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Material characterization and discrimination is of interest for multiple

applications, ranging from mechanical engineering to medical and industrial

sectors. Despite the need for automated systems, the majority of the existing

approaches necessitate expensive and bulky hardware that cannot be used

outside ad-hoc laboratories. In this work, we propose a novel technique for

discriminating between different materials and detecting intra-material

variations using active stimulation through vibration and machine learning

techniques. A voice-coil actuator and a tri-axial accelerometer are used for

generating and sampling mechanical vibration propagated through the

materials. Results of the present analysis confirm the effectiveness of the

proposed approach. Processing a mechanical vibration signal that

propagates through a material by means of a neural network is a viable

means for material classification. This holds not only for distinguishing

materials having gross differences, but also for detecting whether a material

underwent some slight changes in its structure. In addition, mechanical

vibrations at 500 Hz demonstrated an ability to provide a compact and

meaningful representation of the data, sufficient to categorize 8 different

materials, and to distinguish reference materials from other defective

materials, with an average accuracy greater than 90%.
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1 Introduction

Reliable material characterization and discrimination is a key control process for

guaranteeing production quality in many industrial sectors. Automated systems are

required to classify raw materials on different quality levels, and to potentially

discriminate the desired raw material from other unwanted defective materials. This

is usually done by devising a model that captures relevant material properties, or the way

the material behaves when an external stimulus is applied. As a consequence, if the model

is sufficiently accurate, the defective material is expected to differ from the reference

sample.

Several methods have been developed for discriminating and classifying materials in a

non-destructive manner. Non-destructive testing methods deal with the identification

and characterization of material samples without modifying the component inspected,
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whether they show inner or external visibility. Examples include

ultrasonic (Peng et al., 2012; Su et al., 2014), thermographic

(Kroeger, 2014), infrared imaging (Vavilov et al., 2015), visual

(Bossi and Giurgiutiu, 2015), acoustic (Sarasini and Santulli,

2014), and electromagnetic (Yang et al., 2013) techniques.

Among all these possibilities, the one that is closer to the

approach proposed in this work is the exploitation of acoustic

pulses (Nyffenegger et al., 2004). In a similar way, ultrasounds are

used in the nondestructive evaluation and classification of

different materials. Since echoes from high frequency (from

5 up to 10 MHz) sound waves vary with subsurface flaws and

layers, classification techniques are applied to distinguish

materials and identify imperfections. On the one hand,

advantages of ultrasonic testing include speed of scan, good

resolution and flaw detecting capabilities, on the other hand,

scattering, absorption and object geometry are three parameters

that affect the attenuation. Additional not negligible drawbacks

are the thermal and mechanical effects due to the high frequency

of the signal. Furthermore, such type of investigation is not

practical for on-site in-service inspections since it requires special

equipments with accurate calibrations (Memmolo, 2018).

All the mentioned approaches are usually extremely

expensive, require highly sophisticated instrumenta- tion

setups, and must be performed under experts’ supervision.

Moreover, they are often time-consuming and require an

intense data post processing. Hence, these limitations make

these methods not suitable for routine laboratory experiments

and small-scale industries.

The possibility of distinguishing between different materials

is fundamental also in medicine. Indeed, automated systems for

skin characterization and discrimination are of interest for

dermatological diseases detection. Skin diseases are the most

frequent diseases worldwide, highly complex and expensive to

diagnose, and strongly subjected to doctor’s experience and

interpretation (Vijayalakshmi, 2019). Therefore, the

introduction of automated methods in medical analysis has

great potential in reducing human-based errors (Kopec et al.,

2003). In this context, the majority of the proposed solutions is

based on artificial intelligence techniques applied to images

(Attallah and Sharkas, 2021; Goceri, 2021), thus relying on

visual properties of the skin. However, detecting changes in

mechanical properties of the skin is also relevant for

understanding skin pathophysiology, and support diagnosis

and early treatment of diseases (Li et al., 2012).

With this work, we propose a proof-of-concept system for

discriminating between different materials and detecting intra-

material variations using active stimulation through vibration

and machine learning techniques. The use of vibration-based

techniques is a consolidated method in material analysis,

especially for structural health monitoring and damage

detection (Montalvao et al., 2006). An exploratory study, that

demonstrated the feasibility of the proposed approach, was

presented in (Al-Bkree, 2018). The author performed a simple

vibration test to classify different types of materials. In the work

we are proposing, low-frequency vibrations are applied directly

on the material, in such a way aforementioned problems related

to the ultrasounds can be overcome. Moreover, the approach

here presented is based on a system setup which is thought to be

easily adopted for possible implementation outside the

laboratory.

The rest of the paper is organized as follows. In Section 2.1

and Section 2.2 we describe the system setup and the selected

materials. In Section 2.3 the data acquisition and preprocessing.

In Section 3, we illustrate and discuss the approaches followed for

materials discrimination and defects detection. In Section 4,

conclusions and possible subjects of future research are outlined.

2 The system

The core idea of this paper is to discriminate between

different materials and to detect intra-material variations by

exploiting the way the mechanical vibrations propagate

through materials. To this aim, we developed a system to be

mounted on the target surface which is capable of generating and

sensing vibrations. Nine samples were selected to validate the

proposed approach.

2.1 Hardware

Preliminary tests were conducted in order to identify the best

pair of acting and sensing technology. Accelerometer and

polyvinylidene fluoride film sensors, and voice coil and

piezoelectric actuators were tested to identify the combination

giving the highest performance. The evaluation was done

considering the range of selected frequencies (i.e., from 100 to

500 Hz), the duration of the stimulation, the required signal

amplitude, and the easiness of positioning the hardware on the

objects to be investigated. As a final result, we selected an

accelerometer (ADXL335 Analog Devices, United States) as

sensing element, and a voice coil actuator (Bone Conduction

Transducer Adafruit, NY, United States) drived by an audio

amplifier (LP 2020A+ Lepai, CN) for generating the vibration.

The voice coil has an operational frequency range of

70–19000 Hz, while the accelerometer has a sensing range

from 0.5 to 1600 Hz for the x- and y- axis, and from 0.5 to

550 Hz for the z-axis. A multifunction DAQ device

(E2000 MicroDAQ, PL) is in charge of both generating

sinusoidal waveforms for driving the voice coil, and reading

the accelerometer values along the three axes, with a sampling

rate of 100 kHz. The audio amplifier transforms the output of the

DAQ board into a suitable signal for the voice coil.

A weight of 100 g is positioned over the voice coil to increase

the amplitude of the vibration transmitted to the material, and

limit possible noise due to surface mounting misalignment,
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which especially affects coupling with soft materials. The system

is configured to generate sinusoidal waveforms with an

amplitude ranging from 1.4 to 8.3 g. Considering the setup

used within this work, we assessed that the generated

vibration amplitude linearly depends on the vibration

frequency. The frequency-amplitude relationship was

estimated in a preparatory phase in which voice coil vibration

amplitudes were recorded and interpolated from 100 to 500 Hz,

with a step frequency of 10 Hz. Each fixed-frequency vibration

lasted 5 s. The resulting relationship between amplitude and

TABLE 1 The 8 different materials (ID 1–8) and the defected one (ID 9) considered for the purpose of this work.

ID Name Material features

1 Wood1 300 cm × 80 cm chipboard (high density), thickness 18 mm

2 Wood2 180 cm × 60 cm chipboard (low density), thickness 40 mm

3 Cork 59 cm × 89 cm laminated cork board, thickness 12 mm

4 Foam-plank1 25 cm × 9 cm laminated polyethylene foam plank, thickness 40 mm

5 Foam-plank2 26 cm × 15 cm ether polyethylene foam plank, thickness 13 mm (low stiffness)

6 Foam-plank3 20 cm × 12 cm esther polyethylene foam plank, thickness 10 mm (high stiffness)

7 Heatshrink 60 cm × 70 cm polyolefin heatshrink film, thickness 0.4 mm

8 Silicone Silicone (ShoreA 25) cylinder, diameter 85 mm, thickness 17 mm

9 Silicone + Nuts Silicone (ShoreA 25) cylinder with eight M4 stainless steel nuts embedded, diameter 85 mm, thickness 17 mm

FIGURE 1
The sensing and acting part of the system placed on four different materials. In (A) the system is analysing a silicone cylinder, in (B) a cork board,
in (C) a foam plank, whereas in (D) a wooden board. The voice coil is loaded with a 100 g weight. The accelerometer is placed at 3 cm far from the
voice coil, along the accelerometer y-axis.
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frequency (f) can be described with a negligible error (R2 =

0.996) as:

amplitude � a · f − b (1)
being a = 0.017 g Hz−1 and b = −0.172 g.

2.2 Materials

Nine different materials were considered for the purpose of

this work. In Table 1 a brief description of each material is

reported alongside the name and the correspondent ID used in

this paper for the sake of brevity. With the aim of providing a

fair experimental evaluation, we selected both soft and hard

materials. More in detail, Material-1 and Material-2 are

wooden board with different dimensions and densities.

Material-3 is a laminated board consisting of 2 layers of

cork (1 mm thick) with a 10 mm polystyrene layer in

between. Three materials (4, 5, and 6) are polyehtylene

foams with different stiffness. Material-7 is a film of

heatshrink polyolefin, whereas Materials-8 and Materials-9

are silicone cylinders. They are casted using the same

material, have the same shape, and are visually identical.

The only difference is that the second one embeds eight

M4 stainless steel nuts.

The rationale behind the choice of this sample of materials is

to have a dataset suitable for testing the capability of the approach

in distinguishing between both similar and different materials.

Indeed, hard (1, 2, 3) and soft (4, 5, 6) materials are similar to

each other in terms of mechanical characteristics, but theydiffer

notably from the ones belonging to the other group. Material-7

presents intermediate characteristics between a soft and a hard

material. In addition, the inclusion of the two silicone cylinders

(8 and 9) aimed at Single-Sided Amplitude Spectrum of x(t)

assessing the feasibility in discerning materials having slight

changes in relation to each other. In particular, in the case of

silicones we simulate the case of having a defected material with

non-visibile imperfections.

2.3 Data acquisition and preprocessing

To ensure acquisition repeatability and carry out a fair

comparison between materials, we designed the following

acquisition protocol.

In each acquisition session, the actuator and the sensor are

positioned at fixed distance, i.e., 3 cm along the y-axis of the

accelerometer, as visible in Figure 1. Such a distance is

measured with a calliper to ensure uniformity, and both

voice coil and accelerometer are attached to the surface by

FIGURE 2
Representative amplitude spectrum of the signal propagated through the Material-4 along x-, y-, and z- axis, and related to a vibration of
200 Hz.
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means of double sided adhesive tape. As demonstrated in

(Miller et al., 2018), adhesive coupling does not affect the

vibration propagation in the considered range of frequencies.

The y-axis of the accelerometer is placed parallel to the line

passing through sensor and actuator centres, with the positive

direction pointing away from the actuator, the x-axis is

perpendicular to the object surface, with the positive

direction pointing upwards, and the z-axis completes the

right-handed coordinate system. It is worth to notice that

the exploitation of a tri-axial accelerometer allows to capture

not only how the signal propagates along the direction of main

solicitation, but also how it propagates on the orthogonal

plane, along the radial and the tangential directions (y- and x-

axis, respectively).

Before the material stimulation, the accelerometer is sampled

for 5 s for calibration purposes. Then, the material is stimulated

with sinusoidal vibrations of frequency in the range from 100 to

500 Hz, with a step of 50 Hz. Each signal lasts 5 s, with a pause of

1 s in between. The entire set of fixed-frequency signals is

repeated 5 times.

For the dataset collection, each material was sampled in

6 acquisition sessions. At the beginning of each session, some

slight changes were introduced in the arrangement of

accelerometer and voice coil, meaning that they were located

in different positions on the material, while their relative distance

was kept constant. Moreover, a variation of maximum 8° of the

relative orientation of the sensing and actuation parts was

allowed. In other words, we intentionally introduced some

small uncertainties on the components location, in order to

reduce the bias due to the hardware placement, and achieve a

more robust representation of the way the signal propagates.

During the mechanical stimulation, materials response was

collected for each fixed-frequency signal.

A Fourier analysis of the signal propagated through the

material in each direction (along x-, y-, and z- axis) was

performed, and the spectrum of the signal was retrieved via

Fast Fourier Transform (FFT). As it can be seen in Figure 2,

spectrums were characterized by a peak at the generated

frequency (fundamental harmonic) followed by higher

harmonics. In this work, after a preliminary visual inspection

of the spectra, we considered the amplitude of the first

4 harmonics to be descriptive of the material response. For

the purposes of this work, we analysed 9 materials (see

Section 2.2). Hence, overall we collected 2430 fixed-frequency

signals (9 materials sampled in 6 sessions, each session consisting

of 9 frequencies conditions repeated 5 times). From each

acquisition, we extracted 4 samples per frequency per axis of

the signal spectrum (i.e., the amplitude of the principal peak plus

the amplitude of three higher harmonics). Finally, samples were

joined such that each row of the dataset contained the

FIGURE 3
The confusion matrix reporting the percentage of material
clusterization using the k-means approach. Ten PCs are used to
explain at least the 90% of the variance among the original data.

TABLE 2 Hyperparameters table.

Parameter Value/interval

Hidden neurons (n) {f5+5i for i ∈ [0, 5]g}

Learning rate (lr) {0.001, 0.01, 0.05, 0.1}

Max epochs (ep) {40, 150}

Patience (p) {10, 45}

TABLE 3 Results for material classification (P1) and material
identification (P2) using MLPs and kNNs. A1, A2, and A3 refer to
different approaches for dimensionality reduction of the original
feature space. Average accuracy and standard deviation are reported,
as well as the hyperparameters of the selected models.

Dataset Appr. Acc ± std Hyperparameters

Dataset1 kNN 0.96 ± 0.20 k = 3

(P1, A1) MLP 0.96 ± 0.20 n = 20, lr = 0.01, ep = 40, p = 45

Dataset1 kNN 0.78 ± 0.39 k = 3

(P1, A2) MLP 0.76 ± 0.40 n = 25, lr = 0.05, ep = 150, p = 45

Dataset1 kNN 0.92 ± 0.25 k = 3

(P1, A3) MLP 0.94 ± 0.23 n = 10, lr = 0.01, ep = 150, p = 45

Dataset2 kNN 0.80 ± 0.27 k = 13

(P2, A1) MLP 0.92 ± 0.24 n = 15, lr = 0.1, ep = 150, p = 45

Dataset2 kNN 0.77 ± 0.30 k = 7

(P2, A2) MLP 0.80 ± 0.39 n = 40, lr = 0.01, ep = 150, p = 45

Dataset2 kNN 0.87 ± 0.27 k = 3

(P2, A3) MLP 0.90 ± 0.27 n = 5, lr = 0.1, ep = 150, p = 45
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information regarding a single repetition of the entire set of fixed-

frequency signals, that is amplitudes of the four considered

harmonics along the three axes generated by the 9 fixed-

frequency signals. In this way, collected data are represented

by a matrix X ∈ R270×108 containing the implicit signatures of the

materials. To properly classify the tuples, a categorical label

(i.e., the material ID) was attached to each dataset row.

3 Material discrimination

Preliminary investigations were conducted to identify the

most suitable learning approach. The focus was put on SVMs,

naive-Bayes classifiers, k-NNs and MLPs. Extensive grid-search

was performed for the selection of the hyperparameters.

SVMs and naive-Bayes led to remarkably unsatisfying

performance (less than 40%). MLPs with more than one

hidden layer achieved performance comparable with MLP

with only one hidden layer at the cost of a high number of

hidden neurons (in the range 60–90), otherwise they performed

worse. By accounting for the Occam’s razor principle, also known

as the “principle of parsimony”, we focused the efforts on MLPs

with one hidden layer and kNNs, that were the most promising

approaches.

The investigation carried out in this section had a two-fold

aim: i) investigate whether processing a mechanical vibration

signal that propagates in a material is a viable means for material

classification, and ii) find the most compact and efficient

representation of such signals for such a aim. In addition, the

challenge we want to address in this work is not only to

distinguish materials having gross differences (problem P1),

but also to detect whether a material underwent some slight

changes in its structure. Such changes can be related to some

material flaws (problem P2, e.g., materials incorporating small

pieces of other materials). To tackle the two different challenging

problems, we exploited two different subsets of the dataset

described in Section 2.3:

i) Dataset1 is aimed at providing insights on P1. It is composed

of eight different materials. More in detail, we included in this

dataset all the materials described in Table 1 except for

Material-9 (Silicone + Nuts). It contains all the recorded

acquisitions for the eight materials, for a total of 240 samples.

ii) Dataset2 is used for addressing P2. It consists of

80 samples. It is composed of all the 30 Material-8

tuples, 26 tuples of Material-9 (randomly sorted among

the 30 available), and 24 tuples randomly sorted among all

the other materials.

The rationale behind Dataset2 is that we were interested in

performing a correct detection of the target material (Silicone in

this case) by discriminating such a material from a similar

material (i.e., Silicone + Nuts) without a specific focus on the

particular defect affecting the material (i.e., the Nuts). This is the

reason why in Dataset2 we exploited also non-silicone materials.

By keeping in mind future applications, this approach can be

related to the verification of conditions of healthy skins, and at

the same time to the detection of conditions which are different

from the desired one and needs further and more

specificinvestigation for a better characterization.

Due to their nature and to the problem to be addressed,

Dataset1 led to a multi-class classification problem, while

Dataset2 to a binary classification problem.

The amplitude of non-fundamental harmonics rapidly decreases

as the harmonic order grows. To let all the interested harmonics play

a non-negligible role in the material representation, data were

normalized (zero-mean, unit-variance). This way, although the

information on the intra-material signal absorption is lost, the

relation between the amplitudes belonging to different materials

is kept (under the same harmonics).

Concerning the signal processing, as a first step we investigated

if the representations of the differentmaterials provided in terms of

the amplitudes of the first 4 harmonics generated by the 9 fixed-

frequency signals along the x-, y- and z- axis generate a geometry-

based partition of the features space. If this would be the case,

simple geometric heuristics could have been devised for category

discrimination. Hence, a clustering approach based on distance

metrics was pursued. Moreover, to avoid the “curse of

dimensionality” that would cause a collapse of all the data

points in almost a single point (Gori, 2017), we performed

Principal Component Analysis to achieve dimensionality

reduction. For each dataset, we exploited for further processing

the first j components of the transformed data that could explain at

least 90% of the variance among the original data. In the following,

FIGURE 4
Mean and standard deviations of the amplitudes of the first
harmonics along the z-axis for the considered materials.
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for the sake of brevity, we will refer to the exploitation of such a

dimensionality reduction with the expression ‘A1’. Then, k-means

clustering was performed, with k equal to the number of classes

describing the problem at hand. Since the k-means approach is

potentially highly sensitive to the initialization of the centroids, the

i-th centroid was initialized with the prototypical element

belonging to the class i. With the expression ‘prototypical

element’, we refer to an element that belongs virtually to a

given class and represents the most that class, being computed

by averaging the patterns belonging to that class. Results, reported

in Figure 3, show that we are able to correctly classify Material-1,

Material-3, Material-4, Material-5, and Material-8, while the other

identifications result poor (Material-6, Material-7), or completely

wrong (Material-2). From what has been argued so far, although

the PCA allowed to retrieve a compact, meaningful representation

of the data, the data we process transformedwith PCA do not lie in

well-separated regions of the feature space. Hence, a classification

of materials relying on similarity measures based on geometric

distances would not provide sufficiently reliable results.

Thus, we implemented two Machine Learning-based

approaches, i.e., the k-Nearest Neighbours (kNN) and the

Multi-Layer Perceptron (MLP).

Also in these cases we exploited the dimensionality reduction

previously investigated. Hence, the input fed into such

algorithms consisted in the above mentioned first j

components explaining at least the 90% of the variance

among the data for each learning problem at hand (P1, P2).

Firstly, the strategy was to exploit a k-Nearest Neighbours

approach to achieve material classification (P1) and to have

insights on possible past processes applied to the material and

leaving permanent marks (P2). kNN is a supervised algorithm

that assigns a class to a pattern by means of majority voting

conducted on the k-nearest neighbours of the pattern at hand,

i.e., the pattern is assigned to the most common class among its

k-nearest neighbours. We used the L2-norm as distance metrics.

The parameter k was considered to be an hyperparameter, and

assumed integer odd values in the range [1, 15]. To select the

value of k allowing the highest classification performance, we

followed a k-fold cross-validation approach, where each block

consisted of 5 datapoints. Results are reported in Table 3, while

the average confusion matrices for P1 and P2 are reported in

Figure 5A and Figure 6A, respectively.

To investigate if a better result could be obtained with a more

complex Machine-Learning approach, we exploited a Multi-

FIGURE 5
The confusion matrices reporting the percentage of correct prediction using the kNN algorithm (upper panel) and the MLP (lower panel) for
solving P1. In (A) and (D), ten PCs are used to explain at least the 90%of the variance among the original data. In (B) and (E), data are represented by six
original features describing the amplitude of the fundamental harmonic generated by the vibrations with frequency in the range 250–500 Hz along
the z-axis. In (C) and (F), only the original components related to the vibration at 500 Hz (i.e., peaks of the first four harmonics along the three
spatial directions) are considered for data description.
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Layer Perceptron with one hidden layer. The categorical

(balanced and non-balanced) cross-entropy was set as loss

function, while sigmoid and softmax were selected as

activation functions of the hidden and the output layers,

respectively. Accuracy was chosen as metric to evaluate the

neural network performance, k-fold cross-validation was

implemented as previously done for the kNN, and Adam

optimizer was exploited. Grid search for the

hyperparameters reported in Table 2 was performed. Then,

we selected as best solution for each learning problem the

neural network achieving the highest accuracy. Results are

reported in Table 3 The confusion matrices detailing the

neural network classification performance for P1 and P2 are

depicted in Figure 5D and Figure 6D, respectively. It can be

noticed that, concerning P1 (materials classification), the

performance achieved by the kNN and by the MLP are the

same, suggesting that no more knowledge can be extracted from

the acquired data. Moreover, it can be noticed that 6 materials

are perfectly classified, while the remaining 2 are classified with

an accuracy greater than 80%.

Concerning P2, the kNN and the MLP achieve the same

accuracy in the detection of the Silicone material. However, the

solution withMLP is preferable, because it has higher accuracy in

the detection of the Non-silicone class, as revealed also by the

average accuracy (92% vs. 80%). From such results, we can affirm

that the Principal Component Analysis allowed us to retrieve a

compact, meaningful representation of the data. However, it

must be highlighted that it comes from the exploitation of the

signal propagation along 3 spatial axes, and accounts for the

9 different vibrations applied to the material. Nonetheless,

generally speaking, making materials undergo multiple

vibratory stimuli can be not recommended, due to the risk of

damaging the object. Moreover, the less is the number of

components to be tested, the faster is the data collection and

processing procedure. For the aforementioned purposes, we

investigated whether a more compact data representation

could be obtained.

With the aim of having a subset of variables with a lower

dimensionality, but still representative, we adopted the following

selection of the original directions. We computed the PCA on the

original non-normalized data and we extracted the first PC, which

has dimension 108 × 1 and explains about the 76% of the variance

among the original directions. Each component of the first PC

represents the cosine of the angle between a given original direction

and the direction expressed by the first PC itself. As a direct

consequence, the closer is the PC component to one, the higher

is the proportion of the variance that the associated original direction

represents.

FIGURE 6
The confusion matrices reporting the percentage of correct prediction using the kNN algorithm (upper panel) and the MLP (lower panel) for
solving P2. In (A) and (D), ten PCs are used to explain at least the 90% of the variance among the original data. In (B) and (E), data are represented by six
original features describing the amplitude of the fundamental harmonic generated by the vibrations with frequency in the range 250–500 Hz along
the z-axis. In (C) and (F), only the original components related to the vibration at 500 Hz (i.e., peaks of the first four harmonics along the three
spatial directions) are considered for data description.
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This investigation suggested to exploit only the 6 original

features describing the amplitude of the fundamental harmonic

generated by the vibrations with frequency in the range

250–500 Hz along the z-axis. In the following, for the sake of

brevity, we will refer to the exploitation of such a dimensionality

reduction with the expression “A2”. The vector composed by the

selected components had norm of about 0.95, hence, the remaining

components carried little information and can be neglect as a first

approximation. The fact that the features related to the amplitude

of the first harmonics play a remarkable role is coherent with the

fact that the z-axis is the direction of main solicitation. Then, we

approached problems P1 and P2 by exploiting kNN and MLP on

such data (with the same approach to the learning process

previously described). Results are shown in Table 3, while

Figure 5B reports results for P1 exploiting the kNN, and in

Figure 5E are the results obtained with the MLP approach.

Similarly, Figure 6B and Figure 6E depict outcomes for

P2 using kNN and MLP strategy, respectively.

Concerning P1, the main difference between the kNN

and MLP performance is that the kNN achieves an accuracy

≤50% for Material-7, while the MLP shows an accuracy

greater than the 50% for each material, although it is less

precise than the kNN in all the classifications. Concerning

P2, although the average accuracy is higher for the MLP, the

kNN solution is preferable, because it has higher accuracy in

the detection of the Silicone class (73% vs. 50%). We further

inspected such an unsatisfying result, by retrieving and

comparing means and standard deviations of the data

related to such features. A graphical representation of

data belonging to Dataset1 is shown in Figure 4. As it

can be noticed, data related to different materials are

significantly overlapped, by making the classification

really arduous to achieve. Similar results were achieved

for P2. So we strive to find a still compact but more

effective representation of the materials. By accounting

for the fact that the amplitude of the provided

solicitation is proportional to the signal frequency (see

Eq. 1), and that the propagation of the signal through the

material causes a decrement in the signal amplitude (due to

energy dissipation), we decided to further process data

related to the solicitation at 500 Hz. More specifically, we

decided to account for all the components of the signal

propagated along the three spatial directions, and for all the

first four harmonics. We will refer to this approach with the

expression “A3”. MLPs and kNNs were used to deal with this

formulation of the P1 and P2 learning problems (adopting

the previously described pipeline for the implementation of

the learning process). Results are reported in Table 3, and

more details on the confusion matrices are shown in Figures

5C–F and in Figures 6C–F for P1 and P2, respectively.

Concerning P1, it can be noticed that the MLP achieves a

classification accuracy higher than the kNN for Material-6 and

Material-7, while slightly lowering the performance on

Material-4. Concerning P2, the solution with MLP has

higher detection rate of the Silicone class than what is

achieved by the kNN, with slightly lower accuracy in the

other class. Hence, the MLP solution has to be preferred

also in this case.

If we compare the performance in A2 and A3, results

highlight that, although the exploitation of the Principal

Component Analysis led us to discard the signal components

orthogonal to the direction of the main solicitation (x- and y-

components of the propagated signal), they are game

changer. As previously shown, indeed, data related to the

direction of main solicitation are not sufficiently separable. In

A3, instead, we show that the apparently little contributions

provided by the x, y components of the propagated signal

significantly enhance the discriminative power of the

Machine Learning-based algorithms.

4 Conclusion and future work

In this work, we presented a novel method for discriminating

different materials by exploiting active stimulation with

vibrations. Together with the methodology, we provided a

system setup which is thought to be easily adopted outside

the laboratory and can be further extended in multiple contexts.

Three different procedures have been examined and

compared, i.e., one relying on a clustering-based algorithm,

and two implementing Machine Learning-based techniques.

Mechanical vibrations with different frequencies have been

utilised for the purpose of classification, however, active

stimulation with sinusoidal signals having a frequency of

500 Hz demonstrated to provide a compact and meaningful

representation of the data, sufficient to categorize 8 different

materials, and to distinguish reference materials from other

defective materials, with an average accuracy greater than 0.90.

Results of the present analysis confirmed the feasibility of the

proposed approach, which can have two main applications:

classification of different materials and identification of the

material state, i.e., identification of whether a material is intact

or underwent some slight changes in its structure. Current

limitations of the method arises from having considered only

flat materials in the study. Further analysis will be done to assess

the effect of the object shape on the validity of our approach.

To conclude, this work paves the way for using active

material stimulation through vibration and Machine Learning

techniques in multiple real-world applications that require

material characterization and discrimination.
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