino acids and contributes to energy
production and the generation of key metabolic intermediates.
Since dry-off is associated with changes in hormone levels,
particularly the decline in lactation-related hormones such as
prolactin (Ollier et al., 2013), hormonal fluctuations can also
impact metabolic pathways and the production or utilization of
certain compounds.

A higher diversity of microbial pathways, as was observed
during late lactation, has also been associated with enteric
infection in monogastrics in a case-control clinical study
performed by our group (Hansen et al., 2024). Despite the
similarity in diet and the metabolome between the fresh and
lactating cows, the microbial metabolic pathway diversity and
composition were significantly different. Hence, it is essential to
emphasize the marked disparity in dry matter intake and metabolic
status between fresh and lactating cows, particularly when
distinguishing between negative and positive energy balances.
During early lactation, cows typically experience a negative
energy balance, whereas those in late lactation transition to a
positive energy balance (Butler and Smith, 1989). In fact, the
pathway profiles of fresh cows were like those observed in the
dry phase suggesting a slow adaptation to a high grain diet.
Although it only took a week on a forage-based diet at dry-off to
identify changes in the functional gut microbiome, this was
accompanied by lower levels of histamine-producing bacteria
compared to the lactation stage. Since the core microbiome
composition is unique to each farm due to factors that include
housing, breed, and age (Hagey et al., 2019; Furman et al., 2020),
changes in the diet are the most impactful on the cattle metabolome
and microbial diversity. Although manipulation of the functional
microbiome through dietary changes is plausible, functional changes
can take longer to develop in a new environment as was observed
herein. Nonetheless, it is important to note that we did not control
for diet or other factors when making comparisons across sampling
periods and hence, these relationships require validation in
future studies.

Similar to findings from other metabolomic studies (da Silva
et al., 2015; Peisl et al., 2018), many of the metabolites and
microbial-metabolic pathways were unknown and could not be

classified. Despite this limitation, biologically important
compounds and metabolic pathways enabled the interpretation
of some associations that were observed between the microbiome
and metabolome. Future studies, however, should include GC/
MS to promote the identification of short-chain fatty acids
(SCFAs) since they have been linked to health outcomes in
humans (Tan et al., 2014) and production in cattle (Bionaz
et al., 2020). Moreover, associations between metagenome,
metabolome and milk production could guide improvements
in diet formulations, health, and probiotic development.
Serum metabolome analyses could also help identify
relationships between microbiome functionality and host
factors such as hormonal levels (i.e., estrogens, cortisol,
progesterone, prolactin), or metabolic disorders in cattle.
Neither SCFAs or serum metabolites were evaluated in our
study nor was the application of fecal proteomics, which could
be used to define markers of immunity and inflammation that are
indicative of specific host responses. These analyses as well as the
use of metatranscriptomics and metaproteomics combined with
targeted metabolomics should be performed in the future to
better characterize the functional microbiome (Van Den
Bossche et al., 2021).

5 Conclusion

IMM ceftiofur treatment of dairy cattle at dry-off resulted in
alterations to the microbial metabolic pathways and fecal
metabolites associated with lower biosynthesis of amino acids
and energy a week after its application. Nevertheless, these
alterations were not as pronounced as those observed with
dietary changes and physiological shifts linked to lactation stage.
Indeed, each stage of lactation was characterized by a distinct
metabolome composition that was related to feed ration and
physiology regardless of treatment status. During lactation, a
higher level of microbial activity, particularly amino acid
biosynthesis, was observed as compared to dry and fresh cows;
however, histamine-producing bacteria were more abundant during
late lactation. Together, these data highlight how integrative analyses
of metagenomics and untargeted metabolomics data can be used to
define the metabolite-microbe interactions in the cattle gut.
Understanding the role of the gut environment in the microbial
profile is critical to identify factors related to cow health in
dairy farms.

Data availability statement

The paired-end metagenome raw reads used in this study are
deposited in the NCBI repository, BioProject PRJNA825520
(Biosamples SAMN27520269 to SAMN27520427). FBMN data
processed through GNPS is available online for polar and
nonpolar metabolites (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=d4a761f0a6be422c8b89db9408f57b0d and https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=1d6f7e95d2f04f96a94fede8c195702d,
respectively). Additional analyses that support our conclusions are
available in the GitHub repository (https://github.com/karla-vasco/
metabolome_microbiome_cattle).

Frontiers in Molecular Biosciences frontiersin.org17

Vasco et al. 10.3389/fmolb.2024.1364637

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d4a761f0a6be422c8b89db9408f57b0d
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d4a761f0a6be422c8b89db9408f57b0d
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1d6f7e95d2f04f96a94fede8c195702d
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1d6f7e95d2f04f96a94fede8c195702d
https://github.com/karla-vasco/metabolome_microbiome_cattle
https://github.com/karla-vasco/metabolome_microbiome_cattle
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1364637


Ethics statement

The animal studies were approved by the Institutional Animal
Care and Use Committee at Michigan State University (IACUC
number ROTO201800166). The studies were conducted in
accordance with the local legislation and institutional
requirements. The collection of information and samples was
authorized by the Michigan State University (MSU) Dairy Cattle
Teaching & Research Center, as confirmed through written
informed consent.

Author contributions

KV: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. ZH: Formal
Analysis, Methodology, Writing–review and editing. AS:
Conceptualization, Methodology, Supervision, Writing–review and
editing. BB: Methodology, Writing–review and editing. SC:
Methodology, Writing–review and editing. PR: Funding acquisition,
Project administration, Supervision, Writing–review and editing. RQ:
Conceptualization, Methodology, Resources, Supervision,
Writing–review and editing. LZ: Conceptualization, Funding
acquisition, Methodology, Project administration, Resources,
Supervision, Writing–review and editing. SM: Conceptualization,
Funding acquisition, Investigation, Project administration, Resources,
Supervision, Validation, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was funded by the U.S. Department of Agriculture (USDA), grant
number 2019-67017-29112. USDA did not participate in the study
design or data analyses associated with this project. Additional
support was provided by the Michigan Sequencing and Academic
Partnerships for Public Health Innovation and Response (MI-
SAPPHIRE) initiative at the Michigan Department of Health and
Human Services via the Centers for Disease Control and Prevention
through the Epidemiology and Laboratory Capacity for Prevention
and Control of Emerging Infectious Diseases Enhancing Detection
Expansion program (6NU50CK000510-02-07) as well as the
Michigan State University (MSU) Foundation and AgBioResearch

(SDM). Student support for KV was provided by the Department of
Microbiology, Genetics, and Immunology at MSU through the
Thomas S. Whittam award, and the MSU College of
Natural Sciences.

Acknowledgments

We thank Bo Norby, Ronald Erskine, and the late Lorraine
Sordillo-Gandy for their instrumental contributions to the original
study’s conception and design along with the team at the MSUDairy
Cattle Teaching and Research Center for assistance with planning
and data collection. We thank Rebekah Sloup, Carmen Garcia, Jose
Rodrigues, Jaimie Strickland, Jennifer Brown, Jeffery Gandy, Robert
West, and Aspen Robak for assistance with field and laboratory
work. We appreciate the assistance provided by Doug Guzior and
Christian Martin in the metabolomics analyses and thank Daniel
Jones at the Mass Spectrometry and Metabolomics Core at MSU for
the fecal metabolite extraction protocol.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2024.1364637/
full#supplementary-material

References

Albonico, F., Barelli, C. I., Albanese, D., Manica, M. I., Partel, E., Rosso, F., et al.
(2020). Raw milk and fecal microbiota of commercial Alpine dairy cows varies with
herd, fat content and diet. PLoS One 15, e0237262. doi:10.1371/journal.pone.0237262

Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A.,
et al. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic
resistance database. Nucleic Acids Res. 48, D517–D525. doi:10.1093/nar/gkz935

Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate
dispersions. Biometrics 62, 245–253. doi:10.1111/j.1541-0420.2005.00440.x

Ashina, K., Tsubosaka, Y., Nakamura, T., Omori, K., Kobayashi, K., Hori, M., et al.
(2015). Histamine induces vascular hyperpermeability by increasing blood flow and
endothelial barrier disruption in vivo. PLoS One 10, e0132367. doi:10.1371/journal.
pone.0132367

Bach, A., Calsamiglia, S., and Stern, M. D. (2005). Nitrogen metabolism in the rumen.
J. Dairy Sci. 88, E9–E21. doi:10.3168/jds.S0022-0302(05)73133-7

Barcik, W., Pugin, B., Brescó, M. S., Westermann, P., Rinaldi, A., Groeger, D., et al.
(2019). Bacterial secretion of histamine within the gut influences immune responses
within the lung. Allergy 74, 899–909. doi:10.1111/all.13709

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: an open source software for
exploring and manipulating networks. Available at: https://gephi.org/publications/
gephi-bastian-feb09.pdf.

Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan,
S., et al. (2021). Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. Elife 10, e65088. doi:10.7554/
eLife.65088

Frontiers in Molecular Biosciences frontiersin.org18

Vasco et al. 10.3389/fmolb.2024.1364637

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1364637/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1364637/full#supplementary-material
https://doi.org/10.1371/journal.pone.0237262
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1111/j.1541-0420.2005.00440.x
https://doi.org/10.1371/journal.pone.0132367
https://doi.org/10.1371/journal.pone.0132367
https://doi.org/10.3168/jds.S0022-0302(05)73133-7
https://doi.org/10.1111/all.13709
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://doi.org/10.7554/eLife.65088
https://doi.org/10.7554/eLife.65088
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1364637


Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal
tract in various species. Physiol. Rev. 70, 567–590. doi:10.1152/physrev.1990.70.2.567

Bionaz, M., Vargas-Bello-Pérez, E., and Busato, S. (2020). Advances in fatty acids
nutrition in dairy cows: from gut to cells and effects on performance. J. Anim. Sci.
Biotechnol. 11, 110. doi:10.1186/s40104-020-00512-8

Blanco-Miguez, A., Beghini, F., Cumbo, F., McIver, L. J., Thompson, K. N., Zolfo, M.,
et al. (2023). Extending and improving metagenomic taxonomic profiling with
uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644. doi:10.
1038/s41587-023-01688-w

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120. doi:10.1093/bioinformatics/
btu170

Brown, S. A., Jaglan, P. S., and Banting, A. (1991). Ceftiofur sodium: disposition,
protein-binding, metabolism, and residue depletion profile in various species. Acta
Veterinaria Scand. Suppl. Den. 87, 97–99. doi:10.5555/19922272369

Buitenhuis, B., Lassen, J., Noel, S. J., Plichta, D. R., Sørensen, P., Difford, G. F., et al.
(2019). Impact of the rumen microbiome on milk fatty acid composition of Holstein
cattle. Genet. Sel. 51, 23–28. doi:10.1186/s12711-019-0464-8

Butler, W. R., and Smith, R. D. (1989). Interrelationships between energy balance and
postpartum reproductive function in dairy cattle. J. Dairy Sci. 72, 767–783. doi:10.3168/
jds.S0022-0302(89)79169-4

Campos, J. L. de, Kates, A., Steinberger, A., Sethi, A., Suen, G., Shutske, J., et al. (2021).
Quantification of antimicrobial usage in adult cows and preweaned calves on 40 large
Wisconsin dairy farms using dose-based and mass-based metrics. J. Dairy Sci. 104,
4727–4745. doi:10.3168/jds.2020-19315

Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P.
E., et al. (2020). The MetaCyc database of metabolic pathways and enzymes - a
2019 update. Nucleic Acids Res. 48, D445–D453. doi:10.1093/nar/gkz862

Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2014). NbClust: an R package
for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36.
doi:10.18637/jss.v061.i06

Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., et al. (2005). VFDB: a reference
database for bacterial virulence factors. Nucleic Acids Res. 33, D325–D328. doi:10.1093/
nar/gki008

Chen, Y., Li, R., Wang, Z., Hou, X., Wang, C., Ai, Y., et al. (2020). Dehydrocostus
lactone inhibits NLRP3 inflammasome activation by blocking ASC oligomerization and
prevents LPS-mediated inflammation in vivo. Cell Immunol. 349, 104046. doi:10.1016/j.
cellimm.2020.104046

Dancy, K. M., Ribeiro, E. S., and DeVries, T. J. (2019). Effect of dietary transition at
dry off on the behavior and physiology of dairy cows. J. Dairy Sci. 102, 4387–4402.
doi:10.3168/jds.2018-15718

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., et al.
(2021). Twelve years of SAMtools and BCFtools. Gigascience 10, giab008. doi:10.1093/
gigascience/giab008

da Silva, R. R., Dorrestein, P. C., and Quinn, R. A. (2015). Illuminating the dark matter
in metabolomics. Proc. Natl. Acad. Sci. U. S. A. 112, 12549–12550. doi:10.1073/pnas.
1516878112

Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., and Callahan, B. J. (2018).
Simple statistical identification and removal of contaminant sequences in marker-gene
and metagenomics data. Microbiome 6, 226. doi:10.1186/s40168-018-0605-2

Dixon, P. (2003). VEGAN, a package of R functions for community ecology. J. Veg.
Sci. 14, 927–930. doi:10.1111/j.1654-1103.2003.tb02228.x

European Agency for the Evaluation of Medicinal Products (2002). “Ceftiofur,
modification of MRLs for bovine species,” in Summary report veterinary medicines
and infections. London, United Kingdom. Available at: https://www.ema.europa.eu/en/
documents/mrl-report/ceftiofur-modification-mrls-bovine-species-summary-report-
3-committee-veterinary-medicinal-products_en.pdf (Accessed November 19, 2023).

Foster, D. M., Jacob, M. E., Farmer, K. A., Callahan, B. J., Theriot, C. M., Kathariou, S.,
et al. (2019). Ceftiofur formulation differentially affects the intestinal drug
concentration, resistance of fecal Escherichia coli, and the microbiome of steers.
PLoS One 14, e0223378. doi:10.1371/journal.pone.0223378

Furman, O., Shenhav, L., Sasson, G., Kokou, F., Honig, H., Jacoby, S., et al. (2020).
Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome
assembly dynamics. Nat. Commun. 11, 1904. doi:10.1038/s41467-020-15652-8

Garner, M. R., Flint, J. F., and Russell, J. B. (2002). Allisonella histaminiformans gen.
nov., sp. nov.: a novel bacterium that produces histamine, utilizes histidine as its sole
energy source, and could play a role in bovine and equine laminitis. Syst. Appl.
Microbiol. 25, 498–506. doi:10.1078/07232020260517625

Hagey, J. V., Bhatnagar, S., Heguy, J. M., Karle, B. M., Price, P. L., Meyer, D., et al.
(2019). Fecal microbial communities in a large representative cohort of California dairy
cows. Front. Microbiol. 10, 1093. doi:10.3389/fmicb.2019.01093

Hallberg, J. W., Wachowski, M., Moseley, W. M., Dame, K. J., Meyer, J., andWood, S.
L. (2006). Efficacy of intramammary infusion of ceftiofur hydrochloride at drying off for
treatment and prevention of bovine mastitis during the nonlactating period. Vet. Ther.
7, 35–42.

Hansen, Z. A., Schilmiller, A., Guzior, D., Vasco, K. A., Rudrik, J. T., Quinn, R., et al.
(2024). Shifts in the functional capacity and metabolite composition of the gut
microbiome during recovery from enteric infection. Front Cell Infect Microbiol 14.
doi:10.3389/fcimb.2024.1359576

He, W., Cik, M., Appendino, G., Puyvelde, L. V., Leysen, J. E., and Kimpe, N.De
(2002). Daphnane-type diterpene orthoesters and their biological activities. Mini-Rev
Med. Chem. 2, 185–200. doi:10.2174/1389557024605492

Jami, E., White, B. A., and Mizrahi, I. (2014). Potential role of the bovine rumen
microbiome in modulating milk composition and feed efficiency. PLoS One 9, e85423.
doi:10.1371/JOURNAL.PONE.0085423

Li, H. (2013)Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. Available at: https://arxiv.org/abs/1303.3997.

Lin, H., and Peddada, S. D. (2020). Analysis of compositions of microbiomes with bias
correction. Nat. Commun. 11, 3514. doi:10.1038/s41467-020-17041-7

Lin, L., Lai, Z., Zhang, J., Zhu, W., and Mao, S. (2023). The gastrointestinal
microbiome in dairy cattle is constrained by the deterministic driver of the region
and the modified effect of diet. Microbiome 11, 10. doi:10.1186/s40168-022-01453-2

Liu, J., Liu, F., Cai, W., Jia, C., Bai, Y., He, Y., et al. (2020). Diet-induced changes in
bacterial communities in the jejunum and their associations with bile acids in Angus
beef cattle. Anim. Microbiome 2, 33. doi:10.1186/s42523-020-00051-7

Malheiros, J. M., Correia, B. S. B., Ceribeli, C., Cardoso, D. R., Colnago, L. A., Junior, S.
B., et al. (2021). Comparative untargeted metabolome analysis of ruminal fluid and feces
of Nelore steers (Bos indicus). Sci. Rep. 11, 12752. doi:10.1038/s41598-021-92179-y

Mallick, H., Rahnavard, A., McIver, L. J., Ma, S., Zhang, Y., Nguyen, L. H., et al.
(2021). Multivariable association discovery in population-scale meta-omics studies.
PLoS Comput. Biol. 17, e1009442. doi:10.1371/journal.pcbi.1009442

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS One 8, e61217.
doi:10.1371/journal.pone.0061217

Mihara, T., Nishimura, Y., Shimizu, Y., Nishiyama, H., Yoshikawa, G., Uehara, H.,
et al. (2016). Linking virus genomes with host taxonomy. Viruses 8, 66. doi:10.3390/
v8030066

Myers, O. D., Sumner, S. J., Li, S., Barnes, S., and Du, X. (2017). One step forward for
reducing false positive and false negative compound identifications from mass
spectrometry metabolomics data: new algorithms for constructing extracted ion
chromatograms and detecting chromatographic peaks. Anal. Chem. 89, 8696–8703.
doi:10.1021/acs.analchem.7b00947

National Research Council (2001) Subcommittee on dairy cattle nutrition, committee
on animal nutrition, board on agriculture and natural resources. Nutrient requirements
of dairy cattle. 7th rev. Ed. Washington, DC: National Academy Press. Available at:
https://profsite.um.ac.ir/~kalidari/software/NRC/HELP/NRC%202001.pdf.

Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N.,
et al. (2022). Microbiome differential abundance methods produce different results
across 38 datasets. Nat. Commun. 13, 342. doi:10.1038/s41467-022-28034-z

Nothias, L.-F., Petras, D., Schmid, R., Dührkop, K., Rainer, J., Sarvepalli, A., et al.
(2020). Feature-based molecular networking in the GNPS analysis environment. Nat.
Methods 17, 905–908. doi:10.1038/s41592-020-0933-6

O’Hara, E., Neves, A. L. A., Song, Y., and Guan, L. L. (2020). The role of the gut
microbiome in cattle production and health: driver or passenger? Annu. Rev. Anim.
Biosci. 8, 199–220. doi:10.1146/annurev-animal-021419-083952

Ollier, S., Zhao, X., and Lacasse, P. (2013). Effect of prolactin-release inhibition on
milk production and mammary gland involution at drying-off in cows. J. Dairy Sci. 96,
335–343. doi:10.3168/jds.2012-5955

Peisl, B. Y. L., Schymanski, E. L., and Wilmes, P. (2018). Dark matter in host-
microbiome metabolomics: tackling the unknowns–A review. Anal. Chim. Acta 1037,
13–27. doi:10.1016/j.aca.2017.12.034

Pluskal, T., Castillo, S., Villar-Briones, A., and Orešič, M. (2010). MZmine 2: modular
framework for processing, visualizing, and analyzing mass spectrometry-based
molecular profile data. BMC Bioinforma. 11, 395. doi:10.1186/1471-2105-11-395

Rakusanova, S., Fiehn, O., and Cajka, T. (2023). Toward building mass spectrometry-
based metabolomics and lipidomics atlases for biological and clinical research. Trends
Anal. Chem. 158, 116825. doi:10.1016/j.trac.2022.116825

Ray, P., Knowlton, K. F., Shang, C., and Xia, K. (2014). Development and
validation of a UPLC-MS/MS method to monitor cephapirin excretion in dairy
cows following intramammary infusion. PLoS One 9, e112343. doi:10.1371/
journal.pone.0112343

Reitelseder, S., Tranberg, B., Agergaard, J., Dideriksen, K., Højfeldt, G., Merry,
M. E., et al. (2020). Phenylalanine stable isotope tracer labeling of cow milk and
meat and human experimental applications to study dietary protein-derived
amino acid availability. Clin. Nutr. 39, 3652–3662. doi:10.1016/j.clnu.2020.
03.017

Ribeiro, M. D., Pereira, J. C., Queiroz, A. C.De, Bettero, V. P., Mantovani, H. C., and
Silva, C. J.Da (2009). Influence of intraruminal infusion of propionic acid and forage to
concentrate levels on intake, digestibility and rumen characteristics in young bulls. Rev.
Bras. Zootec. 38, 948–955. doi:10.1590/S1516-35982009000500023

Frontiers in Molecular Biosciences frontiersin.org19

Vasco et al. 10.3389/fmolb.2024.1364637

https://doi.org/10.1152/physrev.1990.70.2.567
https://doi.org/10.1186/s40104-020-00512-8
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.5555/19922272369
https://doi.org/10.1186/s12711-019-0464-8
https://doi.org/10.3168/jds.S0022-0302(89)79169-4
https://doi.org/10.3168/jds.S0022-0302(89)79169-4
https://doi.org/10.3168/jds.2020-19315
https://doi.org/10.1093/nar/gkz862
https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.1093/nar/gki008
https://doi.org/10.1093/nar/gki008
https://doi.org/10.1016/j.cellimm.2020.104046
https://doi.org/10.1016/j.cellimm.2020.104046
https://doi.org/10.3168/jds.2018-15718
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1073/pnas.1516878112
https://doi.org/10.1073/pnas.1516878112
https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://www.ema.europa.eu/en/documents/mrl-report/ceftiofur-modification-mrls-bovine-species-summary-report-3-committee-veterinary-medicinal-products_en.pdf
https://www.ema.europa.eu/en/documents/mrl-report/ceftiofur-modification-mrls-bovine-species-summary-report-3-committee-veterinary-medicinal-products_en.pdf
https://www.ema.europa.eu/en/documents/mrl-report/ceftiofur-modification-mrls-bovine-species-summary-report-3-committee-veterinary-medicinal-products_en.pdf
https://doi.org/10.1371/journal.pone.0223378
https://doi.org/10.1038/s41467-020-15652-8
https://doi.org/10.1078/07232020260517625
https://doi.org/10.3389/fmicb.2019.01093
https://doi.org/10.3389/fcimb.2024.1359576
https://doi.org/10.2174/1389557024605492
https://doi.org/10.1371/JOURNAL.PONE.0085423
https://arxiv.org/abs/1303.3997
https://doi.org/10.1038/s41467-020-17041-7
https://doi.org/10.1186/s40168-022-01453-2
https://doi.org/10.1186/s42523-020-00051-7
https://doi.org/10.1038/s41598-021-92179-y
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.3390/v8030066
https://doi.org/10.3390/v8030066
https://doi.org/10.1021/acs.analchem.7b00947
https://profsite.um.ac.ir/%7Ekalidari/software/NRC/HELP/NRC%202001.pdf
https://doi.org/10.1038/s41467-022-28034-z
https://doi.org/10.1038/s41592-020-0933-6
https://doi.org/10.1146/annurev-animal-021419-083952
https://doi.org/10.3168/jds.2012-5955
https://doi.org/10.1016/j.aca.2017.12.034
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1016/j.trac.2022.116825
https://doi.org/10.1371/journal.pone.0112343
https://doi.org/10.1371/journal.pone.0112343
https://doi.org/10.1016/j.clnu.2020.03.017
https://doi.org/10.1016/j.clnu.2020.03.017
https://doi.org/10.1590/S1516-35982009000500023
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1364637


Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., et al.
(2020). De novo assembly of the cattle reference genome with single-molecule
sequencing. Gigascience 9, giaa021. doi:10.1093/gigascience/giaa021

Ruegg, P. L. (2017). A 100-Year Review: mastitis detection, management, and
prevention. J. Dairy Sci. 100, 10381–10397. doi:10.3168/JDS.2017-13023

Rule, R., Quiroga, G., Buschiazzo, H., Lacchini, R., and Mordujovich, P. (1998). Rate
of decline of cefotaxime and ceftazidime in milk following intramammary
administration to healthy and mastitic dairy cows. Vet. Rec. 143, 310–311. doi:10.
1136/vr.143.11.310

Saleem, F., Ametaj, B. N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S. M., et al. (2012).
A metabolomics approach to uncover the effects of grain diets on rumen health in dairy
cows. J. Dairy Sci. 95, 6606–6623. doi:10.3168/jds.2012-5403

Schmartz, G. P., Hartung, A., Hirsch, P., Kern, F., Fehlmann, T., Müller, R., et al.
(2022). PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic
Acids Res. 50, D273–D278. doi:10.1093/nar/gkab1111

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
doi:10.1186/gb-2011-12-6-r60

Steinegger, M., and Söding, J. (2018). Clustering huge protein sequence sets in linear
time. Nat. Commun. 9, 2542. doi:10.1038/s41467-018-04964-5

Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., and Macia, L.
(2014). “Chapter three - the role of short-chain fatty acids in health and Disease,” in Adv
immunol 21. Editor F. W. Alt (Academic Press), 91–119. doi:10.1016/B978-0-12-
800100-4.00003-9

Van Den Bossche, T., Arntzen, M. Ø., Becher, D., Benndorf, D., Eijsink, V. G. H.,
Henry, C., et al. (2021). The Metaproteomics Initiative: a coordinated approach for
propelling the functional characterization of microbiomes. Microbiome 9, 243. doi:10.
1186/s40168-021-01176-w

Vasco, K., Nohomovich, B., Singh, P., Venegas-Vargas, C., Mosci, R. E., Rust, S., et al.
(2021). Characterizing the cattle gut microbiome in farms with a high and low

prevalence of Shiga toxin-producing Escherichia coli. Microorganisms 9, 1737.
doi:10.3390/microorganisms9081737

Vasco, K. A., Carbonell, S., Sloup, R. E., Bowcutt, B., Colwell, R. R., Graubics, K., et al.
(2023). Persistent effects of intramammary ceftiofur treatment on the gut microbiome
and antibiotic resistance in dairy cattle. Anim. Microbiome 5 (15), 56–19. doi:10.1186/
S42523-023-00274-4

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., et al. (2016).
Sharing and community curation of mass spectrometry data with global natural products
social molecular networking. Nat. Biotechnol. 34, 828–837. doi:10.1038/nbt.3597

Wickham, H. (2011). ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185.
doi:10.1002/wics.147

Wilson, C., and Gilbert, G. (1986). Pharmacokinetics of cefoperazone in the cow by
the intramammary route and its effect on mastitis pathogens in vitro. Vet. Rec. 118,
607–609. doi:10.1136/vr.118.22.607

Wu, X., Huang, S., Huang, J., Peng, P., Liu, Y., Han, B., et al. (2021). Identification of
the potential role of the rumen microbiome in milk protein and fat synthesis in dairy
cows using metagenomic sequencing. Animals 11, 1247. doi:10.3390/ani11051247

Xu, H., Huang, W., Hou, Q., Kwok, L. yu, Sun, Z., Ma, H., et al. (2017). The effects of
probiotics administration on the milk production, milk components and fecal bacteria
microbiota of dairy cows. Sci. Bull. (Beijing) 62, 767–774. doi:10.1016/J.SCIB.2017.
04.019

Xue, M.-Y., Xie, Y.-Y., Zhong, Y., Ma, X.-J., Sun, H.-Z., and Liu, J.-X. (2022).
Integrated meta-omics reveals new ruminal microbial features associated with feed
efficiency in dairy cattle. Microbiome 10, 32. doi:10.1186/s40168-022-01228-9

Zhang, J., Shi, H., Wang, Y., Cao, Z., Yang, H., and Li, S. (2018). Effect of limit-fed
diets with different forage to concentrate ratios on fecal bacterial and archaeal
community composition in Holstein heifers. Front. Microbiol. 9, 976. doi:10.3389/
fmicb.2018.00976

Zheng, N., Ruan, J., and Zhang, Y. (2000). Pharmacokinetic study on absorption of
stachyose. Chin. J. Integr. Traditional West. Med. 20, 444–446.

Frontiers in Molecular Biosciences frontiersin.org20

Vasco et al. 10.3389/fmolb.2024.1364637

https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.3168/JDS.2017-13023
https://doi.org/10.1136/vr.143.11.310
https://doi.org/10.1136/vr.143.11.310
https://doi.org/10.3168/jds.2012-5403
https://doi.org/10.1093/nar/gkab1111
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
https://doi.org/10.1186/s40168-021-01176-w
https://doi.org/10.1186/s40168-021-01176-w
https://doi.org/10.3390/microorganisms9081737
https://doi.org/10.1186/S42523-023-00274-4
https://doi.org/10.1186/S42523-023-00274-4
https://doi.org/10.1038/nbt.3597
https://doi.org/10.1002/wics.147
https://doi.org/10.1136/vr.118.22.607
https://doi.org/10.3390/ani11051247
https://doi.org/10.1016/J.SCIB.2017.04.019
https://doi.org/10.1016/J.SCIB.2017.04.019
https://doi.org/10.1186/s40168-022-01228-9
https://doi.org/10.3389/fmicb.2018.00976
https://doi.org/10.3389/fmicb.2018.00976
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1364637

	Untargeted metabolomics and metagenomics reveal signatures for intramammary ceftiofur treatment and lactation stage in the  ...
	1 Introduction
	2 Materials and methods
	2.1 Study population and epidemiological data
	2.2 Sample collection and processing
	2.3 Metagenomics analyses
	2.3.1 Metagenomic sequencing
	2.3.2 Microbiome characterization

	2.4 Extraction of metabolites from cattle feces
	2.5 Metabolomics analyses
	2.5.1 Untargeted metabolomics
	2.5.2 Mass-spectrometry (MS) data processing
	2.5.3 Metabolite classification
	2.5.4 Metabolome data analyses
	2.5.5 Metabolome diversity analyses

	2.6 Statistical analyses
	2.6.1 Detecting significantly different features between groups
	2.6.2 Multi-omics analyses


	3 Results
	3.1 Untargeted metabolomics reveals a diverse metabolite composition
	3.2 Microbial metabolic pathways highlight the importance of essential molecule biosynthesis
	3.3 Fluctuations in alpha diversity were observed across the sampling period
	3.4 Beta diversity of the metabolome and microbial pathways varies across samplings, whereas the effects of ceftiofur treat ...
	3.5 Differences in the metabolome were observed between ceftiofur-treated and control cows at specific time points
	3.6 Predicted microbial functions differed between ceftiofur-treated and control cows at specific time points
	3.7 Differences in metabolites and microbial pathways were detected across samplings regardless of treatment status
	3.8 Multi-omics analysis identifies correlations between the microbiome and metabolome
	3.9 Metabolome and microbiome patterns changed across the sampling period

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


