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Nowadays, produced cars are equipped withmechatronical actuators as well as

with a wide range of sensors in order to realize driver assistance functions.

These components could enable cars’ automation at low speeds on company

premises, although autonomous driving in public traffic is still facing technical

and legal challenges. For automating vehicles in an industrial environment a

reliable obstacle detection system is required. State-of-the-art solution for

protective devices in Automated Guided Vehicles is the distance measuring

laser scanner. Since laser scanners are not basic equipment of today’s cars in

contrast to monocameras mounted behind the windscreen, we develop a

computer vision algorithm that is able to detect obstacles in camera images

reliably. Therefore, we make use of our well-known operational design domain

by teaching an anomaly detection how the vehicle path should look like. The

result is an anomaly detection algorithm that consists of a pre-trained feature

extractor and a shallow classifier, modelling the probability of occurrence. We

record a data set of a real industrial environment and show a robust classifier

after training the algorithm with images of only one run. The performance as an

obstacle detection is on par with a semantic segmentation, but requires a

fraction of the training data and no labeling.
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1 Introduction

Automated driving on public roads still faces technical and legal challenges. However,

on company premises driver-less vehicles already exist. Automated Guided Vehicles

(AGV) are able to drive safely by using laser scanners as protective devices. For

automating newly produced cars on the company premises of the car manufacturer, it

is necessary to use the basic sensor setup for obstacle detection (Wenning et al., 2020). As

ultrasonic parking sensors alone do not provide the reliability required for full

automation, we look for an additional obstacle detection mechanism. From the year

2022, it will be mandatory to equip all cars with at least a mono camera for the required

vehicle functionalities (European Commission, 2019). Thus, automated car logistics on
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company premises could be realized without additional sensors,

if a computer vision algorithm guarantees the required reliability.

Vision-based obstacle detection is an often regarded research

area. There have been proposals that use the direct comparison to

a reference image (Mukojima, 2016), proposals that use the

optical flow (Klappstein, 2008) and many more developments

with the rise of deep neural networks. While the classic

approaches, that do not use neural networks, lack robustness,

many deep-learning based approaches are limited to objects that

have been present in the data set used for training. Approaches

that generate depth from camera images (Almalioglu et al., 2019;

Feng and Gu, 2019) or perform semantic segmentation

(Badrinarayanan et al., 2017) require vast amounts of labeled

training data, accounting for high development costs.

The use case of factory-automated cars calls for a reliable,

vision-based obstacle detection, that can be trained on-site with

few training images. This differentiates the task of this paper

from the classic automated driving, where large amounts of

training data are needed to abstract for complex new situations.

The lower visual complexity on company premises and the

well-known vehicle path motivates us to reinterpret the obstacle

detection task as an anomaly detection. This approach has the

advantage that it can be taught using only the normal

environment, which is the path without any obstacles, cf.

Figure 1. During operation of the automated vehicle, the

algorithm compares the perceived environment to the learned

normality model and stops the motion when recognizing any

significant deviation. The proposed method makes labeling

unnecessary and reduces the amount of training to a fraction.

The paper investigates this concept on an application-specific

data set.

The paper is structured as follows: In the next chapter, we

show related work from the field of anomaly detection.

Subsequently, we show the classifier design and introduce the

data set. Chapter 4 describes the test vehicle and implementation

details. After evaluating the approach on the data set in chapter 5,

we put it into perpective by comparing the performance to a

semantic segmentation. After the summary, future work for a

reliable vision-based obstacle detection is discussed.

2 Related work

Awide range of work deals with the task of obstacle detection

using only a monocamera. Given the fact that we interpret the

task of obstacle detection as anomaly detection (AD), we limit

this chapter to current techniques of binary classification with the

aim of identifying samples in data that are different from the

norm (Chandola et al., 2009), also referred to as novelty, outlier

or change detection.

2.1 Learning from scratch

A popular architecture to learn feature representations for an

AD task are autoencoders (AE). AE compress input images to a

lower embedding and then scale them up to their original

dimension, cf. Figure 2. Here, the AE is trained in a semi-

supervised manner using only images without anomalies.

Anomalous images cannot be reconstructed properly since the

algorithm was not confronted with the objects during training.

The approach was used in (Bergmann, 2018) and (Haselmann

et al., 2018). Following the same idea, (Minematsu et al., 2018),

and (Sabokrou et al., 2018) use a Generative Adversarial Network

(GAN) instead of an AE.

This approach has two drawbacks. The required post-

processing increases model complexity, and the decoder part

of the AE inherently adds an overhead.

(Andrews et al., 2016; Lawson et al., 2017; Sarafijanovic-

Djukic and Davis, 2019) eliminate these downsides by using an AE

as a feature extractor in combination with a shallow classifier like a

Support Vector Machine (SVM) to classify the learned embedding.

FIGURE 1
Camera view without human obstacle used during training
and with human obstacle.

FIGURE 2
AD-architecture using deep autoencoders.

FIGURE 3
General architecture of a deep hybrid approach.
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Approaches that share the characteristic of this architecture,

presented in Figure 3, are called hybrid approaches. In these

approaches, the two components are trained independently, but

it is also possible to jointly optimize the deep feature extractor and

the shallow classifier (Ergen et al., 2017).

2.2 Transfer learning

Training a deep neural network from scratch requires a large

amount of data, which is one of the main disadvantages. In

Transfer learning, training data and test data are drawn from a

different distribution.

Transfer learning for an AD task can be realized using the

deep hybrid approach. A pre-trained deep neural network used

as feature extractor is paired with a shallow classifier that is

trained in the application domain. RIPPEL et al. (Rippel et al.,

2020) show promising results using the state-of-the-art image

classifier EfficientNet (Tan and Le, 2019) trained on ImageNet

(Russakovsky et al., 2015). Their approach to use a multivariate

Gaussian (MVG) with the Mahalanobis distance as classifier

outperforms other methods on an industrial data set. RIPPEL et al.

show that features extracted by EfficientNet that contribute the

least to the variance in normal data are highly discriminative in

the AD task. Learning these features from scratch would be

difficult. Thus, they eliminate the need to train the deep feature

extractor by retaining its performance.

Christiansen et al. (2016) firstly use an AD approach as

obstacle detection. They analyse different layers of a pre-trained

AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan and

Zisserman, 2014) as feature extractor in combination with

different traditional classification algorithms like Singlevariate

Gaussian (SVG), MVG, k-Nearest Neighbour (k-NN) and

Gaussian Mixture Models (GMM). They validate the

algorithms in the application of an autonomous vehicle in an

agricultural environment.

Their work DeepAnomaly implies that good results are

possible using a moving camera, including all the difficulties

like changing dynamic backgrounds and motion blur.

CHRISTIANSEN et al., however, evaluate their model on a mostly

uniform grassland, which is visually not as complex and cluttered

as the inside of a factory.

Another interesting approach using a hybrid AD model with

a pre-trained feature extractor is presented by BOUINDOUR et al.

(Bouindour et al., 2019). They try to detect anomalous motion

using a static surveillance camera. Therefore, the neural network

C3D extracts spatiotemporal features. The shallow classification

used by BOUINDOUR et al. is a so-called balanced distribution (BD)

that was purpose-built for the task of distinguishing real

anomalies from rare normal events. Here, a sample is only

added to the balanced distribution if its Mahalanobis distance

is above a certain threshold. The downsides of the balanced

distribution in comparison to a simple Gaussian distribution is

the increased computation time necessary to construct it,

especially when considering large training data sets.

Table 1 sums up the key features of the related work. The

obstacle detection for vehicle automation in industrial

environments is characterized by a moving camera and an

inhomogeneous background. Moreover it needs a state-of-the-

art feature extractor and anomaly model.

2.3 Need for research

A deep hybrid anomaly detection seems to be a promising

approach for obstacle detection. CHRISTIANSEN et al. show this in an

agricultural setting using rather outdated neural networks as feature

extractor. Considering the exceptional results using a pre-trained

state-of-the-art deep neural network (Rippel et al., 2020), it seems

possible to apply the anomaly detection approach in the more

complex factory environment. The balanced distribution suggested

by BOUINDOUR et al. could further increase the performance.To this

end, we test the deep hybrid anomaly detection approach on an

application-specific data set, that has not been addressed before. It

combines the moving camera with the inhomogeneous factory

background. Besides providing the proof of concept as an

obstacle detection in factory automation, we test state-of-the-art

feature extractors, MobileNet and ResNet, which have not been used

in related work yet. Moreover, we compare anomaly models from

the related work, SVG and MVG, with the Balanced Distribution

from BOUINDOUR et al.. The best performing combination is analysed

regarding its reliability in the application.

3 Methods

This paper’s research goal is to test the anomaly detection

approach in the use case of vehicle automation in industrial

environments. Therefore, we make use of latest anomaly

detection components, that are described in this section.

Following requirements can be derived from the use case:

• Safety: According to relevant safety standards, the obstacle

detection’s failure rate p shall be 10–7 < p < 10–6 per hour.

(Wenning et al., 2020).

• Robustness: To assure an economic operation the false

detection rate should be less than 10–4 per hour.

• Performance: The obstacle detection must run in real time

on standard vehicle computing hardware. Since the

computing performance significantly depends on the

implementation on special-purpose hardware, it is not

analyzed in this paper.

• Velocity: The vehicle drives with 1 m/s. Similarly to AGVs,

this corresponds to a safety zone of 1–2 m in front of the

car. The algorithm must detect the obstacle in this distance

to have sufficient time to stop the car.
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• Economy: Automating the addressed use case generates a

single-digit profit (€). This implies on the one hand that no

additional hardware can be used, which is the motivation

to use the monocamera. On the other hand, it requires low

development costs. Therefore, we set up the requirement

that the anomaly detection shall be trained in a one-time

trip of the vehicle.

3.1 Classifier design

In this paper, we will follow the method of a deep hybrid

anomaly detection. Figure 4 shows the classifier’s architecture

consisting of a pre-trained deep neural network used as feature

extractor and a shallow classifier referred to as anomaly model.

During offline training, n anomaly free images with width a and

height b are used as input. Depending on the specific neural network,

they are transformed into n feature maps consisting of x × y feature

vectors with dimension z. These feature vectors are also referred to as

patches. The anomaly model will then make use of these feature

vectors to create a model of normality.

When testing an input image for an anomaly, the same neural

network is applied to extract a feature map. These features are

then compared to the normality model resulting in an anomaly

score per patch.

The result of comparing the feature map output of the deep

neural network with the previously created normality model is an

array of anomaly scores of the same dimensions x × y. Due to the

stochastic characteristics of neural networks, the output includes

noise. It can be eliminated by applying a Gaussian filter with a

variance of σ = 1, which blurs the anomaly scores in both image

dimensions. The filtered anomaly scores are the algorithms

output. By defining a threshold, a binary classification normal/

anormal can be derived for each patch.

3.2 Feature extractor

The overview of state-of-the-art methods already showed

that deep neural networks can be used as very potent and general

feature extractors, even when used in a transfer learning setting

for a classification task they were not trained for (Rippel et al.,

TABLE 1 Key features of related work.

Rippel et al. (2020) Christiansen et al. (2016) Bouindour et al. (2019)

Moving camera no yes no

Inhomogeneous background no no no

Feature extractor EfficientNet AlexNet, VGG C3D

Anomaly model MVG SVG, MVG, k-NN, GMM BD

FIGURE 4
General classifier architecture.
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2020). For this paper, two different deep neural networks at

different layers are compared. For better reproducibility, pre-

trained network weights are utilized, which are publicly available.

3.2.1 ResNet50V2
Due to their popularity in many different machine learning

tasks, different ResNet (He et al., 2016a; He et al., 2016b) variants

will also be considered. The ResNet was the first extremely deep

neural network architecture that circumvents the problem of

vanishing gradients by introducing so-called skip connections.

For this paper, the very popular ResNet50V2 is chosen. It consists

of 50 layers which are organized in five blocks where the outputs

of the last three blocks are examined as feature extractors.

Convolutional neural networks are usually tested using the

same image resolution, which was also used to train the

network. In the case of the ResNet–and many other networks

pretrained on ImageNet–this resolution is 224 × 224 pixels. But

most deep learning frameworks allow using different resolutions,

which simply results in a larger feature map output. This could be

useful for more accurately localizing an anomaly. To test this

effect, the same ResNet50V2 was used with the intended

resolution of 224 × 224 pixels and also 449, ×, 449 pixels.

3.2.2 MobileNetV2
MobileNetV2 (Howard et al., 2017; Sandler et al., 2018) as the

name suggests, is a neural network architecture specifically

designed to be lightweight enough for execution on mobile

devices. Even though the factory use case would theoretically

allow handing over the obstacle detection task to a low-latency

server (Wenning et al., 2020), fast algorithm that could also run

on the vehicle itself is preferred. MobileNetV2 delivers excellent

results for ImageNet classification, while still being very fast, and

it is a popular choice for mobile computer vision tasks. In total,

seven different layers of a MobileNetV2 pre-trained on ImageNet

are being examined.

3.3 Anomaly model

The second part of a deep hybrid anomaly detection is a shallow

classifier that creates amodel of normality in semi-supervised training

and then calculates an anomaly score for each new sample. Using this

score and a threshold, a sample can be classified as anomalous or

normal. Chapter 2.2 already introduced many hybrid AD approaches

utilizing different shallow classifiers. Single and multivariate Gaussian

showed good results and are therefore used in our application.

However, the true distribution of the data in the deep feature

space is unknown. The performance of the resulting classifiers give

an indication of the extent to which the assumption is fulfilled.

3.3.1 Single variate Gaussian
To create the normality model, the mean and variance for

each feature dimension is calculated separately, and correlations

between dimensions are not considered. The anomaly measure is

then a simplified Mahalanobis distance MSVG, which is also

sometimes referred to as standardized Euclidean distance.

N SVG x | μ, σ2( ) � 1

2πσ2( )1/2 exp − 1

2σ2
x − μ( )2{ }

MSVG x | μ, σ2( ) � �������������∑D

i�1
xi − μi( )2
σ i

2

√ (1)

3.3.2 Multivariate gaussian
More recent research by (Rippel et al., 2020), however, favors

the use of a multivariate Gaussian over a simple SVG in a hybrid

AD setting. While they do not consider the computation time,

the results obtained using an MVG are significantly superior to

an SVG. Creating the MVG is very similar to the SVG, but

instead of calculating a separate variance for each feature

dimension, one covariance matrix is estimated and the real

Mahalanobis distance MMVG is used during anomaly detection.

NMVG x | μ, σ2( ) � 1

2π( )D2 |Σ|12 exp −1
2
x − μ( )TΣ−1 x − μ( ){ }

MSVG x | μ,Σ( ) � ����������������
x − μ( )T Σ−1 x − μ( )√

(2)

3.3.3 Balanced distribution
This paper is focusing on the use case of classifying images or

image segments into the categories “contains anomaly” or “contains

no anomaly”. This wording already indicates that an anomaly is far

less common than no anomaly and is thus not represented in the

sample data to the same degree. This unequal distribution could

result in the wrong classification of rare normal events as anomaly,

just because they are rare and not proportionally represented in the

normal distribution. To overcome this limitation of a simple

Gaussian distribution, a balanced distribution can be used

(Bouindour et al., 2019). The balanced distribution is initialized

by first selecting N samples from the training data and calculating

the parameters for a Gaussian distribution μ and σ2. Then, a

subsequent sample x is only added to the balanced distribution if

itsMahalanobis distance is above a certain thresholdα. After adding a

sample, the parameters of the Gaussian are recalculated. Having

considered each sample in the training data, the balanced distribution

is pruned using a threshold η · α to eliminate redundant elements

among the first N samples. Classification is done in the same way,

using the Mahalanobis distance of a sample and the balanced

distribution to assign it to one of the classes. The algorithm is

shown in Figure 5.

Originally, the balanced distribution uses an estimated

covariance matrix Σ and the Mahalanobis distance internally,

similar to a multivariate Gaussian. To speed up the

calculation, we use a simplified version using only the

variance σ2. Note that this simplification is only used for

the decision which patches should be part of the normality
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model. Our tests have shown that using the faster SVG

internally is powerful enough to prevent the grey floor

from appearing too often in the modelled data.

In contrast to the single and multivariate Gaussian classifiers,

the balanced distribution has three parameters that need to be

chosen. In accordance with BOUINDOUR et al., they are selected

such that the balanced distribution consists of only 10% of

features provided in the training. Using an initial number of

N = 500 feature vectors, an empirical assessment showed that this

is achieved with a learning threshold α set to the mean of

Mahalanobis distances from a simple SVG model combined

with a pruning parameter of η = 0.5.

3.4 Labels and metrics

To be able to compare the developed algorithms not only

among each other but also to those from the literature, defining

different labels and accompanying metrics is necessary, cf.

Figure 6.

3.4.1 Per-pixel
To evaluate an anomaly detection algorithm in terms of

background subtraction, the anomalies in the data set need to be

labeled per-pixel. An algorithm will then be judged by its ability

to correctly classify each pixel. As the output of a classifier can

have a lower resolution than the input image, the labels need to be

down-sampled as well such that they match the output resolution

of the classifier. Knowing exactly where an anomaly is located

within an image is not necessary for the use case but it could

enable more sophisticated methods like comparing the location

of the obstacle to the planned trajectory and acting accordingly.

Taking a look at per-pixel classification also enables a

comparison with different background subtraction and per-

pixel anomaly detection algorithms from the literature.

3.4.2 Per-frame
The actual output of the classifier should directly signal

whether the vehicle needs to stop or not. The two classes the

data set needs to be split into is “stop” and “do not stop”. Labeling

this quite unspecific criterion is challenging as it requires some

FIGURE 5
Balanced Distribution algorithm for anomaly detection.

FIGURE 6
Different types of labels: Per-pixel labels in red, per-frame labels using the semicircle: “do not stop” (left), “Not considered in per-frame metric”
(middle) and “Stop” (right).
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judgement by the labeler. To assist in an optimal labeling process,

the following criteria are used:

I) Every image with an anomaly in a semicircle covering the

bottom half of the image is labeled “stop”. The semicircle

corresponds to AGV’s safety zone for obstacle detection.

II) When there is no anomaly in the image, it is labeled “do not

stop”.

III) The images that do not fall in either category, for example

images with an anomaly outside the semicircle, are not

considered in this metric.

4 Implementation

The described ADmethods shall be applied to the use case of

an obstacle detection in an industrial environment. Publicly

available data sets often address the use case of automated

driving on public roads. Therefore, we record use case-specific

images with a demonstrator vehicle.

4.1 Demonstrator vehicle

We chose Kate small AGV (Schmidt, 2020) as vehicle

platform, cf. Figure 7. Laser scanners enable precise

localization. A top-mounted aluminum rack holds an Intel

RealSense D435 camera at a height of 1.55 m, approximately

where windshield cameras are located. The camera’s angle of 35°

enables capturing a wide field of floor in front of the vehicle–up to

a distance of 6 m. Since the vehicle’s velocity is around 1 m/s, a

distance of 1–2 m would be sufficient to trigger the brake in time.

4.2 Reference data set

The data set was recorded in the ramp-up factory of RWTH

Aachen University. The images contain usual obstacles that can

be found in industrial environments, cf. Figure 8. In the training

run, certain objects, i.e. barriers, floor markings and barrier

chains, can be found at the edge of the path and are then

placed as an obstacle on the path during testing. Since the

appearance is already known from the training phase, it

becomes challenging to detect them as obstacles. The training

fraction is recorded in a one-time trip of the vehicle. Thus, the

AGV visits each location of the path only once. In the testing

phase, roughly the same locations are revisited, making it

possible to learn the environment “by heart”.The limited

amount of training data, provided in Table 2, reflects the

challenge to learn the task of obstacle detection with low costs

for labeling and data acquisition.

4.3 Labels

Different metrics with the accompanying labels were

established in chapter 3.4. Per-pixel labels were generated

manually at the full image resolution and then down-sampled

for each individual deep neural network to match the respective

output resolution. Labels for the per-frame metric were also

assigned using the full image resolution with the semicircle

criterion. Table 2 provides an overview of the data set

composition. Training and test data is split such that the

training covers the images of only one run down the path

without any obstacle.

4.4 Classifier implementation

The deep feature extractors of the hybrid approach were

implemented using TensorFlow 2.1. Python and NumPy were

used for implementation of the shallow classifier. The neural

networks were evaluated on a NVIDIA TITAN Xp graphics card

with 12 GB of memory and all other calculations using an Intel

Core i7-6850K CPU with 40 GB of RAM. The neural networks

use pre-trained weights. The classifier’s configuration is

described in Methods and Evaluation Section.

5 Evaluation

The values used for the model comparison of the anomaly

detectors are the area under the receiver operating

characteristics curve (AUROC), the area under the precision-

recall curve (AUPRC) and the maximum f1-score. These three

metrics are threshold-independent and allow an

implementation-specific threshold selection to balance false

positives (FP) and false negatives (FN). Another benefit of

using these values is the comparability to other AD models

from the literature.In addition to these more general

performance metrics, the false positive rate (FPR) at a very

FIGURE 7
Vehicle platform Kate and the mounting of the camera.
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low false negative rate (FNR) is also examined since in the

obstacle detection use case, false negatives (not detecting an

actual obstacle) are far more critical than false positives

(unnecessarily stopping the vehicle).

5.1 Per-pixel metric

Many parameter combinations have been tested using a grid

search. However, we confine ourselves to presenting the best

performing models in Table 3.

Model # 2 (ResNet50V2 cut at level 4 and blurred with a

Gaussian in both spatial dimensions) has not only the smallest

FPR but also exceeds in all other metrics using the full training

data set.

Model # 3 relies on features from MobileNetV2 and achieves

a very good FPR as well while being over 7 times faster. This

results in about 22 frames per second (FPS), which is slightly

faster than the frame rate of the camera, allowing the vehicle to

process each frame before a new one is captured.

The best-performing model # 1 was trained by reducing the

training data set from 20,025 to 2,314 patches with the balanced

distribution approach. The resulting detector performs better for

background objects, which were also present during training and

should thus not be classified anomalous. A possible

interpretation for this is that the normality distribution is

skewed and the few patches of background objects are

outnumbered by patches showing only the ground during

training.

Model # 4 shows the work of CHRISTIANSEN et al. as a

comparison to the state of the art. They use a similarly

specific custom data set and analogous methods. The

maximum f1-score of 0.564 reported by them is significantly

lower than the one achieved in this work (0.8358). This can be

attributed to the more sophisticated neural network for feature

FIGURE 8
Extract from data set showing examples of obstacles in an industrial environment.

TABLE 2 Data set overview.

Training Test

Total number of images 89 627

Images without anomalies 89 329 (52,5%)

Images with anomalies — 298 (47,5%)

“Do not stop” labels — 317 (74.76%)

“Stop” labels — 107 (25.24%)

Pixel without anomaly — 95.59%

Pixel with anomaly — 4.41%
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extraction (ResNet vs. AlexNet) and the more powerful shallow

classifier (multivariate balanced distribution vs. SVG) used in this

work. The post-processing with a simple Gaussian blurring is

also unique to this work and further improves the results

(0.7583 without post-processing).

An inspection of the individual misclassifications in Figure 9

reveals that many of the still existing false negatives are actually

due to imperfect labels or shadows. Per-pixel labels are not always

ideal, which is the reason for most of the false negatives in the test

data set. Some areas like shadows are hard to label because there

is no clear objective for them. A shadow, while being a visual

anomaly, does not represent an obstacle that needs to be avoided.

Many publicly available data sets instead ignore the classification

of shadows and do not count them as false positives or false

negatives.

Figure 10 confirms that the multivariate Gaussian classifier

outperforms the univariate Gaussian. The graphs show that both

models can be improved by reducing the number of patches

according to the balanced distribution.

5.2 Per-frame metric

For the analysis of the anomaly detection in the per-frame

metric model # three is chosen, since it already reaches perfect

classification on the test data set. Perfect classification in this case

means that each anomaly in a semicircle covering the lower half

of the image is correctly detected and that there is no false alarm

when there is no anomaly in the image at all. This is a promising

result but it also raises some concerns and requires a more in-

depth review.

In Figure 11 the model’s anomaly score is plotted over the

successive frames of the test data set. Using a threshold of 17, the

graph shows that all instances of humans as obstacles are

detected with great confidence. Even small parts like an arm

or shoes are detected. The fact that each frame is classified

correctly draws interest to the images that are closest to the

threshold. The peak at frame 80 for instance almost crosses the

threshold, but actually contains no anomaly. This can be

attributed to the fact that the automated vehicle took a

slightly different path during training with the result that the

barrier in the top left corner of frame 80 can only be seen

partially. The same applies for the peaks around frame 40, 320,

and 420, where the tool trolley on the side is more prominent

than during training. More training data that better covers the

complete operating environment could thus improve these edge

cases and make selecting a robust threshold easier. As the MVG

already achieves the highest possible scores for the per-frame

metric, a multivariate balanced distribution is not considered. It

should be noted that the multivariate balanced distribution does

improve the per-pixel metric significantly and could also be used

here to increase the margin where 100% classification accuracy is

achieved. This could make choosing the right threshold a lot

easier and increases the robustness of the classifier. The anomaly

TABLE 3 Results for per-pixel classification and quantitative comparison to related work.

# Model AUROC AUPRC Max. F1-
score

FPR at TPR =
0.9999

Training
(m:s)

Test
(s)/FPS

1 ResNet50V2_LargeImage_Block4 + multivariate BD +
Gaussian (0,1,1)

0.9947 0.9086 0.8358 0.1090 21:25 0.374/2.67

2 ResNet50V2_LargeImage_Block4 + MVG +
Gaussian (0,1,1)

0.9890 0.8262 0.7545 0.1287 0:2.545 0.374/2.67

3 MobileNetV2_Block12 + MVG + Gaussian (0,1,1) 0.9844 0.7072 0.7025 0.1599 0:0.302 0.046/21.74

4 DeepAnomaly Christiansen et al. (2016) 0.977 0.522 0.564 — — 0.025/40

FIGURE 9
Correct detection of a human crossing the autonomous
vehicles’ path with few false positives around the contour and in
the background.
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with the lowest score is the yellow line that was already discussed

for the per-pixel metric.

A possible point of critique could be the choice of the per-

frame labels as introduced in section 3.4, because it discards

many images with anomalies in them as “not considered”. These

are also displayed in Figure 11 using a gray background. It can be

observed that these images would at times be classified as

anomalous, at other times as normal. This is actually the

predicted behavior and it is compliant with the specific use

case of obstacle detection, which has to focus first and

foremost on safety. The classifier detects every instance of an

obstacle close to the vehicle (using the semicircle criterion) and

correctly classifies images with no obstacle as normal. The cases

in between where an obstacle is at the top border, for example, are

not relevant for the use case, because the vehicle can continue to

drive until the obstacle is close. Stopping too early, on the other

hand, is also allowed since this could only increase safety. If the

obstacle cannot be seen anymore (a human leaves the view for

example), the vehicle would continue driving. The only downside

could be a slightly reduced availability because of unnecessary

stops.

6 Comparison with classic
approaches

To compare the anomaly detection’s performance with a

semantic segmentation, the U-Net architecture by RONNEBERGER

et al. (Ronneberger et al., 2015) is trained for obstacle detection.

Since the amount of training data is not sufficient for a supervised

learning from scratch, we add simulated data from a virtual

factory environment, which was built in Unreal Engine four for

this purpose. Thus, we generate 15.000 images. Data

augmentation helps bridging the gap between real and

simulated data.

This way the U-Net is able to segment all objects from the

drivable path in the real world testing data. Applying the per-

frame metric, the algorithm achieves a maximum f1-score of

0.85. This comparison shows that the anomaly detection is nearly

as powerful as the semantic segmentation in the obstacle

detection use case, although only 89 images instead of

15.000 images are used for training. While training the

semantic segmentation requires ground truth segmentation

labels for all the training data, the anomaly detection does not

require any labeling. Looking at the practical application,

generating training data by setting up a simulation

environment or labeling images by hand generates high costs.

The anomaly detection enables engineers to train the algorithm

by using data from only one run.

7 Summary and future work

In this paper, we addressed the use case of vision-based

obstacle detection for automated vehicles in industrial

environments. Since supervised learning methods require huge

amounts of labeled training data, we interpreted the task as a visual

anomaly detection. On a specially recorded use case specific data

FIGURE 10
ROC (left) and PR (right) plots regarding the per-pixel metric of anomalymodels using ResNet50V2 (large image, level 4) features and aGaussian
filter for postprocessing. The dot on the graph marks the threshold of maximum f1-score.
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set, the deep-hybrid approach shows good classification results.

Due to the used pre-trained neural networks, we can limit the

training phase to 89 images. Analysing the anomaly detection in a

per-frame metric, we show that every human obstacle would be

detected reliably even though some misclassifications occur in the

per-pixel metric. For obstacle detection in a use case with limited

complexity, the anomaly detection approach is on par with a

semantic segmentation, which has been trained on 15.000 labeled

images. The anomaly detection approach is therefore a low-cost

alternative for obstacle detection. Using state-of-the-art neural

networks for data processing, it offers a complex image

understanding, which can be as robust as classic approaches,

e.g. a semantic segmentation. The shallow classifier, however,

limits the output complexity. As a consequence, the anomaly

detection can only differentiate two classes and has a lower

resolution of object boundaries.

In future work, the classification could be further improved if

objects’ positions would be explicitly considered in the

classification of image patches. Thus, a barrier in front of the

vehicle would be different to one at the side of the path.To bring

the algorithm into application, a verification of the requirements

is needed. To address functional safety, it is necessary to assess

the effects of environmental influences like illumination changes.

Additional data from the field can be used to provide a statistical

proof of safety.
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FIGURE 11
Per-frame anomaly scores (logarithmic scale) for the complete test sequence with a selection of interesting frames. Using a threshold of 17,
each image is labeled correctly.
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